| /* SPDX-License-Identifier: GPL-2.0 OR MIT */ |
| /************************************************************************** |
| * |
| * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA |
| * All Rights Reserved. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the |
| * "Software"), to deal in the Software without restriction, including |
| * without limitation the rights to use, copy, modify, merge, publish, |
| * distribute, sub license, and/or sell copies of the Software, and to |
| * permit persons to whom the Software is furnished to do so, subject to |
| * the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the |
| * next paragraph) shall be included in all copies or substantial portions |
| * of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, |
| * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR |
| * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE |
| * USE OR OTHER DEALINGS IN THE SOFTWARE. |
| * |
| **************************************************************************/ |
| /* |
| * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> |
| */ |
| |
| #include <drm/ttm/ttm_bo_driver.h> |
| #include <drm/ttm/ttm_placement.h> |
| #include <drm/drm_vma_manager.h> |
| #include <linux/io.h> |
| #include <linux/highmem.h> |
| #include <linux/wait.h> |
| #include <linux/slab.h> |
| #include <linux/vmalloc.h> |
| #include <linux/module.h> |
| #include <linux/dma-resv.h> |
| |
| struct ttm_transfer_obj { |
| struct ttm_buffer_object base; |
| struct ttm_buffer_object *bo; |
| }; |
| |
| void ttm_bo_free_old_node(struct ttm_buffer_object *bo) |
| { |
| ttm_bo_mem_put(bo, &bo->mem); |
| } |
| |
| int ttm_bo_move_ttm(struct ttm_buffer_object *bo, |
| struct ttm_operation_ctx *ctx, |
| struct ttm_mem_reg *new_mem) |
| { |
| struct ttm_tt *ttm = bo->ttm; |
| struct ttm_mem_reg *old_mem = &bo->mem; |
| int ret; |
| |
| if (old_mem->mem_type != TTM_PL_SYSTEM) { |
| ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu); |
| |
| if (unlikely(ret != 0)) { |
| if (ret != -ERESTARTSYS) |
| pr_err("Failed to expire sync object before unbinding TTM\n"); |
| return ret; |
| } |
| |
| ttm_tt_unbind(ttm); |
| ttm_bo_free_old_node(bo); |
| ttm_flag_masked(&old_mem->placement, TTM_PL_FLAG_SYSTEM, |
| TTM_PL_MASK_MEM); |
| old_mem->mem_type = TTM_PL_SYSTEM; |
| } |
| |
| ret = ttm_tt_set_placement_caching(ttm, new_mem->placement); |
| if (unlikely(ret != 0)) |
| return ret; |
| |
| if (new_mem->mem_type != TTM_PL_SYSTEM) { |
| ret = ttm_tt_bind(ttm, new_mem, ctx); |
| if (unlikely(ret != 0)) |
| return ret; |
| } |
| |
| *old_mem = *new_mem; |
| new_mem->mm_node = NULL; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(ttm_bo_move_ttm); |
| |
| int ttm_mem_io_lock(struct ttm_mem_type_manager *man, bool interruptible) |
| { |
| if (likely(man->io_reserve_fastpath)) |
| return 0; |
| |
| if (interruptible) |
| return mutex_lock_interruptible(&man->io_reserve_mutex); |
| |
| mutex_lock(&man->io_reserve_mutex); |
| return 0; |
| } |
| |
| void ttm_mem_io_unlock(struct ttm_mem_type_manager *man) |
| { |
| if (likely(man->io_reserve_fastpath)) |
| return; |
| |
| mutex_unlock(&man->io_reserve_mutex); |
| } |
| |
| static int ttm_mem_io_evict(struct ttm_mem_type_manager *man) |
| { |
| struct ttm_buffer_object *bo; |
| |
| if (!man->use_io_reserve_lru || list_empty(&man->io_reserve_lru)) |
| return -EAGAIN; |
| |
| bo = list_first_entry(&man->io_reserve_lru, |
| struct ttm_buffer_object, |
| io_reserve_lru); |
| list_del_init(&bo->io_reserve_lru); |
| ttm_bo_unmap_virtual_locked(bo); |
| |
| return 0; |
| } |
| |
| |
| int ttm_mem_io_reserve(struct ttm_bo_device *bdev, |
| struct ttm_mem_reg *mem) |
| { |
| struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; |
| int ret = 0; |
| |
| if (!bdev->driver->io_mem_reserve) |
| return 0; |
| if (likely(man->io_reserve_fastpath)) |
| return bdev->driver->io_mem_reserve(bdev, mem); |
| |
| if (bdev->driver->io_mem_reserve && |
| mem->bus.io_reserved_count++ == 0) { |
| retry: |
| ret = bdev->driver->io_mem_reserve(bdev, mem); |
| if (ret == -EAGAIN) { |
| ret = ttm_mem_io_evict(man); |
| if (ret == 0) |
| goto retry; |
| } |
| } |
| return ret; |
| } |
| |
| void ttm_mem_io_free(struct ttm_bo_device *bdev, |
| struct ttm_mem_reg *mem) |
| { |
| struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; |
| |
| if (likely(man->io_reserve_fastpath)) |
| return; |
| |
| if (bdev->driver->io_mem_reserve && |
| --mem->bus.io_reserved_count == 0 && |
| bdev->driver->io_mem_free) |
| bdev->driver->io_mem_free(bdev, mem); |
| |
| } |
| |
| int ttm_mem_io_reserve_vm(struct ttm_buffer_object *bo) |
| { |
| struct ttm_mem_reg *mem = &bo->mem; |
| int ret; |
| |
| if (!mem->bus.io_reserved_vm) { |
| struct ttm_mem_type_manager *man = |
| &bo->bdev->man[mem->mem_type]; |
| |
| ret = ttm_mem_io_reserve(bo->bdev, mem); |
| if (unlikely(ret != 0)) |
| return ret; |
| mem->bus.io_reserved_vm = true; |
| if (man->use_io_reserve_lru) |
| list_add_tail(&bo->io_reserve_lru, |
| &man->io_reserve_lru); |
| } |
| return 0; |
| } |
| |
| void ttm_mem_io_free_vm(struct ttm_buffer_object *bo) |
| { |
| struct ttm_mem_reg *mem = &bo->mem; |
| |
| if (mem->bus.io_reserved_vm) { |
| mem->bus.io_reserved_vm = false; |
| list_del_init(&bo->io_reserve_lru); |
| ttm_mem_io_free(bo->bdev, mem); |
| } |
| } |
| |
| static int ttm_mem_reg_ioremap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem, |
| void **virtual) |
| { |
| struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; |
| int ret; |
| void *addr; |
| |
| *virtual = NULL; |
| (void) ttm_mem_io_lock(man, false); |
| ret = ttm_mem_io_reserve(bdev, mem); |
| ttm_mem_io_unlock(man); |
| if (ret || !mem->bus.is_iomem) |
| return ret; |
| |
| if (mem->bus.addr) { |
| addr = mem->bus.addr; |
| } else { |
| if (mem->placement & TTM_PL_FLAG_WC) |
| addr = ioremap_wc(mem->bus.base + mem->bus.offset, mem->bus.size); |
| else |
| addr = ioremap_nocache(mem->bus.base + mem->bus.offset, mem->bus.size); |
| if (!addr) { |
| (void) ttm_mem_io_lock(man, false); |
| ttm_mem_io_free(bdev, mem); |
| ttm_mem_io_unlock(man); |
| return -ENOMEM; |
| } |
| } |
| *virtual = addr; |
| return 0; |
| } |
| |
| static void ttm_mem_reg_iounmap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem, |
| void *virtual) |
| { |
| struct ttm_mem_type_manager *man; |
| |
| man = &bdev->man[mem->mem_type]; |
| |
| if (virtual && mem->bus.addr == NULL) |
| iounmap(virtual); |
| (void) ttm_mem_io_lock(man, false); |
| ttm_mem_io_free(bdev, mem); |
| ttm_mem_io_unlock(man); |
| } |
| |
| static int ttm_copy_io_page(void *dst, void *src, unsigned long page) |
| { |
| uint32_t *dstP = |
| (uint32_t *) ((unsigned long)dst + (page << PAGE_SHIFT)); |
| uint32_t *srcP = |
| (uint32_t *) ((unsigned long)src + (page << PAGE_SHIFT)); |
| |
| int i; |
| for (i = 0; i < PAGE_SIZE / sizeof(uint32_t); ++i) |
| iowrite32(ioread32(srcP++), dstP++); |
| return 0; |
| } |
| |
| #ifdef CONFIG_X86 |
| #define __ttm_kmap_atomic_prot(__page, __prot) kmap_atomic_prot(__page, __prot) |
| #define __ttm_kunmap_atomic(__addr) kunmap_atomic(__addr) |
| #else |
| #define __ttm_kmap_atomic_prot(__page, __prot) vmap(&__page, 1, 0, __prot) |
| #define __ttm_kunmap_atomic(__addr) vunmap(__addr) |
| #endif |
| |
| |
| /** |
| * ttm_kmap_atomic_prot - Efficient kernel map of a single page with |
| * specified page protection. |
| * |
| * @page: The page to map. |
| * @prot: The page protection. |
| * |
| * This function maps a TTM page using the kmap_atomic api if available, |
| * otherwise falls back to vmap. The user must make sure that the |
| * specified page does not have an aliased mapping with a different caching |
| * policy unless the architecture explicitly allows it. Also mapping and |
| * unmapping using this api must be correctly nested. Unmapping should |
| * occur in the reverse order of mapping. |
| */ |
| void *ttm_kmap_atomic_prot(struct page *page, pgprot_t prot) |
| { |
| if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) |
| return kmap_atomic(page); |
| else |
| return __ttm_kmap_atomic_prot(page, prot); |
| } |
| EXPORT_SYMBOL(ttm_kmap_atomic_prot); |
| |
| /** |
| * ttm_kunmap_atomic_prot - Unmap a page that was mapped using |
| * ttm_kmap_atomic_prot. |
| * |
| * @addr: The virtual address from the map. |
| * @prot: The page protection. |
| */ |
| void ttm_kunmap_atomic_prot(void *addr, pgprot_t prot) |
| { |
| if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) |
| kunmap_atomic(addr); |
| else |
| __ttm_kunmap_atomic(addr); |
| } |
| EXPORT_SYMBOL(ttm_kunmap_atomic_prot); |
| |
| static int ttm_copy_io_ttm_page(struct ttm_tt *ttm, void *src, |
| unsigned long page, |
| pgprot_t prot) |
| { |
| struct page *d = ttm->pages[page]; |
| void *dst; |
| |
| if (!d) |
| return -ENOMEM; |
| |
| src = (void *)((unsigned long)src + (page << PAGE_SHIFT)); |
| dst = ttm_kmap_atomic_prot(d, prot); |
| if (!dst) |
| return -ENOMEM; |
| |
| memcpy_fromio(dst, src, PAGE_SIZE); |
| |
| ttm_kunmap_atomic_prot(dst, prot); |
| |
| return 0; |
| } |
| |
| static int ttm_copy_ttm_io_page(struct ttm_tt *ttm, void *dst, |
| unsigned long page, |
| pgprot_t prot) |
| { |
| struct page *s = ttm->pages[page]; |
| void *src; |
| |
| if (!s) |
| return -ENOMEM; |
| |
| dst = (void *)((unsigned long)dst + (page << PAGE_SHIFT)); |
| src = ttm_kmap_atomic_prot(s, prot); |
| if (!src) |
| return -ENOMEM; |
| |
| memcpy_toio(dst, src, PAGE_SIZE); |
| |
| ttm_kunmap_atomic_prot(src, prot); |
| |
| return 0; |
| } |
| |
| int ttm_bo_move_memcpy(struct ttm_buffer_object *bo, |
| struct ttm_operation_ctx *ctx, |
| struct ttm_mem_reg *new_mem) |
| { |
| struct ttm_bo_device *bdev = bo->bdev; |
| struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type]; |
| struct ttm_tt *ttm = bo->ttm; |
| struct ttm_mem_reg *old_mem = &bo->mem; |
| struct ttm_mem_reg old_copy = *old_mem; |
| void *old_iomap; |
| void *new_iomap; |
| int ret; |
| unsigned long i; |
| unsigned long page; |
| unsigned long add = 0; |
| int dir; |
| |
| ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu); |
| if (ret) |
| return ret; |
| |
| ret = ttm_mem_reg_ioremap(bdev, old_mem, &old_iomap); |
| if (ret) |
| return ret; |
| ret = ttm_mem_reg_ioremap(bdev, new_mem, &new_iomap); |
| if (ret) |
| goto out; |
| |
| /* |
| * Single TTM move. NOP. |
| */ |
| if (old_iomap == NULL && new_iomap == NULL) |
| goto out2; |
| |
| /* |
| * Don't move nonexistent data. Clear destination instead. |
| */ |
| if (old_iomap == NULL && |
| (ttm == NULL || (ttm->state == tt_unpopulated && |
| !(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)))) { |
| memset_io(new_iomap, 0, new_mem->num_pages*PAGE_SIZE); |
| goto out2; |
| } |
| |
| /* |
| * TTM might be null for moves within the same region. |
| */ |
| if (ttm) { |
| ret = ttm_tt_populate(ttm, ctx); |
| if (ret) |
| goto out1; |
| } |
| |
| add = 0; |
| dir = 1; |
| |
| if ((old_mem->mem_type == new_mem->mem_type) && |
| (new_mem->start < old_mem->start + old_mem->size)) { |
| dir = -1; |
| add = new_mem->num_pages - 1; |
| } |
| |
| for (i = 0; i < new_mem->num_pages; ++i) { |
| page = i * dir + add; |
| if (old_iomap == NULL) { |
| pgprot_t prot = ttm_io_prot(old_mem->placement, |
| PAGE_KERNEL); |
| ret = ttm_copy_ttm_io_page(ttm, new_iomap, page, |
| prot); |
| } else if (new_iomap == NULL) { |
| pgprot_t prot = ttm_io_prot(new_mem->placement, |
| PAGE_KERNEL); |
| ret = ttm_copy_io_ttm_page(ttm, old_iomap, page, |
| prot); |
| } else { |
| ret = ttm_copy_io_page(new_iomap, old_iomap, page); |
| } |
| if (ret) |
| goto out1; |
| } |
| mb(); |
| out2: |
| old_copy = *old_mem; |
| *old_mem = *new_mem; |
| new_mem->mm_node = NULL; |
| |
| if (man->flags & TTM_MEMTYPE_FLAG_FIXED) { |
| ttm_tt_destroy(ttm); |
| bo->ttm = NULL; |
| } |
| |
| out1: |
| ttm_mem_reg_iounmap(bdev, old_mem, new_iomap); |
| out: |
| ttm_mem_reg_iounmap(bdev, &old_copy, old_iomap); |
| |
| /* |
| * On error, keep the mm node! |
| */ |
| if (!ret) |
| ttm_bo_mem_put(bo, &old_copy); |
| return ret; |
| } |
| EXPORT_SYMBOL(ttm_bo_move_memcpy); |
| |
| static void ttm_transfered_destroy(struct ttm_buffer_object *bo) |
| { |
| struct ttm_transfer_obj *fbo; |
| |
| fbo = container_of(bo, struct ttm_transfer_obj, base); |
| ttm_bo_put(fbo->bo); |
| kfree(fbo); |
| } |
| |
| /** |
| * ttm_buffer_object_transfer |
| * |
| * @bo: A pointer to a struct ttm_buffer_object. |
| * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object, |
| * holding the data of @bo with the old placement. |
| * |
| * This is a utility function that may be called after an accelerated move |
| * has been scheduled. A new buffer object is created as a placeholder for |
| * the old data while it's being copied. When that buffer object is idle, |
| * it can be destroyed, releasing the space of the old placement. |
| * Returns: |
| * !0: Failure. |
| */ |
| |
| static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo, |
| struct ttm_buffer_object **new_obj) |
| { |
| struct ttm_transfer_obj *fbo; |
| int ret; |
| |
| fbo = kmalloc(sizeof(*fbo), GFP_KERNEL); |
| if (!fbo) |
| return -ENOMEM; |
| |
| fbo->base = *bo; |
| fbo->base.mem.placement |= TTM_PL_FLAG_NO_EVICT; |
| |
| ttm_bo_get(bo); |
| fbo->bo = bo; |
| |
| /** |
| * Fix up members that we shouldn't copy directly: |
| * TODO: Explicit member copy would probably be better here. |
| */ |
| |
| atomic_inc(&ttm_bo_glob.bo_count); |
| INIT_LIST_HEAD(&fbo->base.ddestroy); |
| INIT_LIST_HEAD(&fbo->base.lru); |
| INIT_LIST_HEAD(&fbo->base.swap); |
| INIT_LIST_HEAD(&fbo->base.io_reserve_lru); |
| mutex_init(&fbo->base.wu_mutex); |
| fbo->base.moving = NULL; |
| drm_vma_node_reset(&fbo->base.base.vma_node); |
| |
| kref_init(&fbo->base.list_kref); |
| kref_init(&fbo->base.kref); |
| fbo->base.destroy = &ttm_transfered_destroy; |
| fbo->base.acc_size = 0; |
| if (bo->base.resv == &bo->base._resv) |
| fbo->base.base.resv = &fbo->base.base._resv; |
| |
| dma_resv_init(&fbo->base.base._resv); |
| ret = dma_resv_trylock(&fbo->base.base._resv); |
| WARN_ON(!ret); |
| |
| *new_obj = &fbo->base; |
| return 0; |
| } |
| |
| pgprot_t ttm_io_prot(uint32_t caching_flags, pgprot_t tmp) |
| { |
| /* Cached mappings need no adjustment */ |
| if (caching_flags & TTM_PL_FLAG_CACHED) |
| return tmp; |
| |
| #if defined(__i386__) || defined(__x86_64__) |
| if (caching_flags & TTM_PL_FLAG_WC) |
| tmp = pgprot_writecombine(tmp); |
| else if (boot_cpu_data.x86 > 3) |
| tmp = pgprot_noncached(tmp); |
| #endif |
| #if defined(__ia64__) || defined(__arm__) || defined(__aarch64__) || \ |
| defined(__powerpc__) || defined(__mips__) |
| if (caching_flags & TTM_PL_FLAG_WC) |
| tmp = pgprot_writecombine(tmp); |
| else |
| tmp = pgprot_noncached(tmp); |
| #endif |
| #if defined(__sparc__) |
| tmp = pgprot_noncached(tmp); |
| #endif |
| return tmp; |
| } |
| EXPORT_SYMBOL(ttm_io_prot); |
| |
| static int ttm_bo_ioremap(struct ttm_buffer_object *bo, |
| unsigned long offset, |
| unsigned long size, |
| struct ttm_bo_kmap_obj *map) |
| { |
| struct ttm_mem_reg *mem = &bo->mem; |
| |
| if (bo->mem.bus.addr) { |
| map->bo_kmap_type = ttm_bo_map_premapped; |
| map->virtual = (void *)(((u8 *)bo->mem.bus.addr) + offset); |
| } else { |
| map->bo_kmap_type = ttm_bo_map_iomap; |
| if (mem->placement & TTM_PL_FLAG_WC) |
| map->virtual = ioremap_wc(bo->mem.bus.base + bo->mem.bus.offset + offset, |
| size); |
| else |
| map->virtual = ioremap_nocache(bo->mem.bus.base + bo->mem.bus.offset + offset, |
| size); |
| } |
| return (!map->virtual) ? -ENOMEM : 0; |
| } |
| |
| static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo, |
| unsigned long start_page, |
| unsigned long num_pages, |
| struct ttm_bo_kmap_obj *map) |
| { |
| struct ttm_mem_reg *mem = &bo->mem; |
| struct ttm_operation_ctx ctx = { |
| .interruptible = false, |
| .no_wait_gpu = false |
| }; |
| struct ttm_tt *ttm = bo->ttm; |
| pgprot_t prot; |
| int ret; |
| |
| BUG_ON(!ttm); |
| |
| ret = ttm_tt_populate(ttm, &ctx); |
| if (ret) |
| return ret; |
| |
| if (num_pages == 1 && (mem->placement & TTM_PL_FLAG_CACHED)) { |
| /* |
| * We're mapping a single page, and the desired |
| * page protection is consistent with the bo. |
| */ |
| |
| map->bo_kmap_type = ttm_bo_map_kmap; |
| map->page = ttm->pages[start_page]; |
| map->virtual = kmap(map->page); |
| } else { |
| /* |
| * We need to use vmap to get the desired page protection |
| * or to make the buffer object look contiguous. |
| */ |
| prot = ttm_io_prot(mem->placement, PAGE_KERNEL); |
| map->bo_kmap_type = ttm_bo_map_vmap; |
| map->virtual = vmap(ttm->pages + start_page, num_pages, |
| 0, prot); |
| } |
| return (!map->virtual) ? -ENOMEM : 0; |
| } |
| |
| int ttm_bo_kmap(struct ttm_buffer_object *bo, |
| unsigned long start_page, unsigned long num_pages, |
| struct ttm_bo_kmap_obj *map) |
| { |
| struct ttm_mem_type_manager *man = |
| &bo->bdev->man[bo->mem.mem_type]; |
| unsigned long offset, size; |
| int ret; |
| |
| map->virtual = NULL; |
| map->bo = bo; |
| if (num_pages > bo->num_pages) |
| return -EINVAL; |
| if (start_page > bo->num_pages) |
| return -EINVAL; |
| |
| (void) ttm_mem_io_lock(man, false); |
| ret = ttm_mem_io_reserve(bo->bdev, &bo->mem); |
| ttm_mem_io_unlock(man); |
| if (ret) |
| return ret; |
| if (!bo->mem.bus.is_iomem) { |
| return ttm_bo_kmap_ttm(bo, start_page, num_pages, map); |
| } else { |
| offset = start_page << PAGE_SHIFT; |
| size = num_pages << PAGE_SHIFT; |
| return ttm_bo_ioremap(bo, offset, size, map); |
| } |
| } |
| EXPORT_SYMBOL(ttm_bo_kmap); |
| |
| void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map) |
| { |
| struct ttm_buffer_object *bo = map->bo; |
| struct ttm_mem_type_manager *man = |
| &bo->bdev->man[bo->mem.mem_type]; |
| |
| if (!map->virtual) |
| return; |
| switch (map->bo_kmap_type) { |
| case ttm_bo_map_iomap: |
| iounmap(map->virtual); |
| break; |
| case ttm_bo_map_vmap: |
| vunmap(map->virtual); |
| break; |
| case ttm_bo_map_kmap: |
| kunmap(map->page); |
| break; |
| case ttm_bo_map_premapped: |
| break; |
| default: |
| BUG(); |
| } |
| (void) ttm_mem_io_lock(man, false); |
| ttm_mem_io_free(map->bo->bdev, &map->bo->mem); |
| ttm_mem_io_unlock(man); |
| map->virtual = NULL; |
| map->page = NULL; |
| } |
| EXPORT_SYMBOL(ttm_bo_kunmap); |
| |
| int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo, |
| struct dma_fence *fence, |
| bool evict, |
| struct ttm_mem_reg *new_mem) |
| { |
| struct ttm_bo_device *bdev = bo->bdev; |
| struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type]; |
| struct ttm_mem_reg *old_mem = &bo->mem; |
| int ret; |
| struct ttm_buffer_object *ghost_obj; |
| |
| dma_resv_add_excl_fence(bo->base.resv, fence); |
| if (evict) { |
| ret = ttm_bo_wait(bo, false, false); |
| if (ret) |
| return ret; |
| |
| if (man->flags & TTM_MEMTYPE_FLAG_FIXED) { |
| ttm_tt_destroy(bo->ttm); |
| bo->ttm = NULL; |
| } |
| ttm_bo_free_old_node(bo); |
| } else { |
| /** |
| * This should help pipeline ordinary buffer moves. |
| * |
| * Hang old buffer memory on a new buffer object, |
| * and leave it to be released when the GPU |
| * operation has completed. |
| */ |
| |
| dma_fence_put(bo->moving); |
| bo->moving = dma_fence_get(fence); |
| |
| ret = ttm_buffer_object_transfer(bo, &ghost_obj); |
| if (ret) |
| return ret; |
| |
| dma_resv_add_excl_fence(&ghost_obj->base._resv, fence); |
| |
| /** |
| * If we're not moving to fixed memory, the TTM object |
| * needs to stay alive. Otherwhise hang it on the ghost |
| * bo to be unbound and destroyed. |
| */ |
| |
| if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) |
| ghost_obj->ttm = NULL; |
| else |
| bo->ttm = NULL; |
| |
| dma_resv_unlock(&ghost_obj->base._resv); |
| ttm_bo_put(ghost_obj); |
| } |
| |
| *old_mem = *new_mem; |
| new_mem->mm_node = NULL; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(ttm_bo_move_accel_cleanup); |
| |
| int ttm_bo_pipeline_move(struct ttm_buffer_object *bo, |
| struct dma_fence *fence, bool evict, |
| struct ttm_mem_reg *new_mem) |
| { |
| struct ttm_bo_device *bdev = bo->bdev; |
| struct ttm_mem_reg *old_mem = &bo->mem; |
| |
| struct ttm_mem_type_manager *from = &bdev->man[old_mem->mem_type]; |
| struct ttm_mem_type_manager *to = &bdev->man[new_mem->mem_type]; |
| |
| int ret; |
| |
| dma_resv_add_excl_fence(bo->base.resv, fence); |
| |
| if (!evict) { |
| struct ttm_buffer_object *ghost_obj; |
| |
| /** |
| * This should help pipeline ordinary buffer moves. |
| * |
| * Hang old buffer memory on a new buffer object, |
| * and leave it to be released when the GPU |
| * operation has completed. |
| */ |
| |
| dma_fence_put(bo->moving); |
| bo->moving = dma_fence_get(fence); |
| |
| ret = ttm_buffer_object_transfer(bo, &ghost_obj); |
| if (ret) |
| return ret; |
| |
| dma_resv_add_excl_fence(&ghost_obj->base._resv, fence); |
| |
| /** |
| * If we're not moving to fixed memory, the TTM object |
| * needs to stay alive. Otherwhise hang it on the ghost |
| * bo to be unbound and destroyed. |
| */ |
| |
| if (!(to->flags & TTM_MEMTYPE_FLAG_FIXED)) |
| ghost_obj->ttm = NULL; |
| else |
| bo->ttm = NULL; |
| |
| dma_resv_unlock(&ghost_obj->base._resv); |
| ttm_bo_put(ghost_obj); |
| |
| } else if (from->flags & TTM_MEMTYPE_FLAG_FIXED) { |
| |
| /** |
| * BO doesn't have a TTM we need to bind/unbind. Just remember |
| * this eviction and free up the allocation |
| */ |
| |
| spin_lock(&from->move_lock); |
| if (!from->move || dma_fence_is_later(fence, from->move)) { |
| dma_fence_put(from->move); |
| from->move = dma_fence_get(fence); |
| } |
| spin_unlock(&from->move_lock); |
| |
| ttm_bo_free_old_node(bo); |
| |
| dma_fence_put(bo->moving); |
| bo->moving = dma_fence_get(fence); |
| |
| } else { |
| /** |
| * Last resort, wait for the move to be completed. |
| * |
| * Should never happen in pratice. |
| */ |
| |
| ret = ttm_bo_wait(bo, false, false); |
| if (ret) |
| return ret; |
| |
| if (to->flags & TTM_MEMTYPE_FLAG_FIXED) { |
| ttm_tt_destroy(bo->ttm); |
| bo->ttm = NULL; |
| } |
| ttm_bo_free_old_node(bo); |
| } |
| |
| *old_mem = *new_mem; |
| new_mem->mm_node = NULL; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(ttm_bo_pipeline_move); |
| |
| int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo) |
| { |
| struct ttm_buffer_object *ghost; |
| int ret; |
| |
| ret = ttm_buffer_object_transfer(bo, &ghost); |
| if (ret) |
| return ret; |
| |
| ret = dma_resv_copy_fences(&ghost->base._resv, bo->base.resv); |
| /* Last resort, wait for the BO to be idle when we are OOM */ |
| if (ret) |
| ttm_bo_wait(bo, false, false); |
| |
| memset(&bo->mem, 0, sizeof(bo->mem)); |
| bo->mem.mem_type = TTM_PL_SYSTEM; |
| bo->ttm = NULL; |
| |
| dma_resv_unlock(&ghost->base._resv); |
| ttm_bo_put(ghost); |
| |
| return 0; |
| } |