| /* |
| * Copyright © 2015 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| */ |
| |
| #include <linux/kthread.h> |
| #include <trace/events/dma_fence.h> |
| #include <uapi/linux/sched/types.h> |
| |
| #include "i915_drv.h" |
| #include "i915_trace.h" |
| #include "intel_breadcrumbs.h" |
| #include "intel_context.h" |
| #include "intel_engine_pm.h" |
| #include "intel_gt_pm.h" |
| #include "intel_gt_requests.h" |
| |
| static bool irq_enable(struct intel_engine_cs *engine) |
| { |
| if (!engine->irq_enable) |
| return false; |
| |
| /* Caller disables interrupts */ |
| spin_lock(&engine->gt->irq_lock); |
| engine->irq_enable(engine); |
| spin_unlock(&engine->gt->irq_lock); |
| |
| return true; |
| } |
| |
| static void irq_disable(struct intel_engine_cs *engine) |
| { |
| if (!engine->irq_disable) |
| return; |
| |
| /* Caller disables interrupts */ |
| spin_lock(&engine->gt->irq_lock); |
| engine->irq_disable(engine); |
| spin_unlock(&engine->gt->irq_lock); |
| } |
| |
| static void __intel_breadcrumbs_arm_irq(struct intel_breadcrumbs *b) |
| { |
| /* |
| * Since we are waiting on a request, the GPU should be busy |
| * and should have its own rpm reference. |
| */ |
| if (GEM_WARN_ON(!intel_gt_pm_get_if_awake(b->irq_engine->gt))) |
| return; |
| |
| /* |
| * The breadcrumb irq will be disarmed on the interrupt after the |
| * waiters are signaled. This gives us a single interrupt window in |
| * which we can add a new waiter and avoid the cost of re-enabling |
| * the irq. |
| */ |
| WRITE_ONCE(b->irq_armed, true); |
| |
| /* Requests may have completed before we could enable the interrupt. */ |
| if (!b->irq_enabled++ && irq_enable(b->irq_engine)) |
| irq_work_queue(&b->irq_work); |
| } |
| |
| static void intel_breadcrumbs_arm_irq(struct intel_breadcrumbs *b) |
| { |
| if (!b->irq_engine) |
| return; |
| |
| spin_lock(&b->irq_lock); |
| if (!b->irq_armed) |
| __intel_breadcrumbs_arm_irq(b); |
| spin_unlock(&b->irq_lock); |
| } |
| |
| static void __intel_breadcrumbs_disarm_irq(struct intel_breadcrumbs *b) |
| { |
| GEM_BUG_ON(!b->irq_enabled); |
| if (!--b->irq_enabled) |
| irq_disable(b->irq_engine); |
| |
| WRITE_ONCE(b->irq_armed, false); |
| intel_gt_pm_put_async(b->irq_engine->gt); |
| } |
| |
| static void add_signaling_context(struct intel_breadcrumbs *b, |
| struct intel_context *ce) |
| { |
| intel_context_get(ce); |
| list_add_tail(&ce->signal_link, &b->signalers); |
| } |
| |
| static void remove_signaling_context(struct intel_breadcrumbs *b, |
| struct intel_context *ce) |
| { |
| list_del(&ce->signal_link); |
| intel_context_put(ce); |
| } |
| |
| static inline bool __request_completed(const struct i915_request *rq) |
| { |
| return i915_seqno_passed(__hwsp_seqno(rq), rq->fence.seqno); |
| } |
| |
| __maybe_unused static bool |
| check_signal_order(struct intel_context *ce, struct i915_request *rq) |
| { |
| if (rq->context != ce) |
| return false; |
| |
| if (!list_is_last(&rq->signal_link, &ce->signals) && |
| i915_seqno_passed(rq->fence.seqno, |
| list_next_entry(rq, signal_link)->fence.seqno)) |
| return false; |
| |
| if (!list_is_first(&rq->signal_link, &ce->signals) && |
| i915_seqno_passed(list_prev_entry(rq, signal_link)->fence.seqno, |
| rq->fence.seqno)) |
| return false; |
| |
| return true; |
| } |
| |
| static bool |
| __dma_fence_signal(struct dma_fence *fence) |
| { |
| return !test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags); |
| } |
| |
| static void |
| __dma_fence_signal__timestamp(struct dma_fence *fence, ktime_t timestamp) |
| { |
| fence->timestamp = timestamp; |
| set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags); |
| trace_dma_fence_signaled(fence); |
| } |
| |
| static void |
| __dma_fence_signal__notify(struct dma_fence *fence, |
| const struct list_head *list) |
| { |
| struct dma_fence_cb *cur, *tmp; |
| |
| lockdep_assert_held(fence->lock); |
| |
| list_for_each_entry_safe(cur, tmp, list, node) { |
| INIT_LIST_HEAD(&cur->node); |
| cur->func(fence, cur); |
| } |
| } |
| |
| static void add_retire(struct intel_breadcrumbs *b, struct intel_timeline *tl) |
| { |
| if (b->irq_engine) |
| intel_engine_add_retire(b->irq_engine, tl); |
| } |
| |
| static bool __signal_request(struct i915_request *rq) |
| { |
| if (!__dma_fence_signal(&rq->fence)) { |
| i915_request_put(rq); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static struct llist_node * |
| slist_add(struct llist_node *node, struct llist_node *head) |
| { |
| node->next = head; |
| return node; |
| } |
| |
| static void signal_irq_work(struct irq_work *work) |
| { |
| struct intel_breadcrumbs *b = container_of(work, typeof(*b), irq_work); |
| const ktime_t timestamp = ktime_get(); |
| struct llist_node *signal, *sn; |
| struct intel_context *ce, *cn; |
| struct list_head *pos, *next; |
| |
| signal = NULL; |
| if (unlikely(!llist_empty(&b->signaled_requests))) |
| signal = llist_del_all(&b->signaled_requests); |
| |
| spin_lock(&b->irq_lock); |
| |
| /* |
| * Keep the irq armed until the interrupt after all listeners are gone. |
| * |
| * Enabling/disabling the interrupt is rather costly, roughly a couple |
| * of hundred microseconds. If we are proactive and enable/disable |
| * the interrupt around every request that wants a breadcrumb, we |
| * quickly drown in the extra orders of magnitude of latency imposed |
| * on request submission. |
| * |
| * So we try to be lazy, and keep the interrupts enabled until no |
| * more listeners appear within a breadcrumb interrupt interval (that |
| * is until a request completes that no one cares about). The |
| * observation is that listeners come in batches, and will often |
| * listen to a bunch of requests in succession. Though note on icl+, |
| * interrupts are always enabled due to concerns with rc6 being |
| * dysfunctional with per-engine interrupt masking. |
| * |
| * We also try to avoid raising too many interrupts, as they may |
| * be generated by userspace batches and it is unfortunately rather |
| * too easy to drown the CPU under a flood of GPU interrupts. Thus |
| * whenever no one appears to be listening, we turn off the interrupts. |
| * Fewer interrupts should conserve power -- at the very least, fewer |
| * interrupt draw less ire from other users of the system and tools |
| * like powertop. |
| */ |
| if (!signal && b->irq_armed && list_empty(&b->signalers)) |
| __intel_breadcrumbs_disarm_irq(b); |
| |
| list_for_each_entry_safe(ce, cn, &b->signalers, signal_link) { |
| GEM_BUG_ON(list_empty(&ce->signals)); |
| |
| list_for_each_safe(pos, next, &ce->signals) { |
| struct i915_request *rq = |
| list_entry(pos, typeof(*rq), signal_link); |
| |
| GEM_BUG_ON(!check_signal_order(ce, rq)); |
| if (!__request_completed(rq)) |
| break; |
| |
| /* |
| * Queue for execution after dropping the signaling |
| * spinlock as the callback chain may end up adding |
| * more signalers to the same context or engine. |
| */ |
| clear_bit(I915_FENCE_FLAG_SIGNAL, &rq->fence.flags); |
| if (__signal_request(rq)) |
| /* We own signal_node now, xfer to local list */ |
| signal = slist_add(&rq->signal_node, signal); |
| } |
| |
| /* |
| * We process the list deletion in bulk, only using a list_add |
| * (not list_move) above but keeping the status of |
| * rq->signal_link known with the I915_FENCE_FLAG_SIGNAL bit. |
| */ |
| if (!list_is_first(pos, &ce->signals)) { |
| /* Advance the list to the first incomplete request */ |
| __list_del_many(&ce->signals, pos); |
| if (&ce->signals == pos) { /* now empty */ |
| add_retire(b, ce->timeline); |
| remove_signaling_context(b, ce); |
| } |
| } |
| } |
| |
| spin_unlock(&b->irq_lock); |
| |
| llist_for_each_safe(signal, sn, signal) { |
| struct i915_request *rq = |
| llist_entry(signal, typeof(*rq), signal_node); |
| struct list_head cb_list; |
| |
| spin_lock(&rq->lock); |
| list_replace(&rq->fence.cb_list, &cb_list); |
| __dma_fence_signal__timestamp(&rq->fence, timestamp); |
| __dma_fence_signal__notify(&rq->fence, &cb_list); |
| spin_unlock(&rq->lock); |
| |
| i915_request_put(rq); |
| } |
| |
| if (!READ_ONCE(b->irq_armed) && !list_empty(&b->signalers)) |
| intel_breadcrumbs_arm_irq(b); |
| } |
| |
| struct intel_breadcrumbs * |
| intel_breadcrumbs_create(struct intel_engine_cs *irq_engine) |
| { |
| struct intel_breadcrumbs *b; |
| |
| b = kzalloc(sizeof(*b), GFP_KERNEL); |
| if (!b) |
| return NULL; |
| |
| spin_lock_init(&b->irq_lock); |
| INIT_LIST_HEAD(&b->signalers); |
| init_llist_head(&b->signaled_requests); |
| |
| init_irq_work(&b->irq_work, signal_irq_work); |
| |
| b->irq_engine = irq_engine; |
| |
| return b; |
| } |
| |
| void intel_breadcrumbs_reset(struct intel_breadcrumbs *b) |
| { |
| unsigned long flags; |
| |
| if (!b->irq_engine) |
| return; |
| |
| spin_lock_irqsave(&b->irq_lock, flags); |
| |
| if (b->irq_enabled) |
| irq_enable(b->irq_engine); |
| else |
| irq_disable(b->irq_engine); |
| |
| spin_unlock_irqrestore(&b->irq_lock, flags); |
| } |
| |
| void intel_breadcrumbs_park(struct intel_breadcrumbs *b) |
| { |
| /* Kick the work once more to drain the signalers */ |
| irq_work_sync(&b->irq_work); |
| while (unlikely(READ_ONCE(b->irq_armed))) { |
| local_irq_disable(); |
| signal_irq_work(&b->irq_work); |
| local_irq_enable(); |
| cond_resched(); |
| } |
| GEM_BUG_ON(!list_empty(&b->signalers)); |
| } |
| |
| void intel_breadcrumbs_free(struct intel_breadcrumbs *b) |
| { |
| irq_work_sync(&b->irq_work); |
| GEM_BUG_ON(!list_empty(&b->signalers)); |
| GEM_BUG_ON(b->irq_armed); |
| kfree(b); |
| } |
| |
| static void insert_breadcrumb(struct i915_request *rq, |
| struct intel_breadcrumbs *b) |
| { |
| struct intel_context *ce = rq->context; |
| struct list_head *pos; |
| |
| if (test_bit(I915_FENCE_FLAG_SIGNAL, &rq->fence.flags)) |
| return; |
| |
| i915_request_get(rq); |
| |
| /* |
| * If the request is already completed, we can transfer it |
| * straight onto a signaled list, and queue the irq worker for |
| * its signal completion. |
| */ |
| if (__request_completed(rq)) { |
| if (__signal_request(rq) && |
| llist_add(&rq->signal_node, &b->signaled_requests)) |
| irq_work_queue(&b->irq_work); |
| return; |
| } |
| |
| if (list_empty(&ce->signals)) { |
| add_signaling_context(b, ce); |
| pos = &ce->signals; |
| } else { |
| /* |
| * We keep the seqno in retirement order, so we can break |
| * inside intel_engine_signal_breadcrumbs as soon as we've |
| * passed the last completed request (or seen a request that |
| * hasn't event started). We could walk the timeline->requests, |
| * but keeping a separate signalers_list has the advantage of |
| * hopefully being much smaller than the full list and so |
| * provides faster iteration and detection when there are no |
| * more interrupts required for this context. |
| * |
| * We typically expect to add new signalers in order, so we |
| * start looking for our insertion point from the tail of |
| * the list. |
| */ |
| list_for_each_prev(pos, &ce->signals) { |
| struct i915_request *it = |
| list_entry(pos, typeof(*it), signal_link); |
| |
| if (i915_seqno_passed(rq->fence.seqno, it->fence.seqno)) |
| break; |
| } |
| } |
| list_add(&rq->signal_link, pos); |
| GEM_BUG_ON(!check_signal_order(ce, rq)); |
| set_bit(I915_FENCE_FLAG_SIGNAL, &rq->fence.flags); |
| |
| /* |
| * Defer enabling the interrupt to after HW submission and recheck |
| * the request as it may have completed and raised the interrupt as |
| * we were attaching it into the lists. |
| */ |
| irq_work_queue(&b->irq_work); |
| } |
| |
| bool i915_request_enable_breadcrumb(struct i915_request *rq) |
| { |
| struct intel_breadcrumbs *b; |
| |
| /* Serialises with i915_request_retire() using rq->lock */ |
| if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags)) |
| return true; |
| |
| /* |
| * Peek at i915_request_submit()/i915_request_unsubmit() status. |
| * |
| * If the request is not yet active (and not signaled), we will |
| * attach the breadcrumb later. |
| */ |
| if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) |
| return true; |
| |
| /* |
| * rq->engine is locked by rq->engine->active.lock. That however |
| * is not known until after rq->engine has been dereferenced and |
| * the lock acquired. Hence we acquire the lock and then validate |
| * that rq->engine still matches the lock we hold for it. |
| * |
| * Here, we are using the breadcrumb lock as a proxy for the |
| * rq->engine->active.lock, and we know that since the breadcrumb |
| * will be serialised within i915_request_submit/i915_request_unsubmit, |
| * the engine cannot change while active as long as we hold the |
| * breadcrumb lock on that engine. |
| * |
| * From the dma_fence_enable_signaling() path, we are outside of the |
| * request submit/unsubmit path, and so we must be more careful to |
| * acquire the right lock. |
| */ |
| b = READ_ONCE(rq->engine)->breadcrumbs; |
| spin_lock(&b->irq_lock); |
| while (unlikely(b != READ_ONCE(rq->engine)->breadcrumbs)) { |
| spin_unlock(&b->irq_lock); |
| b = READ_ONCE(rq->engine)->breadcrumbs; |
| spin_lock(&b->irq_lock); |
| } |
| |
| /* |
| * Now that we are finally serialised with request submit/unsubmit, |
| * [with b->irq_lock] and with i915_request_retire() [via checking |
| * SIGNALED with rq->lock] confirm the request is indeed active. If |
| * it is no longer active, the breadcrumb will be attached upon |
| * i915_request_submit(). |
| */ |
| if (test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) |
| insert_breadcrumb(rq, b); |
| |
| spin_unlock(&b->irq_lock); |
| |
| return true; |
| } |
| |
| void i915_request_cancel_breadcrumb(struct i915_request *rq) |
| { |
| struct intel_breadcrumbs *b = rq->engine->breadcrumbs; |
| |
| /* |
| * We must wait for b->irq_lock so that we know the interrupt handler |
| * has released its reference to the intel_context and has completed |
| * the DMA_FENCE_FLAG_SIGNALED_BIT/I915_FENCE_FLAG_SIGNAL dance (if |
| * required). |
| */ |
| spin_lock(&b->irq_lock); |
| if (test_bit(I915_FENCE_FLAG_SIGNAL, &rq->fence.flags)) { |
| struct intel_context *ce = rq->context; |
| |
| list_del(&rq->signal_link); |
| if (list_empty(&ce->signals)) |
| remove_signaling_context(b, ce); |
| |
| clear_bit(I915_FENCE_FLAG_SIGNAL, &rq->fence.flags); |
| i915_request_put(rq); |
| } |
| spin_unlock(&b->irq_lock); |
| } |
| |
| static void print_signals(struct intel_breadcrumbs *b, struct drm_printer *p) |
| { |
| struct intel_context *ce; |
| struct i915_request *rq; |
| |
| drm_printf(p, "Signals:\n"); |
| |
| spin_lock_irq(&b->irq_lock); |
| list_for_each_entry(ce, &b->signalers, signal_link) { |
| list_for_each_entry(rq, &ce->signals, signal_link) { |
| drm_printf(p, "\t[%llx:%llx%s] @ %dms\n", |
| rq->fence.context, rq->fence.seqno, |
| i915_request_completed(rq) ? "!" : |
| i915_request_started(rq) ? "*" : |
| "", |
| jiffies_to_msecs(jiffies - rq->emitted_jiffies)); |
| } |
| } |
| spin_unlock_irq(&b->irq_lock); |
| } |
| |
| void intel_engine_print_breadcrumbs(struct intel_engine_cs *engine, |
| struct drm_printer *p) |
| { |
| struct intel_breadcrumbs *b; |
| |
| b = engine->breadcrumbs; |
| if (!b) |
| return; |
| |
| drm_printf(p, "IRQ: %s\n", enableddisabled(b->irq_armed)); |
| if (!list_empty(&b->signalers)) |
| print_signals(b, p); |
| } |