| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2012,2013 - ARM Ltd |
| * Author: Marc Zyngier <marc.zyngier@arm.com> |
| * |
| * Derived from arch/arm/kvm/reset.c |
| * Copyright (C) 2012 - Virtual Open Systems and Columbia University |
| * Author: Christoffer Dall <c.dall@virtualopensystems.com> |
| */ |
| |
| #include <linux/errno.h> |
| #include <linux/kernel.h> |
| #include <linux/kvm_host.h> |
| #include <linux/kvm.h> |
| #include <linux/hw_breakpoint.h> |
| #include <linux/slab.h> |
| #include <linux/string.h> |
| #include <linux/types.h> |
| |
| #include <kvm/arm_arch_timer.h> |
| |
| #include <asm/cpufeature.h> |
| #include <asm/cputype.h> |
| #include <asm/fpsimd.h> |
| #include <asm/ptrace.h> |
| #include <asm/kvm_arm.h> |
| #include <asm/kvm_asm.h> |
| #include <asm/kvm_emulate.h> |
| #include <asm/kvm_mmu.h> |
| #include <asm/kvm_nested.h> |
| #include <asm/virt.h> |
| |
| /* Maximum phys_shift supported for any VM on this host */ |
| static u32 __ro_after_init kvm_ipa_limit; |
| |
| /* |
| * ARMv8 Reset Values |
| */ |
| #define VCPU_RESET_PSTATE_EL1 (PSR_MODE_EL1h | PSR_A_BIT | PSR_I_BIT | \ |
| PSR_F_BIT | PSR_D_BIT) |
| |
| #define VCPU_RESET_PSTATE_EL2 (PSR_MODE_EL2h | PSR_A_BIT | PSR_I_BIT | \ |
| PSR_F_BIT | PSR_D_BIT) |
| |
| #define VCPU_RESET_PSTATE_SVC (PSR_AA32_MODE_SVC | PSR_AA32_A_BIT | \ |
| PSR_AA32_I_BIT | PSR_AA32_F_BIT) |
| |
| unsigned int __ro_after_init kvm_sve_max_vl; |
| |
| int __init kvm_arm_init_sve(void) |
| { |
| if (system_supports_sve()) { |
| kvm_sve_max_vl = sve_max_virtualisable_vl(); |
| |
| /* |
| * The get_sve_reg()/set_sve_reg() ioctl interface will need |
| * to be extended with multiple register slice support in |
| * order to support vector lengths greater than |
| * VL_ARCH_MAX: |
| */ |
| if (WARN_ON(kvm_sve_max_vl > VL_ARCH_MAX)) |
| kvm_sve_max_vl = VL_ARCH_MAX; |
| |
| /* |
| * Don't even try to make use of vector lengths that |
| * aren't available on all CPUs, for now: |
| */ |
| if (kvm_sve_max_vl < sve_max_vl()) |
| pr_warn("KVM: SVE vector length for guests limited to %u bytes\n", |
| kvm_sve_max_vl); |
| } |
| |
| return 0; |
| } |
| |
| static void kvm_vcpu_enable_sve(struct kvm_vcpu *vcpu) |
| { |
| vcpu->arch.sve_max_vl = kvm_sve_max_vl; |
| |
| /* |
| * Userspace can still customize the vector lengths by writing |
| * KVM_REG_ARM64_SVE_VLS. Allocation is deferred until |
| * kvm_arm_vcpu_finalize(), which freezes the configuration. |
| */ |
| vcpu_set_flag(vcpu, GUEST_HAS_SVE); |
| } |
| |
| /* |
| * Finalize vcpu's maximum SVE vector length, allocating |
| * vcpu->arch.sve_state as necessary. |
| */ |
| static int kvm_vcpu_finalize_sve(struct kvm_vcpu *vcpu) |
| { |
| void *buf; |
| unsigned int vl; |
| size_t reg_sz; |
| int ret; |
| |
| vl = vcpu->arch.sve_max_vl; |
| |
| /* |
| * Responsibility for these properties is shared between |
| * kvm_arm_init_sve(), kvm_vcpu_enable_sve() and |
| * set_sve_vls(). Double-check here just to be sure: |
| */ |
| if (WARN_ON(!sve_vl_valid(vl) || vl > sve_max_virtualisable_vl() || |
| vl > VL_ARCH_MAX)) |
| return -EIO; |
| |
| reg_sz = vcpu_sve_state_size(vcpu); |
| buf = kzalloc(reg_sz, GFP_KERNEL_ACCOUNT); |
| if (!buf) |
| return -ENOMEM; |
| |
| ret = kvm_share_hyp(buf, buf + reg_sz); |
| if (ret) { |
| kfree(buf); |
| return ret; |
| } |
| |
| vcpu->arch.sve_state = buf; |
| vcpu_set_flag(vcpu, VCPU_SVE_FINALIZED); |
| return 0; |
| } |
| |
| int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature) |
| { |
| switch (feature) { |
| case KVM_ARM_VCPU_SVE: |
| if (!vcpu_has_sve(vcpu)) |
| return -EINVAL; |
| |
| if (kvm_arm_vcpu_sve_finalized(vcpu)) |
| return -EPERM; |
| |
| return kvm_vcpu_finalize_sve(vcpu); |
| } |
| |
| return -EINVAL; |
| } |
| |
| bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu) |
| { |
| if (vcpu_has_sve(vcpu) && !kvm_arm_vcpu_sve_finalized(vcpu)) |
| return false; |
| |
| return true; |
| } |
| |
| void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu) |
| { |
| void *sve_state = vcpu->arch.sve_state; |
| |
| kvm_unshare_hyp(vcpu, vcpu + 1); |
| if (sve_state) |
| kvm_unshare_hyp(sve_state, sve_state + vcpu_sve_state_size(vcpu)); |
| kfree(sve_state); |
| kfree(vcpu->arch.ccsidr); |
| } |
| |
| static void kvm_vcpu_reset_sve(struct kvm_vcpu *vcpu) |
| { |
| if (vcpu_has_sve(vcpu)) |
| memset(vcpu->arch.sve_state, 0, vcpu_sve_state_size(vcpu)); |
| } |
| |
| static void kvm_vcpu_enable_ptrauth(struct kvm_vcpu *vcpu) |
| { |
| vcpu_set_flag(vcpu, GUEST_HAS_PTRAUTH); |
| } |
| |
| /** |
| * kvm_reset_vcpu - sets core registers and sys_regs to reset value |
| * @vcpu: The VCPU pointer |
| * |
| * This function sets the registers on the virtual CPU struct to their |
| * architecturally defined reset values, except for registers whose reset is |
| * deferred until kvm_arm_vcpu_finalize(). |
| * |
| * Note: This function can be called from two paths: The KVM_ARM_VCPU_INIT |
| * ioctl or as part of handling a request issued by another VCPU in the PSCI |
| * handling code. In the first case, the VCPU will not be loaded, and in the |
| * second case the VCPU will be loaded. Because this function operates purely |
| * on the memory-backed values of system registers, we want to do a full put if |
| * we were loaded (handling a request) and load the values back at the end of |
| * the function. Otherwise we leave the state alone. In both cases, we |
| * disable preemption around the vcpu reset as we would otherwise race with |
| * preempt notifiers which also call put/load. |
| */ |
| void kvm_reset_vcpu(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_reset_state reset_state; |
| bool loaded; |
| u32 pstate; |
| |
| spin_lock(&vcpu->arch.mp_state_lock); |
| reset_state = vcpu->arch.reset_state; |
| vcpu->arch.reset_state.reset = false; |
| spin_unlock(&vcpu->arch.mp_state_lock); |
| |
| /* Reset PMU outside of the non-preemptible section */ |
| kvm_pmu_vcpu_reset(vcpu); |
| |
| preempt_disable(); |
| loaded = (vcpu->cpu != -1); |
| if (loaded) |
| kvm_arch_vcpu_put(vcpu); |
| |
| if (!kvm_arm_vcpu_sve_finalized(vcpu)) { |
| if (vcpu_has_feature(vcpu, KVM_ARM_VCPU_SVE)) |
| kvm_vcpu_enable_sve(vcpu); |
| } else { |
| kvm_vcpu_reset_sve(vcpu); |
| } |
| |
| if (vcpu_has_feature(vcpu, KVM_ARM_VCPU_PTRAUTH_ADDRESS) || |
| vcpu_has_feature(vcpu, KVM_ARM_VCPU_PTRAUTH_GENERIC)) |
| kvm_vcpu_enable_ptrauth(vcpu); |
| |
| if (vcpu_el1_is_32bit(vcpu)) |
| pstate = VCPU_RESET_PSTATE_SVC; |
| else if (vcpu_has_nv(vcpu)) |
| pstate = VCPU_RESET_PSTATE_EL2; |
| else |
| pstate = VCPU_RESET_PSTATE_EL1; |
| |
| /* Reset core registers */ |
| memset(vcpu_gp_regs(vcpu), 0, sizeof(*vcpu_gp_regs(vcpu))); |
| memset(&vcpu->arch.ctxt.fp_regs, 0, sizeof(vcpu->arch.ctxt.fp_regs)); |
| vcpu->arch.ctxt.spsr_abt = 0; |
| vcpu->arch.ctxt.spsr_und = 0; |
| vcpu->arch.ctxt.spsr_irq = 0; |
| vcpu->arch.ctxt.spsr_fiq = 0; |
| vcpu_gp_regs(vcpu)->pstate = pstate; |
| |
| /* Reset system registers */ |
| kvm_reset_sys_regs(vcpu); |
| |
| /* |
| * Additional reset state handling that PSCI may have imposed on us. |
| * Must be done after all the sys_reg reset. |
| */ |
| if (reset_state.reset) { |
| unsigned long target_pc = reset_state.pc; |
| |
| /* Gracefully handle Thumb2 entry point */ |
| if (vcpu_mode_is_32bit(vcpu) && (target_pc & 1)) { |
| target_pc &= ~1UL; |
| vcpu_set_thumb(vcpu); |
| } |
| |
| /* Propagate caller endianness */ |
| if (reset_state.be) |
| kvm_vcpu_set_be(vcpu); |
| |
| *vcpu_pc(vcpu) = target_pc; |
| vcpu_set_reg(vcpu, 0, reset_state.r0); |
| } |
| |
| /* Reset timer */ |
| kvm_timer_vcpu_reset(vcpu); |
| |
| if (loaded) |
| kvm_arch_vcpu_load(vcpu, smp_processor_id()); |
| preempt_enable(); |
| } |
| |
| u32 get_kvm_ipa_limit(void) |
| { |
| return kvm_ipa_limit; |
| } |
| |
| int __init kvm_set_ipa_limit(void) |
| { |
| unsigned int parange; |
| u64 mmfr0; |
| |
| mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); |
| parange = cpuid_feature_extract_unsigned_field(mmfr0, |
| ID_AA64MMFR0_EL1_PARANGE_SHIFT); |
| /* |
| * IPA size beyond 48 bits for 4K and 16K page size is only supported |
| * when LPA2 is available. So if we have LPA2, enable it, else cap to 48 |
| * bits, in case it's reported as larger on the system. |
| */ |
| if (!kvm_lpa2_is_enabled() && PAGE_SIZE != SZ_64K) |
| parange = min(parange, (unsigned int)ID_AA64MMFR0_EL1_PARANGE_48); |
| |
| /* |
| * Check with ARMv8.5-GTG that our PAGE_SIZE is supported at |
| * Stage-2. If not, things will stop very quickly. |
| */ |
| switch (cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_EL1_TGRAN_2_SHIFT)) { |
| case ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_NONE: |
| kvm_err("PAGE_SIZE not supported at Stage-2, giving up\n"); |
| return -EINVAL; |
| case ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_DEFAULT: |
| kvm_debug("PAGE_SIZE supported at Stage-2 (default)\n"); |
| break; |
| case ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_MIN ... ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_MAX: |
| kvm_debug("PAGE_SIZE supported at Stage-2 (advertised)\n"); |
| break; |
| default: |
| kvm_err("Unsupported value for TGRAN_2, giving up\n"); |
| return -EINVAL; |
| } |
| |
| kvm_ipa_limit = id_aa64mmfr0_parange_to_phys_shift(parange); |
| kvm_info("IPA Size Limit: %d bits%s\n", kvm_ipa_limit, |
| ((kvm_ipa_limit < KVM_PHYS_SHIFT) ? |
| " (Reduced IPA size, limited VM/VMM compatibility)" : "")); |
| |
| return 0; |
| } |