| /* SPDX-License-Identifier: GPL-2.0-only */ |
| /* |
| * Copyright (C) 2012 Regents of the University of California |
| */ |
| |
| #ifndef _ASM_RISCV_PGTABLE_H |
| #define _ASM_RISCV_PGTABLE_H |
| |
| #include <linux/mmzone.h> |
| #include <linux/sizes.h> |
| |
| #include <asm/pgtable-bits.h> |
| |
| #ifndef __ASSEMBLY__ |
| |
| /* Page Upper Directory not used in RISC-V */ |
| #include <asm-generic/pgtable-nopud.h> |
| #include <asm/page.h> |
| #include <asm/tlbflush.h> |
| #include <linux/mm_types.h> |
| |
| #ifdef CONFIG_64BIT |
| #include <asm/pgtable-64.h> |
| #else |
| #include <asm/pgtable-32.h> |
| #endif /* CONFIG_64BIT */ |
| |
| #ifdef CONFIG_MMU |
| /* Number of entries in the page global directory */ |
| #define PTRS_PER_PGD (PAGE_SIZE / sizeof(pgd_t)) |
| /* Number of entries in the page table */ |
| #define PTRS_PER_PTE (PAGE_SIZE / sizeof(pte_t)) |
| |
| /* Number of PGD entries that a user-mode program can use */ |
| #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) |
| |
| /* Page protection bits */ |
| #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER) |
| |
| #define PAGE_NONE __pgprot(_PAGE_PROT_NONE) |
| #define PAGE_READ __pgprot(_PAGE_BASE | _PAGE_READ) |
| #define PAGE_WRITE __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE) |
| #define PAGE_EXEC __pgprot(_PAGE_BASE | _PAGE_EXEC) |
| #define PAGE_READ_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC) |
| #define PAGE_WRITE_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | \ |
| _PAGE_EXEC | _PAGE_WRITE) |
| |
| #define PAGE_COPY PAGE_READ |
| #define PAGE_COPY_EXEC PAGE_EXEC |
| #define PAGE_COPY_READ_EXEC PAGE_READ_EXEC |
| #define PAGE_SHARED PAGE_WRITE |
| #define PAGE_SHARED_EXEC PAGE_WRITE_EXEC |
| |
| #define _PAGE_KERNEL (_PAGE_READ \ |
| | _PAGE_WRITE \ |
| | _PAGE_PRESENT \ |
| | _PAGE_ACCESSED \ |
| | _PAGE_DIRTY) |
| |
| #define PAGE_KERNEL __pgprot(_PAGE_KERNEL) |
| #define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL | _PAGE_EXEC) |
| |
| #define PAGE_TABLE __pgprot(_PAGE_TABLE) |
| |
| /* |
| * The RISC-V ISA doesn't yet specify how to query or modify PMAs, so we can't |
| * change the properties of memory regions. |
| */ |
| #define _PAGE_IOREMAP _PAGE_KERNEL |
| |
| extern pgd_t swapper_pg_dir[]; |
| |
| /* MAP_PRIVATE permissions: xwr (copy-on-write) */ |
| #define __P000 PAGE_NONE |
| #define __P001 PAGE_READ |
| #define __P010 PAGE_COPY |
| #define __P011 PAGE_COPY |
| #define __P100 PAGE_EXEC |
| #define __P101 PAGE_READ_EXEC |
| #define __P110 PAGE_COPY_EXEC |
| #define __P111 PAGE_COPY_READ_EXEC |
| |
| /* MAP_SHARED permissions: xwr */ |
| #define __S000 PAGE_NONE |
| #define __S001 PAGE_READ |
| #define __S010 PAGE_SHARED |
| #define __S011 PAGE_SHARED |
| #define __S100 PAGE_EXEC |
| #define __S101 PAGE_READ_EXEC |
| #define __S110 PAGE_SHARED_EXEC |
| #define __S111 PAGE_SHARED_EXEC |
| |
| #define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1) |
| #define VMALLOC_END (PAGE_OFFSET - 1) |
| #define VMALLOC_START (PAGE_OFFSET - VMALLOC_SIZE) |
| |
| /* |
| * Roughly size the vmemmap space to be large enough to fit enough |
| * struct pages to map half the virtual address space. Then |
| * position vmemmap directly below the VMALLOC region. |
| */ |
| #define VMEMMAP_SHIFT \ |
| (CONFIG_VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT) |
| #define VMEMMAP_SIZE BIT(VMEMMAP_SHIFT) |
| #define VMEMMAP_END (VMALLOC_START - 1) |
| #define VMEMMAP_START (VMALLOC_START - VMEMMAP_SIZE) |
| |
| /* |
| * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel |
| * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled. |
| */ |
| #define vmemmap ((struct page *)VMEMMAP_START) |
| |
| static inline int pmd_present(pmd_t pmd) |
| { |
| return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE)); |
| } |
| |
| static inline int pmd_none(pmd_t pmd) |
| { |
| return (pmd_val(pmd) == 0); |
| } |
| |
| static inline int pmd_bad(pmd_t pmd) |
| { |
| return !pmd_present(pmd); |
| } |
| |
| static inline void set_pmd(pmd_t *pmdp, pmd_t pmd) |
| { |
| *pmdp = pmd; |
| } |
| |
| static inline void pmd_clear(pmd_t *pmdp) |
| { |
| set_pmd(pmdp, __pmd(0)); |
| } |
| |
| static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot) |
| { |
| return __pgd((pfn << _PAGE_PFN_SHIFT) | pgprot_val(prot)); |
| } |
| |
| static inline unsigned long _pgd_pfn(pgd_t pgd) |
| { |
| return pgd_val(pgd) >> _PAGE_PFN_SHIFT; |
| } |
| |
| #define pgd_index(addr) (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) |
| |
| /* Locate an entry in the page global directory */ |
| static inline pgd_t *pgd_offset(const struct mm_struct *mm, unsigned long addr) |
| { |
| return mm->pgd + pgd_index(addr); |
| } |
| /* Locate an entry in the kernel page global directory */ |
| #define pgd_offset_k(addr) pgd_offset(&init_mm, (addr)) |
| |
| static inline struct page *pmd_page(pmd_t pmd) |
| { |
| return pfn_to_page(pmd_val(pmd) >> _PAGE_PFN_SHIFT); |
| } |
| |
| static inline unsigned long pmd_page_vaddr(pmd_t pmd) |
| { |
| return (unsigned long)pfn_to_virt(pmd_val(pmd) >> _PAGE_PFN_SHIFT); |
| } |
| |
| /* Yields the page frame number (PFN) of a page table entry */ |
| static inline unsigned long pte_pfn(pte_t pte) |
| { |
| return (pte_val(pte) >> _PAGE_PFN_SHIFT); |
| } |
| |
| #define pte_page(x) pfn_to_page(pte_pfn(x)) |
| |
| /* Constructs a page table entry */ |
| static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot) |
| { |
| return __pte((pfn << _PAGE_PFN_SHIFT) | pgprot_val(prot)); |
| } |
| |
| #define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot) |
| |
| #define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) |
| |
| static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long addr) |
| { |
| return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(addr); |
| } |
| |
| #define pte_offset_map(dir, addr) pte_offset_kernel((dir), (addr)) |
| #define pte_unmap(pte) ((void)(pte)) |
| |
| static inline int pte_present(pte_t pte) |
| { |
| return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)); |
| } |
| |
| static inline int pte_none(pte_t pte) |
| { |
| return (pte_val(pte) == 0); |
| } |
| |
| static inline int pte_write(pte_t pte) |
| { |
| return pte_val(pte) & _PAGE_WRITE; |
| } |
| |
| static inline int pte_exec(pte_t pte) |
| { |
| return pte_val(pte) & _PAGE_EXEC; |
| } |
| |
| static inline int pte_huge(pte_t pte) |
| { |
| return pte_present(pte) |
| && (pte_val(pte) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)); |
| } |
| |
| static inline int pte_dirty(pte_t pte) |
| { |
| return pte_val(pte) & _PAGE_DIRTY; |
| } |
| |
| static inline int pte_young(pte_t pte) |
| { |
| return pte_val(pte) & _PAGE_ACCESSED; |
| } |
| |
| static inline int pte_special(pte_t pte) |
| { |
| return pte_val(pte) & _PAGE_SPECIAL; |
| } |
| |
| /* static inline pte_t pte_rdprotect(pte_t pte) */ |
| |
| static inline pte_t pte_wrprotect(pte_t pte) |
| { |
| return __pte(pte_val(pte) & ~(_PAGE_WRITE)); |
| } |
| |
| /* static inline pte_t pte_mkread(pte_t pte) */ |
| |
| static inline pte_t pte_mkwrite(pte_t pte) |
| { |
| return __pte(pte_val(pte) | _PAGE_WRITE); |
| } |
| |
| /* static inline pte_t pte_mkexec(pte_t pte) */ |
| |
| static inline pte_t pte_mkdirty(pte_t pte) |
| { |
| return __pte(pte_val(pte) | _PAGE_DIRTY); |
| } |
| |
| static inline pte_t pte_mkclean(pte_t pte) |
| { |
| return __pte(pte_val(pte) & ~(_PAGE_DIRTY)); |
| } |
| |
| static inline pte_t pte_mkyoung(pte_t pte) |
| { |
| return __pte(pte_val(pte) | _PAGE_ACCESSED); |
| } |
| |
| static inline pte_t pte_mkold(pte_t pte) |
| { |
| return __pte(pte_val(pte) & ~(_PAGE_ACCESSED)); |
| } |
| |
| static inline pte_t pte_mkspecial(pte_t pte) |
| { |
| return __pte(pte_val(pte) | _PAGE_SPECIAL); |
| } |
| |
| static inline pte_t pte_mkhuge(pte_t pte) |
| { |
| return pte; |
| } |
| |
| /* Modify page protection bits */ |
| static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) |
| { |
| return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)); |
| } |
| |
| #define pgd_ERROR(e) \ |
| pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e)) |
| |
| |
| /* Commit new configuration to MMU hardware */ |
| static inline void update_mmu_cache(struct vm_area_struct *vma, |
| unsigned long address, pte_t *ptep) |
| { |
| /* |
| * The kernel assumes that TLBs don't cache invalid entries, but |
| * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a |
| * cache flush; it is necessary even after writing invalid entries. |
| * Relying on flush_tlb_fix_spurious_fault would suffice, but |
| * the extra traps reduce performance. So, eagerly SFENCE.VMA. |
| */ |
| local_flush_tlb_page(address); |
| } |
| |
| #define __HAVE_ARCH_PTE_SAME |
| static inline int pte_same(pte_t pte_a, pte_t pte_b) |
| { |
| return pte_val(pte_a) == pte_val(pte_b); |
| } |
| |
| /* |
| * Certain architectures need to do special things when PTEs within |
| * a page table are directly modified. Thus, the following hook is |
| * made available. |
| */ |
| static inline void set_pte(pte_t *ptep, pte_t pteval) |
| { |
| *ptep = pteval; |
| } |
| |
| void flush_icache_pte(pte_t pte); |
| |
| static inline void set_pte_at(struct mm_struct *mm, |
| unsigned long addr, pte_t *ptep, pte_t pteval) |
| { |
| if (pte_present(pteval) && pte_exec(pteval)) |
| flush_icache_pte(pteval); |
| |
| set_pte(ptep, pteval); |
| } |
| |
| static inline void pte_clear(struct mm_struct *mm, |
| unsigned long addr, pte_t *ptep) |
| { |
| set_pte_at(mm, addr, ptep, __pte(0)); |
| } |
| |
| #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS |
| static inline int ptep_set_access_flags(struct vm_area_struct *vma, |
| unsigned long address, pte_t *ptep, |
| pte_t entry, int dirty) |
| { |
| if (!pte_same(*ptep, entry)) |
| set_pte_at(vma->vm_mm, address, ptep, entry); |
| /* |
| * update_mmu_cache will unconditionally execute, handling both |
| * the case that the PTE changed and the spurious fault case. |
| */ |
| return true; |
| } |
| |
| #define __HAVE_ARCH_PTEP_GET_AND_CLEAR |
| static inline pte_t ptep_get_and_clear(struct mm_struct *mm, |
| unsigned long address, pte_t *ptep) |
| { |
| return __pte(atomic_long_xchg((atomic_long_t *)ptep, 0)); |
| } |
| |
| #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG |
| static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, |
| unsigned long address, |
| pte_t *ptep) |
| { |
| if (!pte_young(*ptep)) |
| return 0; |
| return test_and_clear_bit(_PAGE_ACCESSED_OFFSET, &pte_val(*ptep)); |
| } |
| |
| #define __HAVE_ARCH_PTEP_SET_WRPROTECT |
| static inline void ptep_set_wrprotect(struct mm_struct *mm, |
| unsigned long address, pte_t *ptep) |
| { |
| atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep); |
| } |
| |
| #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH |
| static inline int ptep_clear_flush_young(struct vm_area_struct *vma, |
| unsigned long address, pte_t *ptep) |
| { |
| /* |
| * This comment is borrowed from x86, but applies equally to RISC-V: |
| * |
| * Clearing the accessed bit without a TLB flush |
| * doesn't cause data corruption. [ It could cause incorrect |
| * page aging and the (mistaken) reclaim of hot pages, but the |
| * chance of that should be relatively low. ] |
| * |
| * So as a performance optimization don't flush the TLB when |
| * clearing the accessed bit, it will eventually be flushed by |
| * a context switch or a VM operation anyway. [ In the rare |
| * event of it not getting flushed for a long time the delay |
| * shouldn't really matter because there's no real memory |
| * pressure for swapout to react to. ] |
| */ |
| return ptep_test_and_clear_young(vma, address, ptep); |
| } |
| |
| /* |
| * Encode and decode a swap entry |
| * |
| * Format of swap PTE: |
| * bit 0: _PAGE_PRESENT (zero) |
| * bit 1: _PAGE_PROT_NONE (zero) |
| * bits 2 to 6: swap type |
| * bits 7 to XLEN-1: swap offset |
| */ |
| #define __SWP_TYPE_SHIFT 2 |
| #define __SWP_TYPE_BITS 5 |
| #define __SWP_TYPE_MASK ((1UL << __SWP_TYPE_BITS) - 1) |
| #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT) |
| |
| #define MAX_SWAPFILES_CHECK() \ |
| BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS) |
| |
| #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK) |
| #define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT) |
| #define __swp_entry(type, offset) ((swp_entry_t) \ |
| { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) }) |
| |
| #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) |
| #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) |
| |
| #define PCI_IO_SIZE SZ_16M |
| #define PCI_IO_END VMEMMAP_START |
| #define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE) |
| |
| #define FIXADDR_TOP PCI_IO_START |
| #ifdef CONFIG_64BIT |
| #define FIXADDR_SIZE PMD_SIZE |
| #else |
| #define FIXADDR_SIZE PGDIR_SIZE |
| #endif |
| #define FIXADDR_START (FIXADDR_TOP - FIXADDR_SIZE) |
| |
| /* |
| * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32. |
| * Note that PGDIR_SIZE must evenly divide TASK_SIZE. |
| */ |
| #ifdef CONFIG_64BIT |
| #define TASK_SIZE (PGDIR_SIZE * PTRS_PER_PGD / 2) |
| #else |
| #define TASK_SIZE FIXADDR_START |
| #endif |
| |
| #else /* CONFIG_MMU */ |
| |
| #define PAGE_KERNEL __pgprot(0) |
| #define swapper_pg_dir NULL |
| #define VMALLOC_START 0 |
| |
| #define TASK_SIZE 0xffffffffUL |
| |
| #endif /* !CONFIG_MMU */ |
| |
| #define kern_addr_valid(addr) (1) /* FIXME */ |
| |
| extern void *dtb_early_va; |
| void setup_bootmem(void); |
| void paging_init(void); |
| |
| #define FIRST_USER_ADDRESS 0 |
| |
| /* |
| * ZERO_PAGE is a global shared page that is always zero, |
| * used for zero-mapped memory areas, etc. |
| */ |
| extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]; |
| #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) |
| |
| #include <asm-generic/pgtable.h> |
| |
| #endif /* !__ASSEMBLY__ */ |
| |
| #endif /* _ASM_RISCV_PGTABLE_H */ |