blob: cf9b8b22d24f4febf5a5727da2d2b23935ab3761 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019, Intel Corporation. */
#include <linux/bpf_trace.h>
#include <net/xdp_sock.h>
#include <net/xdp.h>
#include "ice.h"
#include "ice_base.h"
#include "ice_type.h"
#include "ice_xsk.h"
#include "ice_txrx.h"
#include "ice_txrx_lib.h"
#include "ice_lib.h"
/**
* ice_qp_reset_stats - Resets all stats for rings of given index
* @vsi: VSI that contains rings of interest
* @q_idx: ring index in array
*/
static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx)
{
memset(&vsi->rx_rings[q_idx]->rx_stats, 0,
sizeof(vsi->rx_rings[q_idx]->rx_stats));
memset(&vsi->tx_rings[q_idx]->stats, 0,
sizeof(vsi->tx_rings[q_idx]->stats));
if (ice_is_xdp_ena_vsi(vsi))
memset(&vsi->xdp_rings[q_idx]->stats, 0,
sizeof(vsi->xdp_rings[q_idx]->stats));
}
/**
* ice_qp_clean_rings - Cleans all the rings of a given index
* @vsi: VSI that contains rings of interest
* @q_idx: ring index in array
*/
static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx)
{
ice_clean_tx_ring(vsi->tx_rings[q_idx]);
if (ice_is_xdp_ena_vsi(vsi))
ice_clean_tx_ring(vsi->xdp_rings[q_idx]);
ice_clean_rx_ring(vsi->rx_rings[q_idx]);
}
/**
* ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector
* @vsi: VSI that has netdev
* @q_vector: q_vector that has NAPI context
* @enable: true for enable, false for disable
*/
static void
ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector,
bool enable)
{
if (!vsi->netdev || !q_vector)
return;
if (enable)
napi_enable(&q_vector->napi);
else
napi_disable(&q_vector->napi);
}
/**
* ice_qvec_dis_irq - Mask off queue interrupt generation on given ring
* @vsi: the VSI that contains queue vector being un-configured
* @rx_ring: Rx ring that will have its IRQ disabled
* @q_vector: queue vector
*/
static void
ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_ring *rx_ring,
struct ice_q_vector *q_vector)
{
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
int base = vsi->base_vector;
u16 reg;
u32 val;
/* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle
* here only QINT_RQCTL
*/
reg = rx_ring->reg_idx;
val = rd32(hw, QINT_RQCTL(reg));
val &= ~QINT_RQCTL_CAUSE_ENA_M;
wr32(hw, QINT_RQCTL(reg), val);
if (q_vector) {
u16 v_idx = q_vector->v_idx;
wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0);
ice_flush(hw);
synchronize_irq(pf->msix_entries[v_idx + base].vector);
}
}
/**
* ice_qvec_cfg_msix - Enable IRQ for given queue vector
* @vsi: the VSI that contains queue vector
* @q_vector: queue vector
*/
static void
ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
{
u16 reg_idx = q_vector->reg_idx;
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
struct ice_ring *ring;
ice_cfg_itr(hw, q_vector);
wr32(hw, GLINT_RATE(reg_idx),
ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran));
ice_for_each_ring(ring, q_vector->tx)
ice_cfg_txq_interrupt(vsi, ring->reg_idx, reg_idx,
q_vector->tx.itr_idx);
ice_for_each_ring(ring, q_vector->rx)
ice_cfg_rxq_interrupt(vsi, ring->reg_idx, reg_idx,
q_vector->rx.itr_idx);
ice_flush(hw);
}
/**
* ice_qvec_ena_irq - Enable IRQ for given queue vector
* @vsi: the VSI that contains queue vector
* @q_vector: queue vector
*/
static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
{
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
ice_irq_dynamic_ena(hw, vsi, q_vector);
ice_flush(hw);
}
/**
* ice_qp_dis - Disables a queue pair
* @vsi: VSI of interest
* @q_idx: ring index in array
*
* Returns 0 on success, negative on failure.
*/
static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx)
{
struct ice_txq_meta txq_meta = { };
struct ice_ring *tx_ring, *rx_ring;
struct ice_q_vector *q_vector;
int timeout = 50;
int err;
if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
return -EINVAL;
tx_ring = vsi->tx_rings[q_idx];
rx_ring = vsi->rx_rings[q_idx];
q_vector = rx_ring->q_vector;
while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state)) {
timeout--;
if (!timeout)
return -EBUSY;
usleep_range(1000, 2000);
}
netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
ice_qvec_dis_irq(vsi, rx_ring, q_vector);
ice_fill_txq_meta(vsi, tx_ring, &txq_meta);
err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta);
if (err)
return err;
if (ice_is_xdp_ena_vsi(vsi)) {
struct ice_ring *xdp_ring = vsi->xdp_rings[q_idx];
memset(&txq_meta, 0, sizeof(txq_meta));
ice_fill_txq_meta(vsi, xdp_ring, &txq_meta);
err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring,
&txq_meta);
if (err)
return err;
}
err = ice_vsi_ctrl_rx_ring(vsi, false, q_idx);
if (err)
return err;
ice_qvec_toggle_napi(vsi, q_vector, false);
ice_qp_clean_rings(vsi, q_idx);
ice_qp_reset_stats(vsi, q_idx);
return 0;
}
/**
* ice_qp_ena - Enables a queue pair
* @vsi: VSI of interest
* @q_idx: ring index in array
*
* Returns 0 on success, negative on failure.
*/
static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx)
{
struct ice_aqc_add_tx_qgrp *qg_buf;
struct ice_ring *tx_ring, *rx_ring;
struct ice_q_vector *q_vector;
int err;
if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
return -EINVAL;
qg_buf = kzalloc(sizeof(*qg_buf), GFP_KERNEL);
if (!qg_buf)
return -ENOMEM;
qg_buf->num_txqs = 1;
tx_ring = vsi->tx_rings[q_idx];
rx_ring = vsi->rx_rings[q_idx];
q_vector = rx_ring->q_vector;
err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf);
if (err)
goto free_buf;
if (ice_is_xdp_ena_vsi(vsi)) {
struct ice_ring *xdp_ring = vsi->xdp_rings[q_idx];
memset(qg_buf, 0, sizeof(*qg_buf));
qg_buf->num_txqs = 1;
err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf);
if (err)
goto free_buf;
ice_set_ring_xdp(xdp_ring);
xdp_ring->xsk_umem = ice_xsk_umem(xdp_ring);
}
err = ice_setup_rx_ctx(rx_ring);
if (err)
goto free_buf;
ice_qvec_cfg_msix(vsi, q_vector);
err = ice_vsi_ctrl_rx_ring(vsi, true, q_idx);
if (err)
goto free_buf;
clear_bit(__ICE_CFG_BUSY, vsi->state);
ice_qvec_toggle_napi(vsi, q_vector, true);
ice_qvec_ena_irq(vsi, q_vector);
netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
free_buf:
kfree(qg_buf);
return err;
}
/**
* ice_xsk_alloc_umems - allocate a UMEM region for an XDP socket
* @vsi: VSI to allocate the UMEM on
*
* Returns 0 on success, negative on error
*/
static int ice_xsk_alloc_umems(struct ice_vsi *vsi)
{
if (vsi->xsk_umems)
return 0;
vsi->xsk_umems = kcalloc(vsi->num_xsk_umems, sizeof(*vsi->xsk_umems),
GFP_KERNEL);
if (!vsi->xsk_umems) {
vsi->num_xsk_umems = 0;
return -ENOMEM;
}
return 0;
}
/**
* ice_xsk_add_umem - add a UMEM region for XDP sockets
* @vsi: VSI to which the UMEM will be added
* @umem: pointer to a requested UMEM region
* @qid: queue ID
*
* Returns 0 on success, negative on error
*/
static int ice_xsk_add_umem(struct ice_vsi *vsi, struct xdp_umem *umem, u16 qid)
{
int err;
err = ice_xsk_alloc_umems(vsi);
if (err)
return err;
vsi->xsk_umems[qid] = umem;
vsi->num_xsk_umems_used++;
return 0;
}
/**
* ice_xsk_remove_umem - Remove an UMEM for a certain ring/qid
* @vsi: VSI from which the VSI will be removed
* @qid: Ring/qid associated with the UMEM
*/
static void ice_xsk_remove_umem(struct ice_vsi *vsi, u16 qid)
{
vsi->xsk_umems[qid] = NULL;
vsi->num_xsk_umems_used--;
if (vsi->num_xsk_umems_used == 0) {
kfree(vsi->xsk_umems);
vsi->xsk_umems = NULL;
vsi->num_xsk_umems = 0;
}
}
/**
* ice_xsk_umem_dma_map - DMA map UMEM region for XDP sockets
* @vsi: VSI to map the UMEM region
* @umem: UMEM to map
*
* Returns 0 on success, negative on error
*/
static int ice_xsk_umem_dma_map(struct ice_vsi *vsi, struct xdp_umem *umem)
{
struct ice_pf *pf = vsi->back;
struct device *dev;
unsigned int i;
dev = ice_pf_to_dev(pf);
for (i = 0; i < umem->npgs; i++) {
dma_addr_t dma = dma_map_page_attrs(dev, umem->pgs[i], 0,
PAGE_SIZE,
DMA_BIDIRECTIONAL,
ICE_RX_DMA_ATTR);
if (dma_mapping_error(dev, dma)) {
dev_dbg(dev,
"XSK UMEM DMA mapping error on page num %d", i);
goto out_unmap;
}
umem->pages[i].dma = dma;
}
return 0;
out_unmap:
for (; i > 0; i--) {
dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE,
DMA_BIDIRECTIONAL, ICE_RX_DMA_ATTR);
umem->pages[i].dma = 0;
}
return -EFAULT;
}
/**
* ice_xsk_umem_dma_unmap - DMA unmap UMEM region for XDP sockets
* @vsi: VSI from which the UMEM will be unmapped
* @umem: UMEM to unmap
*/
static void ice_xsk_umem_dma_unmap(struct ice_vsi *vsi, struct xdp_umem *umem)
{
struct ice_pf *pf = vsi->back;
struct device *dev;
unsigned int i;
dev = ice_pf_to_dev(pf);
for (i = 0; i < umem->npgs; i++) {
dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE,
DMA_BIDIRECTIONAL, ICE_RX_DMA_ATTR);
umem->pages[i].dma = 0;
}
}
/**
* ice_xsk_umem_disable - disable a UMEM region
* @vsi: Current VSI
* @qid: queue ID
*
* Returns 0 on success, negative on failure
*/
static int ice_xsk_umem_disable(struct ice_vsi *vsi, u16 qid)
{
if (!vsi->xsk_umems || qid >= vsi->num_xsk_umems ||
!vsi->xsk_umems[qid])
return -EINVAL;
ice_xsk_umem_dma_unmap(vsi, vsi->xsk_umems[qid]);
ice_xsk_remove_umem(vsi, qid);
return 0;
}
/**
* ice_xsk_umem_enable - enable a UMEM region
* @vsi: Current VSI
* @umem: pointer to a requested UMEM region
* @qid: queue ID
*
* Returns 0 on success, negative on failure
*/
static int
ice_xsk_umem_enable(struct ice_vsi *vsi, struct xdp_umem *umem, u16 qid)
{
struct xdp_umem_fq_reuse *reuseq;
int err;
if (vsi->type != ICE_VSI_PF)
return -EINVAL;
vsi->num_xsk_umems = min_t(u16, vsi->num_rxq, vsi->num_txq);
if (qid >= vsi->num_xsk_umems)
return -EINVAL;
if (vsi->xsk_umems && vsi->xsk_umems[qid])
return -EBUSY;
reuseq = xsk_reuseq_prepare(vsi->rx_rings[0]->count);
if (!reuseq)
return -ENOMEM;
xsk_reuseq_free(xsk_reuseq_swap(umem, reuseq));
err = ice_xsk_umem_dma_map(vsi, umem);
if (err)
return err;
err = ice_xsk_add_umem(vsi, umem, qid);
if (err)
return err;
return 0;
}
/**
* ice_xsk_umem_setup - enable/disable a UMEM region depending on its state
* @vsi: Current VSI
* @umem: UMEM to enable/associate to a ring, NULL to disable
* @qid: queue ID
*
* Returns 0 on success, negative on failure
*/
int ice_xsk_umem_setup(struct ice_vsi *vsi, struct xdp_umem *umem, u16 qid)
{
bool if_running, umem_present = !!umem;
int ret = 0, umem_failure = 0;
if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi);
if (if_running) {
ret = ice_qp_dis(vsi, qid);
if (ret) {
netdev_err(vsi->netdev, "ice_qp_dis error = %d", ret);
goto xsk_umem_if_up;
}
}
umem_failure = umem_present ? ice_xsk_umem_enable(vsi, umem, qid) :
ice_xsk_umem_disable(vsi, qid);
xsk_umem_if_up:
if (if_running) {
ret = ice_qp_ena(vsi, qid);
if (!ret && umem_present)
napi_schedule(&vsi->xdp_rings[qid]->q_vector->napi);
else if (ret)
netdev_err(vsi->netdev, "ice_qp_ena error = %d", ret);
}
if (umem_failure) {
netdev_err(vsi->netdev, "Could not %sable UMEM, error = %d",
umem_present ? "en" : "dis", umem_failure);
return umem_failure;
}
return ret;
}
/**
* ice_zca_free - Callback for MEM_TYPE_ZERO_COPY allocations
* @zca: zero-cpoy allocator
* @handle: Buffer handle
*/
void ice_zca_free(struct zero_copy_allocator *zca, unsigned long handle)
{
struct ice_rx_buf *rx_buf;
struct ice_ring *rx_ring;
struct xdp_umem *umem;
u64 hr, mask;
u16 nta;
rx_ring = container_of(zca, struct ice_ring, zca);
umem = rx_ring->xsk_umem;
hr = umem->headroom + XDP_PACKET_HEADROOM;
mask = umem->chunk_mask;
nta = rx_ring->next_to_alloc;
rx_buf = &rx_ring->rx_buf[nta];
nta++;
rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
handle &= mask;
rx_buf->dma = xdp_umem_get_dma(umem, handle);
rx_buf->dma += hr;
rx_buf->addr = xdp_umem_get_data(umem, handle);
rx_buf->addr += hr;
rx_buf->handle = (u64)handle + umem->headroom;
}
/**
* ice_alloc_buf_fast_zc - Retrieve buffer address from XDP umem
* @rx_ring: ring with an xdp_umem bound to it
* @rx_buf: buffer to which xsk page address will be assigned
*
* This function allocates an Rx buffer in the hot path.
* The buffer can come from fill queue or recycle queue.
*
* Returns true if an assignment was successful, false if not.
*/
static __always_inline bool
ice_alloc_buf_fast_zc(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf)
{
struct xdp_umem *umem = rx_ring->xsk_umem;
void *addr = rx_buf->addr;
u64 handle, hr;
if (addr) {
rx_ring->rx_stats.page_reuse_count++;
return true;
}
if (!xsk_umem_peek_addr(umem, &handle)) {
rx_ring->rx_stats.alloc_page_failed++;
return false;
}
hr = umem->headroom + XDP_PACKET_HEADROOM;
rx_buf->dma = xdp_umem_get_dma(umem, handle);
rx_buf->dma += hr;
rx_buf->addr = xdp_umem_get_data(umem, handle);
rx_buf->addr += hr;
rx_buf->handle = handle + umem->headroom;
xsk_umem_discard_addr(umem);
return true;
}
/**
* ice_alloc_buf_slow_zc - Retrieve buffer address from XDP umem
* @rx_ring: ring with an xdp_umem bound to it
* @rx_buf: buffer to which xsk page address will be assigned
*
* This function allocates an Rx buffer in the slow path.
* The buffer can come from fill queue or recycle queue.
*
* Returns true if an assignment was successful, false if not.
*/
static __always_inline bool
ice_alloc_buf_slow_zc(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf)
{
struct xdp_umem *umem = rx_ring->xsk_umem;
u64 handle, headroom;
if (!xsk_umem_peek_addr_rq(umem, &handle)) {
rx_ring->rx_stats.alloc_page_failed++;
return false;
}
handle &= umem->chunk_mask;
headroom = umem->headroom + XDP_PACKET_HEADROOM;
rx_buf->dma = xdp_umem_get_dma(umem, handle);
rx_buf->dma += headroom;
rx_buf->addr = xdp_umem_get_data(umem, handle);
rx_buf->addr += headroom;
rx_buf->handle = handle + umem->headroom;
xsk_umem_discard_addr_rq(umem);
return true;
}
/**
* ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
* @rx_ring: Rx ring
* @count: The number of buffers to allocate
* @alloc: the function pointer to call for allocation
*
* This function allocates a number of Rx buffers from the fill ring
* or the internal recycle mechanism and places them on the Rx ring.
*
* Returns false if all allocations were successful, true if any fail.
*/
static bool
ice_alloc_rx_bufs_zc(struct ice_ring *rx_ring, int count,
bool alloc(struct ice_ring *, struct ice_rx_buf *))
{
union ice_32b_rx_flex_desc *rx_desc;
u16 ntu = rx_ring->next_to_use;
struct ice_rx_buf *rx_buf;
bool ret = false;
if (!count)
return false;
rx_desc = ICE_RX_DESC(rx_ring, ntu);
rx_buf = &rx_ring->rx_buf[ntu];
do {
if (!alloc(rx_ring, rx_buf)) {
ret = true;
break;
}
dma_sync_single_range_for_device(rx_ring->dev, rx_buf->dma, 0,
rx_ring->rx_buf_len,
DMA_BIDIRECTIONAL);
rx_desc->read.pkt_addr = cpu_to_le64(rx_buf->dma);
rx_desc->wb.status_error0 = 0;
rx_desc++;
rx_buf++;
ntu++;
if (unlikely(ntu == rx_ring->count)) {
rx_desc = ICE_RX_DESC(rx_ring, 0);
rx_buf = rx_ring->rx_buf;
ntu = 0;
}
} while (--count);
if (rx_ring->next_to_use != ntu)
ice_release_rx_desc(rx_ring, ntu);
return ret;
}
/**
* ice_alloc_rx_bufs_fast_zc - allocate zero copy bufs in the hot path
* @rx_ring: Rx ring
* @count: number of bufs to allocate
*
* Returns false on success, true on failure.
*/
static bool ice_alloc_rx_bufs_fast_zc(struct ice_ring *rx_ring, u16 count)
{
return ice_alloc_rx_bufs_zc(rx_ring, count,
ice_alloc_buf_fast_zc);
}
/**
* ice_alloc_rx_bufs_slow_zc - allocate zero copy bufs in the slow path
* @rx_ring: Rx ring
* @count: number of bufs to allocate
*
* Returns false on success, true on failure.
*/
bool ice_alloc_rx_bufs_slow_zc(struct ice_ring *rx_ring, u16 count)
{
return ice_alloc_rx_bufs_zc(rx_ring, count,
ice_alloc_buf_slow_zc);
}
/**
* ice_bump_ntc - Bump the next_to_clean counter of an Rx ring
* @rx_ring: Rx ring
*/
static void ice_bump_ntc(struct ice_ring *rx_ring)
{
int ntc = rx_ring->next_to_clean + 1;
ntc = (ntc < rx_ring->count) ? ntc : 0;
rx_ring->next_to_clean = ntc;
prefetch(ICE_RX_DESC(rx_ring, ntc));
}
/**
* ice_get_rx_buf_zc - Fetch the current Rx buffer
* @rx_ring: Rx ring
* @size: size of a buffer
*
* This function returns the current, received Rx buffer and does
* DMA synchronization.
*
* Returns a pointer to the received Rx buffer.
*/
static struct ice_rx_buf *ice_get_rx_buf_zc(struct ice_ring *rx_ring, int size)
{
struct ice_rx_buf *rx_buf;
rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma, 0,
size, DMA_BIDIRECTIONAL);
return rx_buf;
}
/**
* ice_reuse_rx_buf_zc - reuse an Rx buffer
* @rx_ring: Rx ring
* @old_buf: The buffer to recycle
*
* This function recycles a finished Rx buffer, and places it on the recycle
* queue (next_to_alloc).
*/
static void
ice_reuse_rx_buf_zc(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf)
{
unsigned long mask = (unsigned long)rx_ring->xsk_umem->chunk_mask;
u64 hr = rx_ring->xsk_umem->headroom + XDP_PACKET_HEADROOM;
u16 nta = rx_ring->next_to_alloc;
struct ice_rx_buf *new_buf;
new_buf = &rx_ring->rx_buf[nta++];
rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
new_buf->dma = old_buf->dma & mask;
new_buf->dma += hr;
new_buf->addr = (void *)((unsigned long)old_buf->addr & mask);
new_buf->addr += hr;
new_buf->handle = old_buf->handle & mask;
new_buf->handle += rx_ring->xsk_umem->headroom;
old_buf->addr = NULL;
}
/**
* ice_construct_skb_zc - Create an sk_buff from zero-copy buffer
* @rx_ring: Rx ring
* @rx_buf: zero-copy Rx buffer
* @xdp: XDP buffer
*
* This function allocates a new skb from a zero-copy Rx buffer.
*
* Returns the skb on success, NULL on failure.
*/
static struct sk_buff *
ice_construct_skb_zc(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
struct xdp_buff *xdp)
{
unsigned int metasize = xdp->data - xdp->data_meta;
unsigned int datasize = xdp->data_end - xdp->data;
unsigned int datasize_hard = xdp->data_end -
xdp->data_hard_start;
struct sk_buff *skb;
skb = __napi_alloc_skb(&rx_ring->q_vector->napi, datasize_hard,
GFP_ATOMIC | __GFP_NOWARN);
if (unlikely(!skb))
return NULL;
skb_reserve(skb, xdp->data - xdp->data_hard_start);
memcpy(__skb_put(skb, datasize), xdp->data, datasize);
if (metasize)
skb_metadata_set(skb, metasize);
ice_reuse_rx_buf_zc(rx_ring, rx_buf);
return skb;
}
/**
* ice_run_xdp_zc - Executes an XDP program in zero-copy path
* @rx_ring: Rx ring
* @xdp: xdp_buff used as input to the XDP program
*
* Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
*/
static int
ice_run_xdp_zc(struct ice_ring *rx_ring, struct xdp_buff *xdp)
{
int err, result = ICE_XDP_PASS;
struct bpf_prog *xdp_prog;
struct ice_ring *xdp_ring;
u32 act;
rcu_read_lock();
xdp_prog = READ_ONCE(rx_ring->xdp_prog);
if (!xdp_prog) {
rcu_read_unlock();
return ICE_XDP_PASS;
}
act = bpf_prog_run_xdp(xdp_prog, xdp);
xdp->handle += xdp->data - xdp->data_hard_start;
switch (act) {
case XDP_PASS:
break;
case XDP_TX:
xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->q_index];
result = ice_xmit_xdp_buff(xdp, xdp_ring);
break;
case XDP_REDIRECT:
err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
result = !err ? ICE_XDP_REDIR : ICE_XDP_CONSUMED;
break;
default:
bpf_warn_invalid_xdp_action(act);
/* fallthrough -- not supported action */
case XDP_ABORTED:
trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
/* fallthrough -- handle aborts by dropping frame */
case XDP_DROP:
result = ICE_XDP_CONSUMED;
break;
}
rcu_read_unlock();
return result;
}
/**
* ice_clean_rx_irq_zc - consumes packets from the hardware ring
* @rx_ring: AF_XDP Rx ring
* @budget: NAPI budget
*
* Returns number of processed packets on success, remaining budget on failure.
*/
int ice_clean_rx_irq_zc(struct ice_ring *rx_ring, int budget)
{
unsigned int total_rx_bytes = 0, total_rx_packets = 0;
u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
unsigned int xdp_xmit = 0;
struct xdp_buff xdp;
bool failure = 0;
xdp.rxq = &rx_ring->xdp_rxq;
while (likely(total_rx_packets < (unsigned int)budget)) {
union ice_32b_rx_flex_desc *rx_desc;
unsigned int size, xdp_res = 0;
struct ice_rx_buf *rx_buf;
struct sk_buff *skb;
u16 stat_err_bits;
u16 vlan_tag = 0;
u8 rx_ptype;
if (cleaned_count >= ICE_RX_BUF_WRITE) {
failure |= ice_alloc_rx_bufs_fast_zc(rx_ring,
cleaned_count);
cleaned_count = 0;
}
rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
if (!ice_test_staterr(rx_desc, stat_err_bits))
break;
/* This memory barrier is needed to keep us from reading
* any other fields out of the rx_desc until we have
* verified the descriptor has been written back.
*/
dma_rmb();
size = le16_to_cpu(rx_desc->wb.pkt_len) &
ICE_RX_FLX_DESC_PKT_LEN_M;
if (!size)
break;
rx_buf = ice_get_rx_buf_zc(rx_ring, size);
if (!rx_buf->addr)
break;
xdp.data = rx_buf->addr;
xdp.data_meta = xdp.data;
xdp.data_hard_start = xdp.data - XDP_PACKET_HEADROOM;
xdp.data_end = xdp.data + size;
xdp.handle = rx_buf->handle;
xdp_res = ice_run_xdp_zc(rx_ring, &xdp);
if (xdp_res) {
if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) {
xdp_xmit |= xdp_res;
rx_buf->addr = NULL;
} else {
ice_reuse_rx_buf_zc(rx_ring, rx_buf);
}
total_rx_bytes += size;
total_rx_packets++;
cleaned_count++;
ice_bump_ntc(rx_ring);
continue;
}
/* XDP_PASS path */
skb = ice_construct_skb_zc(rx_ring, rx_buf, &xdp);
if (!skb) {
rx_ring->rx_stats.alloc_buf_failed++;
break;
}
cleaned_count++;
ice_bump_ntc(rx_ring);
if (eth_skb_pad(skb)) {
skb = NULL;
continue;
}
total_rx_bytes += skb->len;
total_rx_packets++;
stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
if (ice_test_staterr(rx_desc, stat_err_bits))
vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
ICE_RX_FLEX_DESC_PTYPE_M;
ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
ice_receive_skb(rx_ring, skb, vlan_tag);
}
ice_finalize_xdp_rx(rx_ring, xdp_xmit);
ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes);
return failure ? budget : (int)total_rx_packets;
}
/**
* ice_xmit_zc - Completes AF_XDP entries, and cleans XDP entries
* @xdp_ring: XDP Tx ring
* @budget: max number of frames to xmit
*
* Returns true if cleanup/transmission is done.
*/
static bool ice_xmit_zc(struct ice_ring *xdp_ring, int budget)
{
struct ice_tx_desc *tx_desc = NULL;
bool work_done = true;
struct xdp_desc desc;
dma_addr_t dma;
while (likely(budget-- > 0)) {
struct ice_tx_buf *tx_buf;
if (unlikely(!ICE_DESC_UNUSED(xdp_ring))) {
xdp_ring->tx_stats.tx_busy++;
work_done = false;
break;
}
tx_buf = &xdp_ring->tx_buf[xdp_ring->next_to_use];
if (!xsk_umem_consume_tx(xdp_ring->xsk_umem, &desc))
break;
dma = xdp_umem_get_dma(xdp_ring->xsk_umem, desc.addr);
dma_sync_single_for_device(xdp_ring->dev, dma, desc.len,
DMA_BIDIRECTIONAL);
tx_buf->bytecount = desc.len;
tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use);
tx_desc->buf_addr = cpu_to_le64(dma);
tx_desc->cmd_type_offset_bsz = build_ctob(ICE_TXD_LAST_DESC_CMD,
0, desc.len, 0);
xdp_ring->next_to_use++;
if (xdp_ring->next_to_use == xdp_ring->count)
xdp_ring->next_to_use = 0;
}
if (tx_desc) {
ice_xdp_ring_update_tail(xdp_ring);
xsk_umem_consume_tx_done(xdp_ring->xsk_umem);
}
return budget > 0 && work_done;
}
/**
* ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer
* @xdp_ring: XDP Tx ring
* @tx_buf: Tx buffer to clean
*/
static void
ice_clean_xdp_tx_buf(struct ice_ring *xdp_ring, struct ice_tx_buf *tx_buf)
{
xdp_return_frame((struct xdp_frame *)tx_buf->raw_buf);
dma_unmap_single(xdp_ring->dev, dma_unmap_addr(tx_buf, dma),
dma_unmap_len(tx_buf, len), DMA_TO_DEVICE);
dma_unmap_len_set(tx_buf, len, 0);
}
/**
* ice_clean_tx_irq_zc - Completes AF_XDP entries, and cleans XDP entries
* @xdp_ring: XDP Tx ring
* @budget: NAPI budget
*
* Returns true if cleanup/tranmission is done.
*/
bool ice_clean_tx_irq_zc(struct ice_ring *xdp_ring, int budget)
{
int total_packets = 0, total_bytes = 0;
s16 ntc = xdp_ring->next_to_clean;
struct ice_tx_desc *tx_desc;
struct ice_tx_buf *tx_buf;
bool xmit_done = true;
u32 xsk_frames = 0;
tx_desc = ICE_TX_DESC(xdp_ring, ntc);
tx_buf = &xdp_ring->tx_buf[ntc];
ntc -= xdp_ring->count;
do {
if (!(tx_desc->cmd_type_offset_bsz &
cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
break;
total_bytes += tx_buf->bytecount;
total_packets++;
if (tx_buf->raw_buf) {
ice_clean_xdp_tx_buf(xdp_ring, tx_buf);
tx_buf->raw_buf = NULL;
} else {
xsk_frames++;
}
tx_desc->cmd_type_offset_bsz = 0;
tx_buf++;
tx_desc++;
ntc++;
if (unlikely(!ntc)) {
ntc -= xdp_ring->count;
tx_buf = xdp_ring->tx_buf;
tx_desc = ICE_TX_DESC(xdp_ring, 0);
}
prefetch(tx_desc);
} while (likely(--budget));
ntc += xdp_ring->count;
xdp_ring->next_to_clean = ntc;
if (xsk_frames)
xsk_umem_complete_tx(xdp_ring->xsk_umem, xsk_frames);
ice_update_tx_ring_stats(xdp_ring, total_packets, total_bytes);
xmit_done = ice_xmit_zc(xdp_ring, ICE_DFLT_IRQ_WORK);
return budget > 0 && xmit_done;
}
/**
* ice_xsk_wakeup - Implements ndo_xsk_wakeup
* @netdev: net_device
* @queue_id: queue to wake up
* @flags: ignored in our case, since we have Rx and Tx in the same NAPI
*
* Returns negative on error, zero otherwise.
*/
int
ice_xsk_wakeup(struct net_device *netdev, u32 queue_id,
u32 __always_unused flags)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_q_vector *q_vector;
struct ice_vsi *vsi = np->vsi;
struct ice_ring *ring;
if (test_bit(__ICE_DOWN, vsi->state))
return -ENETDOWN;
if (!ice_is_xdp_ena_vsi(vsi))
return -ENXIO;
if (queue_id >= vsi->num_txq)
return -ENXIO;
if (!vsi->xdp_rings[queue_id]->xsk_umem)
return -ENXIO;
ring = vsi->xdp_rings[queue_id];
/* The idea here is that if NAPI is running, mark a miss, so
* it will run again. If not, trigger an interrupt and
* schedule the NAPI from interrupt context. If NAPI would be
* scheduled here, the interrupt affinity would not be
* honored.
*/
q_vector = ring->q_vector;
if (!napi_if_scheduled_mark_missed(&q_vector->napi))
ice_trigger_sw_intr(&vsi->back->hw, q_vector);
return 0;
}
/**
* ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP UMEM attached
* @vsi: VSI to be checked
*
* Returns true if any of the Rx rings has an AF_XDP UMEM attached
*/
bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi)
{
int i;
if (!vsi->xsk_umems)
return false;
for (i = 0; i < vsi->num_xsk_umems; i++) {
if (vsi->xsk_umems[i])
return true;
}
return false;
}
/**
* ice_xsk_clean_rx_ring - clean UMEM queues connected to a given Rx ring
* @rx_ring: ring to be cleaned
*/
void ice_xsk_clean_rx_ring(struct ice_ring *rx_ring)
{
u16 i;
for (i = 0; i < rx_ring->count; i++) {
struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
if (!rx_buf->addr)
continue;
xsk_umem_fq_reuse(rx_ring->xsk_umem, rx_buf->handle);
rx_buf->addr = NULL;
}
}
/**
* ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its UMEM queues
* @xdp_ring: XDP_Tx ring
*/
void ice_xsk_clean_xdp_ring(struct ice_ring *xdp_ring)
{
u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use;
u32 xsk_frames = 0;
while (ntc != ntu) {
struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc];
if (tx_buf->raw_buf)
ice_clean_xdp_tx_buf(xdp_ring, tx_buf);
else
xsk_frames++;
tx_buf->raw_buf = NULL;
ntc++;
if (ntc >= xdp_ring->count)
ntc = 0;
}
if (xsk_frames)
xsk_umem_complete_tx(xdp_ring->xsk_umem, xsk_frames);
}