blob: ae64ff7153d627857624e7e0289d7270c36ca467 [file] [log] [blame]
/*
* Copyright 2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "pp_debug.h"
#include <linux/module.h>
#include <linux/slab.h>
#include "process_pptables_v1_0.h"
#include "ppatomctrl.h"
#include "atombios.h"
#include "hwmgr.h"
#include "cgs_common.h"
#include "pptable_v1_0.h"
/**
* Private Function used during initialization.
* @param hwmgr Pointer to the hardware manager.
* @param setIt A flag indication if the capability should be set (TRUE) or reset (FALSE).
* @param cap Which capability to set/reset.
*/
static void set_hw_cap(struct pp_hwmgr *hwmgr, bool setIt, enum phm_platform_caps cap)
{
if (setIt)
phm_cap_set(hwmgr->platform_descriptor.platformCaps, cap);
else
phm_cap_unset(hwmgr->platform_descriptor.platformCaps, cap);
}
/**
* Private Function used during initialization.
* @param hwmgr Pointer to the hardware manager.
* @param powerplay_caps the bit array (from BIOS) of capability bits.
* @exception the current implementation always returns 1.
*/
static int set_platform_caps(struct pp_hwmgr *hwmgr, uint32_t powerplay_caps)
{
PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE16____),
"ATOM_PP_PLATFORM_CAP_ASPM_L1 is not supported!", continue);
PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE64____),
"ATOM_PP_PLATFORM_CAP_GEMINIPRIMARY is not supported!", continue);
PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE512____),
"ATOM_PP_PLATFORM_CAP_SIDEPORTCONTROL is not supported!", continue);
PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE1024____),
"ATOM_PP_PLATFORM_CAP_TURNOFFPLL_ASPML1 is not supported!", continue);
PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE2048____),
"ATOM_PP_PLATFORM_CAP_HTLINKCONTROL is not supported!", continue);
set_hw_cap(
hwmgr,
0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_POWERPLAY),
PHM_PlatformCaps_PowerPlaySupport
);
set_hw_cap(
hwmgr,
0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_SBIOSPOWERSOURCE),
PHM_PlatformCaps_BiosPowerSourceControl
);
set_hw_cap(
hwmgr,
0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_HARDWAREDC),
PHM_PlatformCaps_AutomaticDCTransition
);
set_hw_cap(
hwmgr,
0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_MVDD_CONTROL),
PHM_PlatformCaps_EnableMVDDControl
);
set_hw_cap(
hwmgr,
0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_VDDCI_CONTROL),
PHM_PlatformCaps_ControlVDDCI
);
set_hw_cap(
hwmgr,
0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_VDDGFX_CONTROL),
PHM_PlatformCaps_ControlVDDGFX
);
set_hw_cap(
hwmgr,
0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_BACO),
PHM_PlatformCaps_BACO
);
set_hw_cap(
hwmgr,
0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_DISABLE_VOLTAGE_ISLAND),
PHM_PlatformCaps_DisableVoltageIsland
);
set_hw_cap(
hwmgr,
0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_COMBINE_PCC_WITH_THERMAL_SIGNAL),
PHM_PlatformCaps_CombinePCCWithThermalSignal
);
set_hw_cap(
hwmgr,
0 != (powerplay_caps & ATOM_TONGA_PLATFORM_LOAD_POST_PRODUCTION_FIRMWARE),
PHM_PlatformCaps_LoadPostProductionFirmware
);
return 0;
}
/**
* Private Function to get the PowerPlay Table Address.
*/
static const void *get_powerplay_table(struct pp_hwmgr *hwmgr)
{
int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
u16 size;
u8 frev, crev;
void *table_address = (void *)hwmgr->soft_pp_table;
if (!table_address) {
table_address = (ATOM_Tonga_POWERPLAYTABLE *)
smu_atom_get_data_table(hwmgr->adev,
index, &size, &frev, &crev);
hwmgr->soft_pp_table = table_address; /*Cache the result in RAM.*/
hwmgr->soft_pp_table_size = size;
}
return table_address;
}
static int get_vddc_lookup_table(
struct pp_hwmgr *hwmgr,
phm_ppt_v1_voltage_lookup_table **lookup_table,
const ATOM_Tonga_Voltage_Lookup_Table *vddc_lookup_pp_tables,
uint32_t max_levels
)
{
uint32_t table_size, i;
phm_ppt_v1_voltage_lookup_table *table;
phm_ppt_v1_voltage_lookup_record *record;
ATOM_Tonga_Voltage_Lookup_Record *atom_record;
PP_ASSERT_WITH_CODE((0 != vddc_lookup_pp_tables->ucNumEntries),
"Invalid CAC Leakage PowerPlay Table!", return 1);
table_size = sizeof(uint32_t) +
sizeof(phm_ppt_v1_voltage_lookup_record) * max_levels;
table = kzalloc(table_size, GFP_KERNEL);
if (NULL == table)
return -ENOMEM;
table->count = vddc_lookup_pp_tables->ucNumEntries;
for (i = 0; i < vddc_lookup_pp_tables->ucNumEntries; i++) {
record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR(
phm_ppt_v1_voltage_lookup_record,
entries, table, i);
atom_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR(
ATOM_Tonga_Voltage_Lookup_Record,
entries, vddc_lookup_pp_tables, i);
record->us_calculated = 0;
record->us_vdd = le16_to_cpu(atom_record->usVdd);
record->us_cac_low = le16_to_cpu(atom_record->usCACLow);
record->us_cac_mid = le16_to_cpu(atom_record->usCACMid);
record->us_cac_high = le16_to_cpu(atom_record->usCACHigh);
}
*lookup_table = table;
return 0;
}
/**
* Private Function used during initialization.
* Initialize Platform Power Management Parameter table
* @param hwmgr Pointer to the hardware manager.
* @param atom_ppm_table Pointer to PPM table in VBIOS
*/
static int get_platform_power_management_table(
struct pp_hwmgr *hwmgr,
ATOM_Tonga_PPM_Table *atom_ppm_table)
{
struct phm_ppm_table *ptr = kzalloc(sizeof(ATOM_Tonga_PPM_Table), GFP_KERNEL);
struct phm_ppt_v1_information *pp_table_information =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
if (NULL == ptr)
return -ENOMEM;
ptr->ppm_design
= atom_ppm_table->ucPpmDesign;
ptr->cpu_core_number
= le16_to_cpu(atom_ppm_table->usCpuCoreNumber);
ptr->platform_tdp
= le32_to_cpu(atom_ppm_table->ulPlatformTDP);
ptr->small_ac_platform_tdp
= le32_to_cpu(atom_ppm_table->ulSmallACPlatformTDP);
ptr->platform_tdc
= le32_to_cpu(atom_ppm_table->ulPlatformTDC);
ptr->small_ac_platform_tdc
= le32_to_cpu(atom_ppm_table->ulSmallACPlatformTDC);
ptr->apu_tdp
= le32_to_cpu(atom_ppm_table->ulApuTDP);
ptr->dgpu_tdp
= le32_to_cpu(atom_ppm_table->ulDGpuTDP);
ptr->dgpu_ulv_power
= le32_to_cpu(atom_ppm_table->ulDGpuUlvPower);
ptr->tj_max
= le32_to_cpu(atom_ppm_table->ulTjmax);
pp_table_information->ppm_parameter_table = ptr;
return 0;
}
/**
* Private Function used during initialization.
* Initialize TDP limits for DPM2
* @param hwmgr Pointer to the hardware manager.
* @param powerplay_table Pointer to the PowerPlay Table.
*/
static int init_dpm_2_parameters(
struct pp_hwmgr *hwmgr,
const ATOM_Tonga_POWERPLAYTABLE *powerplay_table
)
{
int result = 0;
struct phm_ppt_v1_information *pp_table_information = (struct phm_ppt_v1_information *)(hwmgr->pptable);
ATOM_Tonga_PPM_Table *atom_ppm_table;
uint32_t disable_ppm = 0;
uint32_t disable_power_control = 0;
pp_table_information->us_ulv_voltage_offset =
le16_to_cpu(powerplay_table->usUlvVoltageOffset);
pp_table_information->ppm_parameter_table = NULL;
pp_table_information->vddc_lookup_table = NULL;
pp_table_information->vddgfx_lookup_table = NULL;
/* TDP limits */
hwmgr->platform_descriptor.TDPODLimit =
le16_to_cpu(powerplay_table->usPowerControlLimit);
hwmgr->platform_descriptor.TDPAdjustment = 0;
hwmgr->platform_descriptor.VidAdjustment = 0;
hwmgr->platform_descriptor.VidAdjustmentPolarity = 0;
hwmgr->platform_descriptor.VidMinLimit = 0;
hwmgr->platform_descriptor.VidMaxLimit = 1500000;
hwmgr->platform_descriptor.VidStep = 6250;
disable_power_control = 0;
if (0 == disable_power_control) {
/* enable TDP overdrive (PowerControl) feature as well if supported */
if (hwmgr->platform_descriptor.TDPODLimit != 0)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_PowerControl);
}
if (0 != powerplay_table->usVddcLookupTableOffset) {
const ATOM_Tonga_Voltage_Lookup_Table *pVddcCACTable =
(ATOM_Tonga_Voltage_Lookup_Table *)(((unsigned long)powerplay_table) +
le16_to_cpu(powerplay_table->usVddcLookupTableOffset));
result = get_vddc_lookup_table(hwmgr,
&pp_table_information->vddc_lookup_table, pVddcCACTable, 16);
}
if (0 != powerplay_table->usVddgfxLookupTableOffset) {
const ATOM_Tonga_Voltage_Lookup_Table *pVddgfxCACTable =
(ATOM_Tonga_Voltage_Lookup_Table *)(((unsigned long)powerplay_table) +
le16_to_cpu(powerplay_table->usVddgfxLookupTableOffset));
result = get_vddc_lookup_table(hwmgr,
&pp_table_information->vddgfx_lookup_table, pVddgfxCACTable, 16);
}
disable_ppm = 0;
if (0 == disable_ppm) {
atom_ppm_table = (ATOM_Tonga_PPM_Table *)
(((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usPPMTableOffset));
if (0 != powerplay_table->usPPMTableOffset) {
if (get_platform_power_management_table(hwmgr, atom_ppm_table) == 0) {
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_EnablePlatformPowerManagement);
}
}
}
return result;
}
static int get_valid_clk(
struct pp_hwmgr *hwmgr,
struct phm_clock_array **clk_table,
phm_ppt_v1_clock_voltage_dependency_table const *clk_volt_pp_table
)
{
uint32_t table_size, i;
struct phm_clock_array *table;
phm_ppt_v1_clock_voltage_dependency_record *dep_record;
PP_ASSERT_WITH_CODE((0 != clk_volt_pp_table->count),
"Invalid PowerPlay Table!", return -1);
table_size = sizeof(uint32_t) +
sizeof(uint32_t) * clk_volt_pp_table->count;
table = kzalloc(table_size, GFP_KERNEL);
if (NULL == table)
return -ENOMEM;
table->count = (uint32_t)clk_volt_pp_table->count;
for (i = 0; i < table->count; i++) {
dep_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR(
phm_ppt_v1_clock_voltage_dependency_record,
entries, clk_volt_pp_table, i);
table->values[i] = (uint32_t)dep_record->clk;
}
*clk_table = table;
return 0;
}
static int get_hard_limits(
struct pp_hwmgr *hwmgr,
struct phm_clock_and_voltage_limits *limits,
ATOM_Tonga_Hard_Limit_Table const *limitable
)
{
PP_ASSERT_WITH_CODE((0 != limitable->ucNumEntries), "Invalid PowerPlay Table!", return -1);
/* currently we always take entries[0] parameters */
limits->sclk = le32_to_cpu(limitable->entries[0].ulSCLKLimit);
limits->mclk = le32_to_cpu(limitable->entries[0].ulMCLKLimit);
limits->vddc = le16_to_cpu(limitable->entries[0].usVddcLimit);
limits->vddci = le16_to_cpu(limitable->entries[0].usVddciLimit);
limits->vddgfx = le16_to_cpu(limitable->entries[0].usVddgfxLimit);
return 0;
}
static int get_mclk_voltage_dependency_table(
struct pp_hwmgr *hwmgr,
phm_ppt_v1_clock_voltage_dependency_table **pp_tonga_mclk_dep_table,
ATOM_Tonga_MCLK_Dependency_Table const *mclk_dep_table
)
{
uint32_t table_size, i;
phm_ppt_v1_clock_voltage_dependency_table *mclk_table;
phm_ppt_v1_clock_voltage_dependency_record *mclk_table_record;
ATOM_Tonga_MCLK_Dependency_Record *mclk_dep_record;
PP_ASSERT_WITH_CODE((0 != mclk_dep_table->ucNumEntries),
"Invalid PowerPlay Table!", return -1);
table_size = sizeof(uint32_t) + sizeof(phm_ppt_v1_clock_voltage_dependency_record)
* mclk_dep_table->ucNumEntries;
mclk_table = kzalloc(table_size, GFP_KERNEL);
if (NULL == mclk_table)
return -ENOMEM;
mclk_table->count = (uint32_t)mclk_dep_table->ucNumEntries;
for (i = 0; i < mclk_dep_table->ucNumEntries; i++) {
mclk_table_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR(
phm_ppt_v1_clock_voltage_dependency_record,
entries, mclk_table, i);
mclk_dep_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR(
ATOM_Tonga_MCLK_Dependency_Record,
entries, mclk_dep_table, i);
mclk_table_record->vddInd = mclk_dep_record->ucVddcInd;
mclk_table_record->vdd_offset = le16_to_cpu(mclk_dep_record->usVddgfxOffset);
mclk_table_record->vddci = le16_to_cpu(mclk_dep_record->usVddci);
mclk_table_record->mvdd = le16_to_cpu(mclk_dep_record->usMvdd);
mclk_table_record->clk = le32_to_cpu(mclk_dep_record->ulMclk);
}
*pp_tonga_mclk_dep_table = mclk_table;
return 0;
}
static int get_sclk_voltage_dependency_table(
struct pp_hwmgr *hwmgr,
phm_ppt_v1_clock_voltage_dependency_table **pp_tonga_sclk_dep_table,
PPTable_Generic_SubTable_Header const *sclk_dep_table
)
{
uint32_t table_size, i;
phm_ppt_v1_clock_voltage_dependency_table *sclk_table;
phm_ppt_v1_clock_voltage_dependency_record *sclk_table_record;
if (sclk_dep_table->ucRevId < 1) {
const ATOM_Tonga_SCLK_Dependency_Table *tonga_table =
(ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table;
ATOM_Tonga_SCLK_Dependency_Record *sclk_dep_record;
PP_ASSERT_WITH_CODE((0 != tonga_table->ucNumEntries),
"Invalid PowerPlay Table!", return -1);
table_size = sizeof(uint32_t) + sizeof(phm_ppt_v1_clock_voltage_dependency_record)
* tonga_table->ucNumEntries;
sclk_table = kzalloc(table_size, GFP_KERNEL);
if (NULL == sclk_table)
return -ENOMEM;
sclk_table->count = (uint32_t)tonga_table->ucNumEntries;
for (i = 0; i < tonga_table->ucNumEntries; i++) {
sclk_dep_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR(
ATOM_Tonga_SCLK_Dependency_Record,
entries, tonga_table, i);
sclk_table_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR(
phm_ppt_v1_clock_voltage_dependency_record,
entries, sclk_table, i);
sclk_table_record->vddInd = sclk_dep_record->ucVddInd;
sclk_table_record->vdd_offset = le16_to_cpu(sclk_dep_record->usVddcOffset);
sclk_table_record->clk = le32_to_cpu(sclk_dep_record->ulSclk);
sclk_table_record->cks_enable =
(((sclk_dep_record->ucCKSVOffsetandDisable & 0x80) >> 7) == 0) ? 1 : 0;
sclk_table_record->cks_voffset = (sclk_dep_record->ucCKSVOffsetandDisable & 0x7F);
}
} else {
const ATOM_Polaris_SCLK_Dependency_Table *polaris_table =
(ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table;
ATOM_Polaris_SCLK_Dependency_Record *sclk_dep_record;
PP_ASSERT_WITH_CODE((0 != polaris_table->ucNumEntries),
"Invalid PowerPlay Table!", return -1);
table_size = sizeof(uint32_t) + sizeof(phm_ppt_v1_clock_voltage_dependency_record)
* polaris_table->ucNumEntries;
sclk_table = kzalloc(table_size, GFP_KERNEL);
if (NULL == sclk_table)
return -ENOMEM;
sclk_table->count = (uint32_t)polaris_table->ucNumEntries;
for (i = 0; i < polaris_table->ucNumEntries; i++) {
sclk_dep_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR(
ATOM_Polaris_SCLK_Dependency_Record,
entries, polaris_table, i);
sclk_table_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR(
phm_ppt_v1_clock_voltage_dependency_record,
entries, sclk_table, i);
sclk_table_record->vddInd = sclk_dep_record->ucVddInd;
sclk_table_record->vdd_offset = le16_to_cpu(sclk_dep_record->usVddcOffset);
sclk_table_record->clk = le32_to_cpu(sclk_dep_record->ulSclk);
sclk_table_record->cks_enable =
(((sclk_dep_record->ucCKSVOffsetandDisable & 0x80) >> 7) == 0) ? 1 : 0;
sclk_table_record->cks_voffset = (sclk_dep_record->ucCKSVOffsetandDisable & 0x7F);
sclk_table_record->sclk_offset = le32_to_cpu(sclk_dep_record->ulSclkOffset);
}
}
*pp_tonga_sclk_dep_table = sclk_table;
return 0;
}
static int get_pcie_table(
struct pp_hwmgr *hwmgr,
phm_ppt_v1_pcie_table **pp_tonga_pcie_table,
PPTable_Generic_SubTable_Header const *ptable
)
{
uint32_t table_size, i, pcie_count;
phm_ppt_v1_pcie_table *pcie_table;
struct phm_ppt_v1_information *pp_table_information =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
phm_ppt_v1_pcie_record *pcie_record;
if (ptable->ucRevId < 1) {
const ATOM_Tonga_PCIE_Table *atom_pcie_table = (ATOM_Tonga_PCIE_Table *)ptable;
ATOM_Tonga_PCIE_Record *atom_pcie_record;
PP_ASSERT_WITH_CODE((atom_pcie_table->ucNumEntries != 0),
"Invalid PowerPlay Table!", return -1);
table_size = sizeof(uint32_t) +
sizeof(phm_ppt_v1_pcie_record) * atom_pcie_table->ucNumEntries;
pcie_table = kzalloc(table_size, GFP_KERNEL);
if (pcie_table == NULL)
return -ENOMEM;
/*
* Make sure the number of pcie entries are less than or equal to sclk dpm levels.
* Since first PCIE entry is for ULV, #pcie has to be <= SclkLevel + 1.
*/
pcie_count = (pp_table_information->vdd_dep_on_sclk->count) + 1;
if ((uint32_t)atom_pcie_table->ucNumEntries <= pcie_count)
pcie_count = (uint32_t)atom_pcie_table->ucNumEntries;
else
pr_err("Number of Pcie Entries exceed the number of SCLK Dpm Levels! Disregarding the excess entries...\n");
pcie_table->count = pcie_count;
for (i = 0; i < pcie_count; i++) {
pcie_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR(
phm_ppt_v1_pcie_record,
entries, pcie_table, i);
atom_pcie_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR(
ATOM_Tonga_PCIE_Record,
entries, atom_pcie_table, i);
pcie_record->gen_speed = atom_pcie_record->ucPCIEGenSpeed;
pcie_record->lane_width = le16_to_cpu(atom_pcie_record->usPCIELaneWidth);
}
*pp_tonga_pcie_table = pcie_table;
} else {
/* Polaris10/Polaris11 and newer. */
const ATOM_Polaris10_PCIE_Table *atom_pcie_table = (ATOM_Polaris10_PCIE_Table *)ptable;
ATOM_Polaris10_PCIE_Record *atom_pcie_record;
PP_ASSERT_WITH_CODE((atom_pcie_table->ucNumEntries != 0),
"Invalid PowerPlay Table!", return -1);
table_size = sizeof(uint32_t) +
sizeof(phm_ppt_v1_pcie_record) * atom_pcie_table->ucNumEntries;
pcie_table = kzalloc(table_size, GFP_KERNEL);
if (pcie_table == NULL)
return -ENOMEM;
/*
* Make sure the number of pcie entries are less than or equal to sclk dpm levels.
* Since first PCIE entry is for ULV, #pcie has to be <= SclkLevel + 1.
*/
pcie_count = (pp_table_information->vdd_dep_on_sclk->count) + 1;
if ((uint32_t)atom_pcie_table->ucNumEntries <= pcie_count)
pcie_count = (uint32_t)atom_pcie_table->ucNumEntries;
else
pr_err("Number of Pcie Entries exceed the number of SCLK Dpm Levels! Disregarding the excess entries...\n");
pcie_table->count = pcie_count;
for (i = 0; i < pcie_count; i++) {
pcie_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR(
phm_ppt_v1_pcie_record,
entries, pcie_table, i);
atom_pcie_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR(
ATOM_Polaris10_PCIE_Record,
entries, atom_pcie_table, i);
pcie_record->gen_speed = atom_pcie_record->ucPCIEGenSpeed;
pcie_record->lane_width = le16_to_cpu(atom_pcie_record->usPCIELaneWidth);
pcie_record->pcie_sclk = le32_to_cpu(atom_pcie_record->ulPCIE_Sclk);
}
*pp_tonga_pcie_table = pcie_table;
}
return 0;
}
static int get_cac_tdp_table(
struct pp_hwmgr *hwmgr,
struct phm_cac_tdp_table **cac_tdp_table,
const PPTable_Generic_SubTable_Header * table
)
{
uint32_t table_size;
struct phm_cac_tdp_table *tdp_table;
table_size = sizeof(uint32_t) + sizeof(struct phm_cac_tdp_table);
tdp_table = kzalloc(table_size, GFP_KERNEL);
if (NULL == tdp_table)
return -ENOMEM;
hwmgr->dyn_state.cac_dtp_table = kzalloc(table_size, GFP_KERNEL);
if (NULL == hwmgr->dyn_state.cac_dtp_table) {
kfree(tdp_table);
return -ENOMEM;
}
if (table->ucRevId < 3) {
const ATOM_Tonga_PowerTune_Table *tonga_table =
(ATOM_Tonga_PowerTune_Table *)table;
tdp_table->usTDP = le16_to_cpu(tonga_table->usTDP);
tdp_table->usConfigurableTDP =
le16_to_cpu(tonga_table->usConfigurableTDP);
tdp_table->usTDC = le16_to_cpu(tonga_table->usTDC);
tdp_table->usBatteryPowerLimit =
le16_to_cpu(tonga_table->usBatteryPowerLimit);
tdp_table->usSmallPowerLimit =
le16_to_cpu(tonga_table->usSmallPowerLimit);
tdp_table->usLowCACLeakage =
le16_to_cpu(tonga_table->usLowCACLeakage);
tdp_table->usHighCACLeakage =
le16_to_cpu(tonga_table->usHighCACLeakage);
tdp_table->usMaximumPowerDeliveryLimit =
le16_to_cpu(tonga_table->usMaximumPowerDeliveryLimit);
tdp_table->usDefaultTargetOperatingTemp =
le16_to_cpu(tonga_table->usTjMax);
tdp_table->usTargetOperatingTemp =
le16_to_cpu(tonga_table->usTjMax); /*Set the initial temp to the same as default */
tdp_table->usPowerTuneDataSetID =
le16_to_cpu(tonga_table->usPowerTuneDataSetID);
tdp_table->usSoftwareShutdownTemp =
le16_to_cpu(tonga_table->usSoftwareShutdownTemp);
tdp_table->usClockStretchAmount =
le16_to_cpu(tonga_table->usClockStretchAmount);
} else { /* Fiji and newer */
const ATOM_Fiji_PowerTune_Table *fijitable =
(ATOM_Fiji_PowerTune_Table *)table;
tdp_table->usTDP = le16_to_cpu(fijitable->usTDP);
tdp_table->usConfigurableTDP = le16_to_cpu(fijitable->usConfigurableTDP);
tdp_table->usTDC = le16_to_cpu(fijitable->usTDC);
tdp_table->usBatteryPowerLimit = le16_to_cpu(fijitable->usBatteryPowerLimit);
tdp_table->usSmallPowerLimit = le16_to_cpu(fijitable->usSmallPowerLimit);
tdp_table->usLowCACLeakage = le16_to_cpu(fijitable->usLowCACLeakage);
tdp_table->usHighCACLeakage = le16_to_cpu(fijitable->usHighCACLeakage);
tdp_table->usMaximumPowerDeliveryLimit =
le16_to_cpu(fijitable->usMaximumPowerDeliveryLimit);
tdp_table->usDefaultTargetOperatingTemp =
le16_to_cpu(fijitable->usTjMax);
tdp_table->usTargetOperatingTemp =
le16_to_cpu(fijitable->usTjMax); /*Set the initial temp to the same as default */
tdp_table->usPowerTuneDataSetID =
le16_to_cpu(fijitable->usPowerTuneDataSetID);
tdp_table->usSoftwareShutdownTemp =
le16_to_cpu(fijitable->usSoftwareShutdownTemp);
tdp_table->usClockStretchAmount =
le16_to_cpu(fijitable->usClockStretchAmount);
tdp_table->usTemperatureLimitHotspot =
le16_to_cpu(fijitable->usTemperatureLimitHotspot);
tdp_table->usTemperatureLimitLiquid1 =
le16_to_cpu(fijitable->usTemperatureLimitLiquid1);
tdp_table->usTemperatureLimitLiquid2 =
le16_to_cpu(fijitable->usTemperatureLimitLiquid2);
tdp_table->usTemperatureLimitVrVddc =
le16_to_cpu(fijitable->usTemperatureLimitVrVddc);
tdp_table->usTemperatureLimitVrMvdd =
le16_to_cpu(fijitable->usTemperatureLimitVrMvdd);
tdp_table->usTemperatureLimitPlx =
le16_to_cpu(fijitable->usTemperatureLimitPlx);
tdp_table->ucLiquid1_I2C_address =
fijitable->ucLiquid1_I2C_address;
tdp_table->ucLiquid2_I2C_address =
fijitable->ucLiquid2_I2C_address;
tdp_table->ucLiquid_I2C_Line =
fijitable->ucLiquid_I2C_Line;
tdp_table->ucVr_I2C_address = fijitable->ucVr_I2C_address;
tdp_table->ucVr_I2C_Line = fijitable->ucVr_I2C_Line;
tdp_table->ucPlx_I2C_address = fijitable->ucPlx_I2C_address;
tdp_table->ucPlx_I2C_Line = fijitable->ucPlx_I2C_Line;
}
*cac_tdp_table = tdp_table;
return 0;
}
static int get_mm_clock_voltage_table(
struct pp_hwmgr *hwmgr,
phm_ppt_v1_mm_clock_voltage_dependency_table **tonga_mm_table,
const ATOM_Tonga_MM_Dependency_Table * mm_dependency_table
)
{
uint32_t table_size, i;
const ATOM_Tonga_MM_Dependency_Record *mm_dependency_record;
phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table;
phm_ppt_v1_mm_clock_voltage_dependency_record *mm_table_record;
PP_ASSERT_WITH_CODE((0 != mm_dependency_table->ucNumEntries),
"Invalid PowerPlay Table!", return -1);
table_size = sizeof(uint32_t) +
sizeof(phm_ppt_v1_mm_clock_voltage_dependency_record)
* mm_dependency_table->ucNumEntries;
mm_table = kzalloc(table_size, GFP_KERNEL);
if (NULL == mm_table)
return -ENOMEM;
mm_table->count = mm_dependency_table->ucNumEntries;
for (i = 0; i < mm_dependency_table->ucNumEntries; i++) {
mm_dependency_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR(
ATOM_Tonga_MM_Dependency_Record,
entries, mm_dependency_table, i);
mm_table_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR(
phm_ppt_v1_mm_clock_voltage_dependency_record,
entries, mm_table, i);
mm_table_record->vddcInd = mm_dependency_record->ucVddcInd;
mm_table_record->vddgfx_offset = le16_to_cpu(mm_dependency_record->usVddgfxOffset);
mm_table_record->aclk = le32_to_cpu(mm_dependency_record->ulAClk);
mm_table_record->samclock = le32_to_cpu(mm_dependency_record->ulSAMUClk);
mm_table_record->eclk = le32_to_cpu(mm_dependency_record->ulEClk);
mm_table_record->vclk = le32_to_cpu(mm_dependency_record->ulVClk);
mm_table_record->dclk = le32_to_cpu(mm_dependency_record->ulDClk);
}
*tonga_mm_table = mm_table;
return 0;
}
static int get_gpio_table(struct pp_hwmgr *hwmgr,
struct phm_ppt_v1_gpio_table **pp_tonga_gpio_table,
const ATOM_Tonga_GPIO_Table *atom_gpio_table)
{
uint32_t table_size;
struct phm_ppt_v1_gpio_table *pp_gpio_table;
struct phm_ppt_v1_information *pp_table_information =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
table_size = sizeof(struct phm_ppt_v1_gpio_table);
pp_gpio_table = kzalloc(table_size, GFP_KERNEL);
if (!pp_gpio_table)
return -ENOMEM;
if (pp_table_information->vdd_dep_on_sclk->count <
atom_gpio_table->ucVRHotTriggeredSclkDpmIndex)
PP_ASSERT_WITH_CODE(false,
"SCLK DPM index for VRHot cannot exceed the total sclk level count!",);
else
pp_gpio_table->vrhot_triggered_sclk_dpm_index =
atom_gpio_table->ucVRHotTriggeredSclkDpmIndex;
*pp_tonga_gpio_table = pp_gpio_table;
return 0;
}
/**
* Private Function used during initialization.
* Initialize clock voltage dependency
* @param hwmgr Pointer to the hardware manager.
* @param powerplay_table Pointer to the PowerPlay Table.
*/
static int init_clock_voltage_dependency(
struct pp_hwmgr *hwmgr,
const ATOM_Tonga_POWERPLAYTABLE *powerplay_table
)
{
int result = 0;
struct phm_ppt_v1_information *pp_table_information =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
const ATOM_Tonga_MM_Dependency_Table *mm_dependency_table =
(const ATOM_Tonga_MM_Dependency_Table *)(((unsigned long) powerplay_table) +
le16_to_cpu(powerplay_table->usMMDependencyTableOffset));
const PPTable_Generic_SubTable_Header *pPowerTuneTable =
(const PPTable_Generic_SubTable_Header *)(((unsigned long) powerplay_table) +
le16_to_cpu(powerplay_table->usPowerTuneTableOffset));
const ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
(const ATOM_Tonga_MCLK_Dependency_Table *)(((unsigned long) powerplay_table) +
le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
const PPTable_Generic_SubTable_Header *sclk_dep_table =
(const PPTable_Generic_SubTable_Header *)(((unsigned long) powerplay_table) +
le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
const ATOM_Tonga_Hard_Limit_Table *pHardLimits =
(const ATOM_Tonga_Hard_Limit_Table *)(((unsigned long) powerplay_table) +
le16_to_cpu(powerplay_table->usHardLimitTableOffset));
const PPTable_Generic_SubTable_Header *pcie_table =
(const PPTable_Generic_SubTable_Header *)(((unsigned long) powerplay_table) +
le16_to_cpu(powerplay_table->usPCIETableOffset));
const ATOM_Tonga_GPIO_Table *gpio_table =
(const ATOM_Tonga_GPIO_Table *)(((unsigned long) powerplay_table) +
le16_to_cpu(powerplay_table->usGPIOTableOffset));
pp_table_information->vdd_dep_on_sclk = NULL;
pp_table_information->vdd_dep_on_mclk = NULL;
pp_table_information->mm_dep_table = NULL;
pp_table_information->pcie_table = NULL;
pp_table_information->gpio_table = NULL;
if (powerplay_table->usMMDependencyTableOffset != 0)
result = get_mm_clock_voltage_table(hwmgr,
&pp_table_information->mm_dep_table, mm_dependency_table);
if (result == 0 && powerplay_table->usPowerTuneTableOffset != 0)
result = get_cac_tdp_table(hwmgr,
&pp_table_information->cac_dtp_table, pPowerTuneTable);
if (result == 0 && powerplay_table->usSclkDependencyTableOffset != 0)
result = get_sclk_voltage_dependency_table(hwmgr,
&pp_table_information->vdd_dep_on_sclk, sclk_dep_table);
if (result == 0 && powerplay_table->usMclkDependencyTableOffset != 0)
result = get_mclk_voltage_dependency_table(hwmgr,
&pp_table_information->vdd_dep_on_mclk, mclk_dep_table);
if (result == 0 && powerplay_table->usPCIETableOffset != 0)
result = get_pcie_table(hwmgr,
&pp_table_information->pcie_table, pcie_table);
if (result == 0 && powerplay_table->usHardLimitTableOffset != 0)
result = get_hard_limits(hwmgr,
&pp_table_information->max_clock_voltage_on_dc, pHardLimits);
hwmgr->dyn_state.max_clock_voltage_on_dc.sclk =
pp_table_information->max_clock_voltage_on_dc.sclk;
hwmgr->dyn_state.max_clock_voltage_on_dc.mclk =
pp_table_information->max_clock_voltage_on_dc.mclk;
hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
pp_table_information->max_clock_voltage_on_dc.vddc;
hwmgr->dyn_state.max_clock_voltage_on_dc.vddci =
pp_table_information->max_clock_voltage_on_dc.vddci;
if (result == 0 && (NULL != pp_table_information->vdd_dep_on_mclk)
&& (0 != pp_table_information->vdd_dep_on_mclk->count))
result = get_valid_clk(hwmgr, &pp_table_information->valid_mclk_values,
pp_table_information->vdd_dep_on_mclk);
if (result == 0 && (NULL != pp_table_information->vdd_dep_on_sclk)
&& (0 != pp_table_information->vdd_dep_on_sclk->count))
result = get_valid_clk(hwmgr, &pp_table_information->valid_sclk_values,
pp_table_information->vdd_dep_on_sclk);
if (!result && gpio_table)
result = get_gpio_table(hwmgr, &pp_table_information->gpio_table,
gpio_table);
return result;
}
/** Retrieves the (signed) Overdrive limits from VBIOS.
* The max engine clock, memory clock and max temperature come from the firmware info table.
*
* The information is placed into the platform descriptor.
*
* @param hwmgr source of the VBIOS table and owner of the platform descriptor to be updated.
* @param powerplay_table the address of the PowerPlay table.
*
* @return 1 as long as the firmware info table was present and of a supported version.
*/
static int init_over_drive_limits(
struct pp_hwmgr *hwmgr,
const ATOM_Tonga_POWERPLAYTABLE *powerplay_table)
{
hwmgr->platform_descriptor.overdriveLimit.engineClock =
le32_to_cpu(powerplay_table->ulMaxODEngineClock);
hwmgr->platform_descriptor.overdriveLimit.memoryClock =
le32_to_cpu(powerplay_table->ulMaxODMemoryClock);
hwmgr->platform_descriptor.minOverdriveVDDC = 0;
hwmgr->platform_descriptor.maxOverdriveVDDC = 0;
hwmgr->platform_descriptor.overdriveVDDCStep = 0;
return 0;
}
/**
* Private Function used during initialization.
* Inspect the PowerPlay table for obvious signs of corruption.
* @param hwmgr Pointer to the hardware manager.
* @param powerplay_table Pointer to the PowerPlay Table.
* @exception This implementation always returns 1.
*/
static int init_thermal_controller(
struct pp_hwmgr *hwmgr,
const ATOM_Tonga_POWERPLAYTABLE *powerplay_table
)
{
const PPTable_Generic_SubTable_Header *fan_table;
ATOM_Tonga_Thermal_Controller *thermal_controller;
thermal_controller = (ATOM_Tonga_Thermal_Controller *)
(((unsigned long)powerplay_table) +
le16_to_cpu(powerplay_table->usThermalControllerOffset));
PP_ASSERT_WITH_CODE((0 != powerplay_table->usThermalControllerOffset),
"Thermal controller table not set!", return -1);
hwmgr->thermal_controller.ucType = thermal_controller->ucType;
hwmgr->thermal_controller.ucI2cLine = thermal_controller->ucI2cLine;
hwmgr->thermal_controller.ucI2cAddress = thermal_controller->ucI2cAddress;
hwmgr->thermal_controller.fanInfo.bNoFan =
(0 != (thermal_controller->ucFanParameters & ATOM_TONGA_PP_FANPARAMETERS_NOFAN));
hwmgr->thermal_controller.fanInfo.ucTachometerPulsesPerRevolution =
thermal_controller->ucFanParameters &
ATOM_TONGA_PP_FANPARAMETERS_TACHOMETER_PULSES_PER_REVOLUTION_MASK;
hwmgr->thermal_controller.fanInfo.ulMinRPM
= thermal_controller->ucFanMinRPM * 100UL;
hwmgr->thermal_controller.fanInfo.ulMaxRPM
= thermal_controller->ucFanMaxRPM * 100UL;
set_hw_cap(
hwmgr,
ATOM_TONGA_PP_THERMALCONTROLLER_NONE != hwmgr->thermal_controller.ucType,
PHM_PlatformCaps_ThermalController
);
if (0 == powerplay_table->usFanTableOffset)
return 0;
fan_table = (const PPTable_Generic_SubTable_Header *)
(((unsigned long)powerplay_table) +
le16_to_cpu(powerplay_table->usFanTableOffset));
PP_ASSERT_WITH_CODE((0 != powerplay_table->usFanTableOffset),
"Fan table not set!", return -1);
PP_ASSERT_WITH_CODE((0 < fan_table->ucRevId),
"Unsupported fan table format!", return -1);
hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay
= 100000;
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_MicrocodeFanControl);
if (fan_table->ucRevId < 8) {
const ATOM_Tonga_Fan_Table *tonga_fan_table =
(ATOM_Tonga_Fan_Table *)fan_table;
hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst
= tonga_fan_table->ucTHyst;
hwmgr->thermal_controller.advanceFanControlParameters.usTMin
= le16_to_cpu(tonga_fan_table->usTMin);
hwmgr->thermal_controller.advanceFanControlParameters.usTMed
= le16_to_cpu(tonga_fan_table->usTMed);
hwmgr->thermal_controller.advanceFanControlParameters.usTHigh
= le16_to_cpu(tonga_fan_table->usTHigh);
hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin
= le16_to_cpu(tonga_fan_table->usPWMMin);
hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed
= le16_to_cpu(tonga_fan_table->usPWMMed);
hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh
= le16_to_cpu(tonga_fan_table->usPWMHigh);
hwmgr->thermal_controller.advanceFanControlParameters.usTMax
= 10900; /* hard coded */
hwmgr->thermal_controller.advanceFanControlParameters.usTMax
= le16_to_cpu(tonga_fan_table->usTMax);
hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode
= tonga_fan_table->ucFanControlMode;
hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM
= le16_to_cpu(tonga_fan_table->usFanPWMMax);
hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity
= 4836;
hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity
= le16_to_cpu(tonga_fan_table->usFanOutputSensitivity);
hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM
= le16_to_cpu(tonga_fan_table->usFanRPMMax);
hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit
= (le32_to_cpu(tonga_fan_table->ulMinFanSCLKAcousticLimit) / 100); /* PPTable stores it in 10Khz unit for 2 decimal places. SMC wants MHz. */
hwmgr->thermal_controller.advanceFanControlParameters.ucTargetTemperature
= tonga_fan_table->ucTargetTemperature;
hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit
= tonga_fan_table->ucMinimumPWMLimit;
} else {
const ATOM_Fiji_Fan_Table *fiji_fan_table =
(ATOM_Fiji_Fan_Table *)fan_table;
hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst
= fiji_fan_table->ucTHyst;
hwmgr->thermal_controller.advanceFanControlParameters.usTMin
= le16_to_cpu(fiji_fan_table->usTMin);
hwmgr->thermal_controller.advanceFanControlParameters.usTMed
= le16_to_cpu(fiji_fan_table->usTMed);
hwmgr->thermal_controller.advanceFanControlParameters.usTHigh
= le16_to_cpu(fiji_fan_table->usTHigh);
hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin
= le16_to_cpu(fiji_fan_table->usPWMMin);
hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed
= le16_to_cpu(fiji_fan_table->usPWMMed);
hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh
= le16_to_cpu(fiji_fan_table->usPWMHigh);
hwmgr->thermal_controller.advanceFanControlParameters.usTMax
= le16_to_cpu(fiji_fan_table->usTMax);
hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode
= fiji_fan_table->ucFanControlMode;
hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM
= le16_to_cpu(fiji_fan_table->usFanPWMMax);
hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity
= 4836;
hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity
= le16_to_cpu(fiji_fan_table->usFanOutputSensitivity);
hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM
= le16_to_cpu(fiji_fan_table->usFanRPMMax);
hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit
= (le32_to_cpu(fiji_fan_table->ulMinFanSCLKAcousticLimit) / 100); /* PPTable stores it in 10Khz unit for 2 decimal places. SMC wants MHz. */
hwmgr->thermal_controller.advanceFanControlParameters.ucTargetTemperature
= fiji_fan_table->ucTargetTemperature;
hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit
= fiji_fan_table->ucMinimumPWMLimit;
hwmgr->thermal_controller.advanceFanControlParameters.usFanGainEdge
= le16_to_cpu(fiji_fan_table->usFanGainEdge);
hwmgr->thermal_controller.advanceFanControlParameters.usFanGainHotspot
= le16_to_cpu(fiji_fan_table->usFanGainHotspot);
hwmgr->thermal_controller.advanceFanControlParameters.usFanGainLiquid
= le16_to_cpu(fiji_fan_table->usFanGainLiquid);
hwmgr->thermal_controller.advanceFanControlParameters.usFanGainVrVddc
= le16_to_cpu(fiji_fan_table->usFanGainVrVddc);
hwmgr->thermal_controller.advanceFanControlParameters.usFanGainVrMvdd
= le16_to_cpu(fiji_fan_table->usFanGainVrMvdd);
hwmgr->thermal_controller.advanceFanControlParameters.usFanGainPlx
= le16_to_cpu(fiji_fan_table->usFanGainPlx);
hwmgr->thermal_controller.advanceFanControlParameters.usFanGainHbm
= le16_to_cpu(fiji_fan_table->usFanGainHbm);
}
return 0;
}
/**
* Private Function used during initialization.
* Inspect the PowerPlay table for obvious signs of corruption.
* @param hwmgr Pointer to the hardware manager.
* @param powerplay_table Pointer to the PowerPlay Table.
* @exception 2 if the powerplay table is incorrect.
*/
static int check_powerplay_tables(
struct pp_hwmgr *hwmgr,
const ATOM_Tonga_POWERPLAYTABLE *powerplay_table
)
{
const ATOM_Tonga_State_Array *state_arrays;
state_arrays = (ATOM_Tonga_State_Array *)(((unsigned long)powerplay_table) +
le16_to_cpu(powerplay_table->usStateArrayOffset));
PP_ASSERT_WITH_CODE((ATOM_Tonga_TABLE_REVISION_TONGA <=
powerplay_table->sHeader.ucTableFormatRevision),
"Unsupported PPTable format!", return -1);
PP_ASSERT_WITH_CODE((0 != powerplay_table->usStateArrayOffset),
"State table is not set!", return -1);
PP_ASSERT_WITH_CODE((0 < powerplay_table->sHeader.usStructureSize),
"Invalid PowerPlay Table!", return -1);
PP_ASSERT_WITH_CODE((0 < state_arrays->ucNumEntries),
"Invalid PowerPlay Table!", return -1);
return 0;
}
static int pp_tables_v1_0_initialize(struct pp_hwmgr *hwmgr)
{
int result = 0;
const ATOM_Tonga_POWERPLAYTABLE *powerplay_table;
hwmgr->pptable = kzalloc(sizeof(struct phm_ppt_v1_information), GFP_KERNEL);
PP_ASSERT_WITH_CODE((NULL != hwmgr->pptable),
"Failed to allocate hwmgr->pptable!", return -ENOMEM);
memset(hwmgr->pptable, 0x00, sizeof(struct phm_ppt_v1_information));
powerplay_table = get_powerplay_table(hwmgr);
PP_ASSERT_WITH_CODE((NULL != powerplay_table),
"Missing PowerPlay Table!", return -1);
result = check_powerplay_tables(hwmgr, powerplay_table);
PP_ASSERT_WITH_CODE((result == 0),
"check_powerplay_tables failed", return result);
result = set_platform_caps(hwmgr,
le32_to_cpu(powerplay_table->ulPlatformCaps));
PP_ASSERT_WITH_CODE((result == 0),
"set_platform_caps failed", return result);
result = init_thermal_controller(hwmgr, powerplay_table);
PP_ASSERT_WITH_CODE((result == 0),
"init_thermal_controller failed", return result);
result = init_over_drive_limits(hwmgr, powerplay_table);
PP_ASSERT_WITH_CODE((result == 0),
"init_over_drive_limits failed", return result);
result = init_clock_voltage_dependency(hwmgr, powerplay_table);
PP_ASSERT_WITH_CODE((result == 0),
"init_clock_voltage_dependency failed", return result);
result = init_dpm_2_parameters(hwmgr, powerplay_table);
PP_ASSERT_WITH_CODE((result == 0),
"init_dpm_2_parameters failed", return result);
return result;
}
static int pp_tables_v1_0_uninitialize(struct pp_hwmgr *hwmgr)
{
struct phm_ppt_v1_information *pp_table_information =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
kfree(pp_table_information->vdd_dep_on_sclk);
pp_table_information->vdd_dep_on_sclk = NULL;
kfree(pp_table_information->vdd_dep_on_mclk);
pp_table_information->vdd_dep_on_mclk = NULL;
kfree(pp_table_information->valid_mclk_values);
pp_table_information->valid_mclk_values = NULL;
kfree(pp_table_information->valid_sclk_values);
pp_table_information->valid_sclk_values = NULL;
kfree(pp_table_information->vddc_lookup_table);
pp_table_information->vddc_lookup_table = NULL;
kfree(pp_table_information->vddgfx_lookup_table);
pp_table_information->vddgfx_lookup_table = NULL;
kfree(pp_table_information->mm_dep_table);
pp_table_information->mm_dep_table = NULL;
kfree(pp_table_information->cac_dtp_table);
pp_table_information->cac_dtp_table = NULL;
kfree(hwmgr->dyn_state.cac_dtp_table);
hwmgr->dyn_state.cac_dtp_table = NULL;
kfree(pp_table_information->ppm_parameter_table);
pp_table_information->ppm_parameter_table = NULL;
kfree(pp_table_information->pcie_table);
pp_table_information->pcie_table = NULL;
kfree(pp_table_information->gpio_table);
pp_table_information->gpio_table = NULL;
kfree(hwmgr->pptable);
hwmgr->pptable = NULL;
return 0;
}
const struct pp_table_func pptable_v1_0_funcs = {
.pptable_init = pp_tables_v1_0_initialize,
.pptable_fini = pp_tables_v1_0_uninitialize,
};
int get_number_of_powerplay_table_entries_v1_0(struct pp_hwmgr *hwmgr)
{
ATOM_Tonga_State_Array const *state_arrays;
const ATOM_Tonga_POWERPLAYTABLE *pp_table = get_powerplay_table(hwmgr);
PP_ASSERT_WITH_CODE((NULL != pp_table),
"Missing PowerPlay Table!", return -1);
PP_ASSERT_WITH_CODE((pp_table->sHeader.ucTableFormatRevision >=
ATOM_Tonga_TABLE_REVISION_TONGA),
"Incorrect PowerPlay table revision!", return -1);
state_arrays = (ATOM_Tonga_State_Array *)(((unsigned long)pp_table) +
le16_to_cpu(pp_table->usStateArrayOffset));
return (uint32_t)(state_arrays->ucNumEntries);
}
/**
* Private function to convert flags stored in the BIOS to software flags in PowerPlay.
*/
static uint32_t make_classification_flags(struct pp_hwmgr *hwmgr,
uint16_t classification, uint16_t classification2)
{
uint32_t result = 0;
if (classification & ATOM_PPLIB_CLASSIFICATION_BOOT)
result |= PP_StateClassificationFlag_Boot;
if (classification & ATOM_PPLIB_CLASSIFICATION_THERMAL)
result |= PP_StateClassificationFlag_Thermal;
if (classification & ATOM_PPLIB_CLASSIFICATION_LIMITEDPOWERSOURCE)
result |= PP_StateClassificationFlag_LimitedPowerSource;
if (classification & ATOM_PPLIB_CLASSIFICATION_REST)
result |= PP_StateClassificationFlag_Rest;
if (classification & ATOM_PPLIB_CLASSIFICATION_FORCED)
result |= PP_StateClassificationFlag_Forced;
if (classification & ATOM_PPLIB_CLASSIFICATION_ACPI)
result |= PP_StateClassificationFlag_ACPI;
if (classification2 & ATOM_PPLIB_CLASSIFICATION2_LIMITEDPOWERSOURCE_2)
result |= PP_StateClassificationFlag_LimitedPowerSource_2;
return result;
}
static int ppt_get_num_of_vce_state_table_entries_v1_0(struct pp_hwmgr *hwmgr)
{
const ATOM_Tonga_POWERPLAYTABLE *pp_table = get_powerplay_table(hwmgr);
const ATOM_Tonga_VCE_State_Table *vce_state_table;
if (pp_table == NULL)
return 0;
vce_state_table = (void *)pp_table +
le16_to_cpu(pp_table->usVCEStateTableOffset);
return vce_state_table->ucNumEntries;
}
static int ppt_get_vce_state_table_entry_v1_0(struct pp_hwmgr *hwmgr, uint32_t i,
struct amd_vce_state *vce_state, void **clock_info, uint32_t *flag)
{
const ATOM_Tonga_VCE_State_Record *vce_state_record;
ATOM_Tonga_SCLK_Dependency_Record *sclk_dep_record;
ATOM_Tonga_MCLK_Dependency_Record *mclk_dep_record;
ATOM_Tonga_MM_Dependency_Record *mm_dep_record;
const ATOM_Tonga_POWERPLAYTABLE *pptable = get_powerplay_table(hwmgr);
const ATOM_Tonga_VCE_State_Table *vce_state_table = (ATOM_Tonga_VCE_State_Table *)(((unsigned long)pptable)
+ le16_to_cpu(pptable->usVCEStateTableOffset));
const ATOM_Tonga_SCLK_Dependency_Table *sclk_dep_table = (ATOM_Tonga_SCLK_Dependency_Table *)(((unsigned long)pptable)
+ le16_to_cpu(pptable->usSclkDependencyTableOffset));
const ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table = (ATOM_Tonga_MCLK_Dependency_Table *)(((unsigned long)pptable)
+ le16_to_cpu(pptable->usMclkDependencyTableOffset));
const ATOM_Tonga_MM_Dependency_Table *mm_dep_table = (ATOM_Tonga_MM_Dependency_Table *)(((unsigned long)pptable)
+ le16_to_cpu(pptable->usMMDependencyTableOffset));
PP_ASSERT_WITH_CODE((i < vce_state_table->ucNumEntries),
"Requested state entry ID is out of range!",
return -EINVAL);
vce_state_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR(
ATOM_Tonga_VCE_State_Record,
entries, vce_state_table, i);
sclk_dep_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR(
ATOM_Tonga_SCLK_Dependency_Record,
entries, sclk_dep_table,
vce_state_record->ucSCLKIndex);
mm_dep_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR(
ATOM_Tonga_MM_Dependency_Record,
entries, mm_dep_table,
vce_state_record->ucVCEClockIndex);
*flag = vce_state_record->ucFlag;
vce_state->evclk = le32_to_cpu(mm_dep_record->ulEClk);
vce_state->ecclk = le32_to_cpu(mm_dep_record->ulEClk);
vce_state->sclk = le32_to_cpu(sclk_dep_record->ulSclk);
if (vce_state_record->ucMCLKIndex >= mclk_dep_table->ucNumEntries)
mclk_dep_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR(
ATOM_Tonga_MCLK_Dependency_Record,
entries, mclk_dep_table,
mclk_dep_table->ucNumEntries - 1);
else
mclk_dep_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR(
ATOM_Tonga_MCLK_Dependency_Record,
entries, mclk_dep_table,
vce_state_record->ucMCLKIndex);
vce_state->mclk = le32_to_cpu(mclk_dep_record->ulMclk);
return 0;
}
/**
* Create a Power State out of an entry in the PowerPlay table.
* This function is called by the hardware back-end.
* @param hwmgr Pointer to the hardware manager.
* @param entry_index The index of the entry to be extracted from the table.
* @param power_state The address of the PowerState instance being created.
* @return -1 if the entry cannot be retrieved.
*/
int get_powerplay_table_entry_v1_0(struct pp_hwmgr *hwmgr,
uint32_t entry_index, struct pp_power_state *power_state,
int (*call_back_func)(struct pp_hwmgr *, void *,
struct pp_power_state *, void *, uint32_t))
{
int result = 0;
const ATOM_Tonga_State_Array *state_arrays;
const ATOM_Tonga_State *state_entry;
const ATOM_Tonga_POWERPLAYTABLE *pp_table = get_powerplay_table(hwmgr);
int i, j;
uint32_t flags = 0;
PP_ASSERT_WITH_CODE((NULL != pp_table), "Missing PowerPlay Table!", return -1;);
power_state->classification.bios_index = entry_index;
if (pp_table->sHeader.ucTableFormatRevision >=
ATOM_Tonga_TABLE_REVISION_TONGA) {
state_arrays = (ATOM_Tonga_State_Array *)(((unsigned long)pp_table) +
le16_to_cpu(pp_table->usStateArrayOffset));
PP_ASSERT_WITH_CODE((0 < pp_table->usStateArrayOffset),
"Invalid PowerPlay Table State Array Offset.", return -1);
PP_ASSERT_WITH_CODE((0 < state_arrays->ucNumEntries),
"Invalid PowerPlay Table State Array.", return -1);
PP_ASSERT_WITH_CODE((entry_index <= state_arrays->ucNumEntries),
"Invalid PowerPlay Table State Array Entry.", return -1);
state_entry = GET_FLEXIBLE_ARRAY_MEMBER_ADDR(
ATOM_Tonga_State, entries,
state_arrays, entry_index);
result = call_back_func(hwmgr, (void *)state_entry, power_state,
(void *)pp_table,
make_classification_flags(hwmgr,
le16_to_cpu(state_entry->usClassification),
le16_to_cpu(state_entry->usClassification2)));
}
if (!result && (power_state->classification.flags &
PP_StateClassificationFlag_Boot))
result = hwmgr->hwmgr_func->patch_boot_state(hwmgr, &(power_state->hardware));
hwmgr->num_vce_state_tables = i = ppt_get_num_of_vce_state_table_entries_v1_0(hwmgr);
if ((i != 0) && (i <= AMD_MAX_VCE_LEVELS)) {
for (j = 0; j < i; j++)
ppt_get_vce_state_table_entry_v1_0(hwmgr, j, &(hwmgr->vce_states[j]), NULL, &flags);
}
return result;
}