| /* |
| * (c) 2005-2016 Advanced Micro Devices, Inc. |
| * Your use of this code is subject to the terms and conditions of the |
| * GNU general public license version 2. See "COPYING" or |
| * http://www.gnu.org/licenses/gpl.html |
| * |
| * Written by Jacob Shin - AMD, Inc. |
| * Maintained by: Borislav Petkov <bp@alien8.de> |
| * |
| * All MC4_MISCi registers are shared between cores on a node. |
| */ |
| #include <linux/interrupt.h> |
| #include <linux/notifier.h> |
| #include <linux/kobject.h> |
| #include <linux/percpu.h> |
| #include <linux/errno.h> |
| #include <linux/sched.h> |
| #include <linux/sysfs.h> |
| #include <linux/slab.h> |
| #include <linux/init.h> |
| #include <linux/cpu.h> |
| #include <linux/smp.h> |
| #include <linux/string.h> |
| |
| #include <asm/amd_nb.h> |
| #include <asm/apic.h> |
| #include <asm/mce.h> |
| #include <asm/msr.h> |
| #include <asm/trace/irq_vectors.h> |
| |
| #define NR_BLOCKS 5 |
| #define THRESHOLD_MAX 0xFFF |
| #define INT_TYPE_APIC 0x00020000 |
| #define MASK_VALID_HI 0x80000000 |
| #define MASK_CNTP_HI 0x40000000 |
| #define MASK_LOCKED_HI 0x20000000 |
| #define MASK_LVTOFF_HI 0x00F00000 |
| #define MASK_COUNT_EN_HI 0x00080000 |
| #define MASK_INT_TYPE_HI 0x00060000 |
| #define MASK_OVERFLOW_HI 0x00010000 |
| #define MASK_ERR_COUNT_HI 0x00000FFF |
| #define MASK_BLKPTR_LO 0xFF000000 |
| #define MCG_XBLK_ADDR 0xC0000400 |
| |
| /* Deferred error settings */ |
| #define MSR_CU_DEF_ERR 0xC0000410 |
| #define MASK_DEF_LVTOFF 0x000000F0 |
| #define MASK_DEF_INT_TYPE 0x00000006 |
| #define DEF_LVT_OFF 0x2 |
| #define DEF_INT_TYPE_APIC 0x2 |
| |
| /* Scalable MCA: */ |
| |
| /* Threshold LVT offset is at MSR0xC0000410[15:12] */ |
| #define SMCA_THR_LVT_OFF 0xF000 |
| |
| static bool thresholding_en; |
| |
| static const char * const th_names[] = { |
| "load_store", |
| "insn_fetch", |
| "combined_unit", |
| "", |
| "northbridge", |
| "execution_unit", |
| }; |
| |
| static const char * const smca_umc_block_names[] = { |
| "dram_ecc", |
| "misc_umc" |
| }; |
| |
| struct smca_bank_name { |
| const char *name; /* Short name for sysfs */ |
| const char *long_name; /* Long name for pretty-printing */ |
| }; |
| |
| static struct smca_bank_name smca_names[] = { |
| [SMCA_LS] = { "load_store", "Load Store Unit" }, |
| [SMCA_IF] = { "insn_fetch", "Instruction Fetch Unit" }, |
| [SMCA_L2_CACHE] = { "l2_cache", "L2 Cache" }, |
| [SMCA_DE] = { "decode_unit", "Decode Unit" }, |
| [SMCA_EX] = { "execution_unit", "Execution Unit" }, |
| [SMCA_FP] = { "floating_point", "Floating Point Unit" }, |
| [SMCA_L3_CACHE] = { "l3_cache", "L3 Cache" }, |
| [SMCA_CS] = { "coherent_slave", "Coherent Slave" }, |
| [SMCA_PIE] = { "pie", "Power, Interrupts, etc." }, |
| [SMCA_UMC] = { "umc", "Unified Memory Controller" }, |
| [SMCA_PB] = { "param_block", "Parameter Block" }, |
| [SMCA_PSP] = { "psp", "Platform Security Processor" }, |
| [SMCA_SMU] = { "smu", "System Management Unit" }, |
| }; |
| |
| const char *smca_get_name(enum smca_bank_types t) |
| { |
| if (t >= N_SMCA_BANK_TYPES) |
| return NULL; |
| |
| return smca_names[t].name; |
| } |
| |
| const char *smca_get_long_name(enum smca_bank_types t) |
| { |
| if (t >= N_SMCA_BANK_TYPES) |
| return NULL; |
| |
| return smca_names[t].long_name; |
| } |
| EXPORT_SYMBOL_GPL(smca_get_long_name); |
| |
| static struct smca_hwid smca_hwid_mcatypes[] = { |
| /* { bank_type, hwid_mcatype, xec_bitmap } */ |
| |
| /* ZN Core (HWID=0xB0) MCA types */ |
| { SMCA_LS, HWID_MCATYPE(0xB0, 0x0), 0x1FFFEF }, |
| { SMCA_IF, HWID_MCATYPE(0xB0, 0x1), 0x3FFF }, |
| { SMCA_L2_CACHE, HWID_MCATYPE(0xB0, 0x2), 0xF }, |
| { SMCA_DE, HWID_MCATYPE(0xB0, 0x3), 0x1FF }, |
| /* HWID 0xB0 MCATYPE 0x4 is Reserved */ |
| { SMCA_EX, HWID_MCATYPE(0xB0, 0x5), 0x7FF }, |
| { SMCA_FP, HWID_MCATYPE(0xB0, 0x6), 0x7F }, |
| { SMCA_L3_CACHE, HWID_MCATYPE(0xB0, 0x7), 0xFF }, |
| |
| /* Data Fabric MCA types */ |
| { SMCA_CS, HWID_MCATYPE(0x2E, 0x0), 0x1FF }, |
| { SMCA_PIE, HWID_MCATYPE(0x2E, 0x1), 0xF }, |
| |
| /* Unified Memory Controller MCA type */ |
| { SMCA_UMC, HWID_MCATYPE(0x96, 0x0), 0x3F }, |
| |
| /* Parameter Block MCA type */ |
| { SMCA_PB, HWID_MCATYPE(0x05, 0x0), 0x1 }, |
| |
| /* Platform Security Processor MCA type */ |
| { SMCA_PSP, HWID_MCATYPE(0xFF, 0x0), 0x1 }, |
| |
| /* System Management Unit MCA type */ |
| { SMCA_SMU, HWID_MCATYPE(0x01, 0x0), 0x1 }, |
| }; |
| |
| struct smca_bank smca_banks[MAX_NR_BANKS]; |
| EXPORT_SYMBOL_GPL(smca_banks); |
| |
| /* |
| * In SMCA enabled processors, we can have multiple banks for a given IP type. |
| * So to define a unique name for each bank, we use a temp c-string to append |
| * the MCA_IPID[InstanceId] to type's name in get_name(). |
| * |
| * InstanceId is 32 bits which is 8 characters. Make sure MAX_MCATYPE_NAME_LEN |
| * is greater than 8 plus 1 (for underscore) plus length of longest type name. |
| */ |
| #define MAX_MCATYPE_NAME_LEN 30 |
| static char buf_mcatype[MAX_MCATYPE_NAME_LEN]; |
| |
| static DEFINE_PER_CPU(struct threshold_bank **, threshold_banks); |
| static DEFINE_PER_CPU(unsigned int, bank_map); /* see which banks are on */ |
| |
| static void amd_threshold_interrupt(void); |
| static void amd_deferred_error_interrupt(void); |
| |
| static void default_deferred_error_interrupt(void) |
| { |
| pr_err("Unexpected deferred interrupt at vector %x\n", DEFERRED_ERROR_VECTOR); |
| } |
| void (*deferred_error_int_vector)(void) = default_deferred_error_interrupt; |
| |
| static void get_smca_bank_info(unsigned int bank) |
| { |
| unsigned int i, hwid_mcatype, cpu = smp_processor_id(); |
| struct smca_hwid *s_hwid; |
| u32 high, instance_id; |
| |
| /* Collect bank_info using CPU 0 for now. */ |
| if (cpu) |
| return; |
| |
| if (rdmsr_safe_on_cpu(cpu, MSR_AMD64_SMCA_MCx_IPID(bank), &instance_id, &high)) { |
| pr_warn("Failed to read MCA_IPID for bank %d\n", bank); |
| return; |
| } |
| |
| hwid_mcatype = HWID_MCATYPE(high & MCI_IPID_HWID, |
| (high & MCI_IPID_MCATYPE) >> 16); |
| |
| for (i = 0; i < ARRAY_SIZE(smca_hwid_mcatypes); i++) { |
| s_hwid = &smca_hwid_mcatypes[i]; |
| if (hwid_mcatype == s_hwid->hwid_mcatype) { |
| |
| WARN(smca_banks[bank].hwid, |
| "Bank %s already initialized!\n", |
| smca_get_name(s_hwid->bank_type)); |
| |
| smca_banks[bank].hwid = s_hwid; |
| smca_banks[bank].id = instance_id; |
| break; |
| } |
| } |
| } |
| |
| struct thresh_restart { |
| struct threshold_block *b; |
| int reset; |
| int set_lvt_off; |
| int lvt_off; |
| u16 old_limit; |
| }; |
| |
| static inline bool is_shared_bank(int bank) |
| { |
| /* |
| * Scalable MCA provides for only one core to have access to the MSRs of |
| * a shared bank. |
| */ |
| if (mce_flags.smca) |
| return false; |
| |
| /* Bank 4 is for northbridge reporting and is thus shared */ |
| return (bank == 4); |
| } |
| |
| static const char *bank4_names(const struct threshold_block *b) |
| { |
| switch (b->address) { |
| /* MSR4_MISC0 */ |
| case 0x00000413: |
| return "dram"; |
| |
| case 0xc0000408: |
| return "ht_links"; |
| |
| case 0xc0000409: |
| return "l3_cache"; |
| |
| default: |
| WARN(1, "Funny MSR: 0x%08x\n", b->address); |
| return ""; |
| } |
| }; |
| |
| |
| static bool lvt_interrupt_supported(unsigned int bank, u32 msr_high_bits) |
| { |
| /* |
| * bank 4 supports APIC LVT interrupts implicitly since forever. |
| */ |
| if (bank == 4) |
| return true; |
| |
| /* |
| * IntP: interrupt present; if this bit is set, the thresholding |
| * bank can generate APIC LVT interrupts |
| */ |
| return msr_high_bits & BIT(28); |
| } |
| |
| static int lvt_off_valid(struct threshold_block *b, int apic, u32 lo, u32 hi) |
| { |
| int msr = (hi & MASK_LVTOFF_HI) >> 20; |
| |
| if (apic < 0) { |
| pr_err(FW_BUG "cpu %d, failed to setup threshold interrupt " |
| "for bank %d, block %d (MSR%08X=0x%x%08x)\n", b->cpu, |
| b->bank, b->block, b->address, hi, lo); |
| return 0; |
| } |
| |
| if (apic != msr) { |
| /* |
| * On SMCA CPUs, LVT offset is programmed at a different MSR, and |
| * the BIOS provides the value. The original field where LVT offset |
| * was set is reserved. Return early here: |
| */ |
| if (mce_flags.smca) |
| return 0; |
| |
| pr_err(FW_BUG "cpu %d, invalid threshold interrupt offset %d " |
| "for bank %d, block %d (MSR%08X=0x%x%08x)\n", |
| b->cpu, apic, b->bank, b->block, b->address, hi, lo); |
| return 0; |
| } |
| |
| return 1; |
| }; |
| |
| /* Reprogram MCx_MISC MSR behind this threshold bank. */ |
| static void threshold_restart_bank(void *_tr) |
| { |
| struct thresh_restart *tr = _tr; |
| u32 hi, lo; |
| |
| rdmsr(tr->b->address, lo, hi); |
| |
| if (tr->b->threshold_limit < (hi & THRESHOLD_MAX)) |
| tr->reset = 1; /* limit cannot be lower than err count */ |
| |
| if (tr->reset) { /* reset err count and overflow bit */ |
| hi = |
| (hi & ~(MASK_ERR_COUNT_HI | MASK_OVERFLOW_HI)) | |
| (THRESHOLD_MAX - tr->b->threshold_limit); |
| } else if (tr->old_limit) { /* change limit w/o reset */ |
| int new_count = (hi & THRESHOLD_MAX) + |
| (tr->old_limit - tr->b->threshold_limit); |
| |
| hi = (hi & ~MASK_ERR_COUNT_HI) | |
| (new_count & THRESHOLD_MAX); |
| } |
| |
| /* clear IntType */ |
| hi &= ~MASK_INT_TYPE_HI; |
| |
| if (!tr->b->interrupt_capable) |
| goto done; |
| |
| if (tr->set_lvt_off) { |
| if (lvt_off_valid(tr->b, tr->lvt_off, lo, hi)) { |
| /* set new lvt offset */ |
| hi &= ~MASK_LVTOFF_HI; |
| hi |= tr->lvt_off << 20; |
| } |
| } |
| |
| if (tr->b->interrupt_enable) |
| hi |= INT_TYPE_APIC; |
| |
| done: |
| |
| hi |= MASK_COUNT_EN_HI; |
| wrmsr(tr->b->address, lo, hi); |
| } |
| |
| static void mce_threshold_block_init(struct threshold_block *b, int offset) |
| { |
| struct thresh_restart tr = { |
| .b = b, |
| .set_lvt_off = 1, |
| .lvt_off = offset, |
| }; |
| |
| b->threshold_limit = THRESHOLD_MAX; |
| threshold_restart_bank(&tr); |
| }; |
| |
| static int setup_APIC_mce_threshold(int reserved, int new) |
| { |
| if (reserved < 0 && !setup_APIC_eilvt(new, THRESHOLD_APIC_VECTOR, |
| APIC_EILVT_MSG_FIX, 0)) |
| return new; |
| |
| return reserved; |
| } |
| |
| static int setup_APIC_deferred_error(int reserved, int new) |
| { |
| if (reserved < 0 && !setup_APIC_eilvt(new, DEFERRED_ERROR_VECTOR, |
| APIC_EILVT_MSG_FIX, 0)) |
| return new; |
| |
| return reserved; |
| } |
| |
| static void deferred_error_interrupt_enable(struct cpuinfo_x86 *c) |
| { |
| u32 low = 0, high = 0; |
| int def_offset = -1, def_new; |
| |
| if (rdmsr_safe(MSR_CU_DEF_ERR, &low, &high)) |
| return; |
| |
| def_new = (low & MASK_DEF_LVTOFF) >> 4; |
| if (!(low & MASK_DEF_LVTOFF)) { |
| pr_err(FW_BUG "Your BIOS is not setting up LVT offset 0x2 for deferred error IRQs correctly.\n"); |
| def_new = DEF_LVT_OFF; |
| low = (low & ~MASK_DEF_LVTOFF) | (DEF_LVT_OFF << 4); |
| } |
| |
| def_offset = setup_APIC_deferred_error(def_offset, def_new); |
| if ((def_offset == def_new) && |
| (deferred_error_int_vector != amd_deferred_error_interrupt)) |
| deferred_error_int_vector = amd_deferred_error_interrupt; |
| |
| low = (low & ~MASK_DEF_INT_TYPE) | DEF_INT_TYPE_APIC; |
| wrmsr(MSR_CU_DEF_ERR, low, high); |
| } |
| |
| static u32 get_block_address(unsigned int cpu, u32 current_addr, u32 low, u32 high, |
| unsigned int bank, unsigned int block) |
| { |
| u32 addr = 0, offset = 0; |
| |
| if (mce_flags.smca) { |
| if (!block) { |
| addr = MSR_AMD64_SMCA_MCx_MISC(bank); |
| } else { |
| /* |
| * For SMCA enabled processors, BLKPTR field of the |
| * first MISC register (MCx_MISC0) indicates presence of |
| * additional MISC register set (MISC1-4). |
| */ |
| u32 low, high; |
| |
| if (rdmsr_safe_on_cpu(cpu, MSR_AMD64_SMCA_MCx_CONFIG(bank), &low, &high)) |
| return addr; |
| |
| if (!(low & MCI_CONFIG_MCAX)) |
| return addr; |
| |
| if (!rdmsr_safe_on_cpu(cpu, MSR_AMD64_SMCA_MCx_MISC(bank), &low, &high) && |
| (low & MASK_BLKPTR_LO)) |
| addr = MSR_AMD64_SMCA_MCx_MISCy(bank, block - 1); |
| } |
| return addr; |
| } |
| |
| /* Fall back to method we used for older processors: */ |
| switch (block) { |
| case 0: |
| addr = msr_ops.misc(bank); |
| break; |
| case 1: |
| offset = ((low & MASK_BLKPTR_LO) >> 21); |
| if (offset) |
| addr = MCG_XBLK_ADDR + offset; |
| break; |
| default: |
| addr = ++current_addr; |
| } |
| return addr; |
| } |
| |
| static int |
| prepare_threshold_block(unsigned int bank, unsigned int block, u32 addr, |
| int offset, u32 misc_high) |
| { |
| unsigned int cpu = smp_processor_id(); |
| u32 smca_low, smca_high, smca_addr; |
| struct threshold_block b; |
| int new; |
| |
| if (!block) |
| per_cpu(bank_map, cpu) |= (1 << bank); |
| |
| memset(&b, 0, sizeof(b)); |
| b.cpu = cpu; |
| b.bank = bank; |
| b.block = block; |
| b.address = addr; |
| b.interrupt_capable = lvt_interrupt_supported(bank, misc_high); |
| |
| if (!b.interrupt_capable) |
| goto done; |
| |
| b.interrupt_enable = 1; |
| |
| if (!mce_flags.smca) { |
| new = (misc_high & MASK_LVTOFF_HI) >> 20; |
| goto set_offset; |
| } |
| |
| smca_addr = MSR_AMD64_SMCA_MCx_CONFIG(bank); |
| |
| if (!rdmsr_safe(smca_addr, &smca_low, &smca_high)) { |
| /* |
| * OS is required to set the MCAX bit to acknowledge that it is |
| * now using the new MSR ranges and new registers under each |
| * bank. It also means that the OS will configure deferred |
| * errors in the new MCx_CONFIG register. If the bit is not set, |
| * uncorrectable errors will cause a system panic. |
| * |
| * MCA_CONFIG[MCAX] is bit 32 (0 in the high portion of the MSR.) |
| */ |
| smca_high |= BIT(0); |
| |
| /* |
| * SMCA logs Deferred Error information in MCA_DE{STAT,ADDR} |
| * registers with the option of additionally logging to |
| * MCA_{STATUS,ADDR} if MCA_CONFIG[LogDeferredInMcaStat] is set. |
| * |
| * This bit is usually set by BIOS to retain the old behavior |
| * for OSes that don't use the new registers. Linux supports the |
| * new registers so let's disable that additional logging here. |
| * |
| * MCA_CONFIG[LogDeferredInMcaStat] is bit 34 (bit 2 in the high |
| * portion of the MSR). |
| */ |
| smca_high &= ~BIT(2); |
| |
| /* |
| * SMCA sets the Deferred Error Interrupt type per bank. |
| * |
| * MCA_CONFIG[DeferredIntTypeSupported] is bit 5, and tells us |
| * if the DeferredIntType bit field is available. |
| * |
| * MCA_CONFIG[DeferredIntType] is bits [38:37] ([6:5] in the |
| * high portion of the MSR). OS should set this to 0x1 to enable |
| * APIC based interrupt. First, check that no interrupt has been |
| * set. |
| */ |
| if ((smca_low & BIT(5)) && !((smca_high >> 5) & 0x3)) |
| smca_high |= BIT(5); |
| |
| wrmsr(smca_addr, smca_low, smca_high); |
| } |
| |
| /* Gather LVT offset for thresholding: */ |
| if (rdmsr_safe(MSR_CU_DEF_ERR, &smca_low, &smca_high)) |
| goto out; |
| |
| new = (smca_low & SMCA_THR_LVT_OFF) >> 12; |
| |
| set_offset: |
| offset = setup_APIC_mce_threshold(offset, new); |
| |
| if ((offset == new) && (mce_threshold_vector != amd_threshold_interrupt)) |
| mce_threshold_vector = amd_threshold_interrupt; |
| |
| done: |
| mce_threshold_block_init(&b, offset); |
| |
| out: |
| return offset; |
| } |
| |
| /* cpu init entry point, called from mce.c with preempt off */ |
| void mce_amd_feature_init(struct cpuinfo_x86 *c) |
| { |
| u32 low = 0, high = 0, address = 0; |
| unsigned int bank, block, cpu = smp_processor_id(); |
| int offset = -1; |
| |
| for (bank = 0; bank < mca_cfg.banks; ++bank) { |
| if (mce_flags.smca) |
| get_smca_bank_info(bank); |
| |
| for (block = 0; block < NR_BLOCKS; ++block) { |
| address = get_block_address(cpu, address, low, high, bank, block); |
| if (!address) |
| break; |
| |
| if (rdmsr_safe(address, &low, &high)) |
| break; |
| |
| if (!(high & MASK_VALID_HI)) |
| continue; |
| |
| if (!(high & MASK_CNTP_HI) || |
| (high & MASK_LOCKED_HI)) |
| continue; |
| |
| offset = prepare_threshold_block(bank, block, address, offset, high); |
| } |
| } |
| |
| if (mce_flags.succor) |
| deferred_error_interrupt_enable(c); |
| } |
| |
| int umc_normaddr_to_sysaddr(u64 norm_addr, u16 nid, u8 umc, u64 *sys_addr) |
| { |
| u64 dram_base_addr, dram_limit_addr, dram_hole_base; |
| /* We start from the normalized address */ |
| u64 ret_addr = norm_addr; |
| |
| u32 tmp; |
| |
| u8 die_id_shift, die_id_mask, socket_id_shift, socket_id_mask; |
| u8 intlv_num_dies, intlv_num_chan, intlv_num_sockets; |
| u8 intlv_addr_sel, intlv_addr_bit; |
| u8 num_intlv_bits, hashed_bit; |
| u8 lgcy_mmio_hole_en, base = 0; |
| u8 cs_mask, cs_id = 0; |
| bool hash_enabled = false; |
| |
| /* Read D18F0x1B4 (DramOffset), check if base 1 is used. */ |
| if (amd_df_indirect_read(nid, 0, 0x1B4, umc, &tmp)) |
| goto out_err; |
| |
| /* Remove HiAddrOffset from normalized address, if enabled: */ |
| if (tmp & BIT(0)) { |
| u64 hi_addr_offset = (tmp & GENMASK_ULL(31, 20)) << 8; |
| |
| if (norm_addr >= hi_addr_offset) { |
| ret_addr -= hi_addr_offset; |
| base = 1; |
| } |
| } |
| |
| /* Read D18F0x110 (DramBaseAddress). */ |
| if (amd_df_indirect_read(nid, 0, 0x110 + (8 * base), umc, &tmp)) |
| goto out_err; |
| |
| /* Check if address range is valid. */ |
| if (!(tmp & BIT(0))) { |
| pr_err("%s: Invalid DramBaseAddress range: 0x%x.\n", |
| __func__, tmp); |
| goto out_err; |
| } |
| |
| lgcy_mmio_hole_en = tmp & BIT(1); |
| intlv_num_chan = (tmp >> 4) & 0xF; |
| intlv_addr_sel = (tmp >> 8) & 0x7; |
| dram_base_addr = (tmp & GENMASK_ULL(31, 12)) << 16; |
| |
| /* {0, 1, 2, 3} map to address bits {8, 9, 10, 11} respectively */ |
| if (intlv_addr_sel > 3) { |
| pr_err("%s: Invalid interleave address select %d.\n", |
| __func__, intlv_addr_sel); |
| goto out_err; |
| } |
| |
| /* Read D18F0x114 (DramLimitAddress). */ |
| if (amd_df_indirect_read(nid, 0, 0x114 + (8 * base), umc, &tmp)) |
| goto out_err; |
| |
| intlv_num_sockets = (tmp >> 8) & 0x1; |
| intlv_num_dies = (tmp >> 10) & 0x3; |
| dram_limit_addr = ((tmp & GENMASK_ULL(31, 12)) << 16) | GENMASK_ULL(27, 0); |
| |
| intlv_addr_bit = intlv_addr_sel + 8; |
| |
| /* Re-use intlv_num_chan by setting it equal to log2(#channels) */ |
| switch (intlv_num_chan) { |
| case 0: intlv_num_chan = 0; break; |
| case 1: intlv_num_chan = 1; break; |
| case 3: intlv_num_chan = 2; break; |
| case 5: intlv_num_chan = 3; break; |
| case 7: intlv_num_chan = 4; break; |
| |
| case 8: intlv_num_chan = 1; |
| hash_enabled = true; |
| break; |
| default: |
| pr_err("%s: Invalid number of interleaved channels %d.\n", |
| __func__, intlv_num_chan); |
| goto out_err; |
| } |
| |
| num_intlv_bits = intlv_num_chan; |
| |
| if (intlv_num_dies > 2) { |
| pr_err("%s: Invalid number of interleaved nodes/dies %d.\n", |
| __func__, intlv_num_dies); |
| goto out_err; |
| } |
| |
| num_intlv_bits += intlv_num_dies; |
| |
| /* Add a bit if sockets are interleaved. */ |
| num_intlv_bits += intlv_num_sockets; |
| |
| /* Assert num_intlv_bits <= 4 */ |
| if (num_intlv_bits > 4) { |
| pr_err("%s: Invalid interleave bits %d.\n", |
| __func__, num_intlv_bits); |
| goto out_err; |
| } |
| |
| if (num_intlv_bits > 0) { |
| u64 temp_addr_x, temp_addr_i, temp_addr_y; |
| u8 die_id_bit, sock_id_bit, cs_fabric_id; |
| |
| /* |
| * Read FabricBlockInstanceInformation3_CS[BlockFabricID]. |
| * This is the fabric id for this coherent slave. Use |
| * umc/channel# as instance id of the coherent slave |
| * for FICAA. |
| */ |
| if (amd_df_indirect_read(nid, 0, 0x50, umc, &tmp)) |
| goto out_err; |
| |
| cs_fabric_id = (tmp >> 8) & 0xFF; |
| die_id_bit = 0; |
| |
| /* If interleaved over more than 1 channel: */ |
| if (intlv_num_chan) { |
| die_id_bit = intlv_num_chan; |
| cs_mask = (1 << die_id_bit) - 1; |
| cs_id = cs_fabric_id & cs_mask; |
| } |
| |
| sock_id_bit = die_id_bit; |
| |
| /* Read D18F1x208 (SystemFabricIdMask). */ |
| if (intlv_num_dies || intlv_num_sockets) |
| if (amd_df_indirect_read(nid, 1, 0x208, umc, &tmp)) |
| goto out_err; |
| |
| /* If interleaved over more than 1 die. */ |
| if (intlv_num_dies) { |
| sock_id_bit = die_id_bit + intlv_num_dies; |
| die_id_shift = (tmp >> 24) & 0xF; |
| die_id_mask = (tmp >> 8) & 0xFF; |
| |
| cs_id |= ((cs_fabric_id & die_id_mask) >> die_id_shift) << die_id_bit; |
| } |
| |
| /* If interleaved over more than 1 socket. */ |
| if (intlv_num_sockets) { |
| socket_id_shift = (tmp >> 28) & 0xF; |
| socket_id_mask = (tmp >> 16) & 0xFF; |
| |
| cs_id |= ((cs_fabric_id & socket_id_mask) >> socket_id_shift) << sock_id_bit; |
| } |
| |
| /* |
| * The pre-interleaved address consists of XXXXXXIIIYYYYY |
| * where III is the ID for this CS, and XXXXXXYYYYY are the |
| * address bits from the post-interleaved address. |
| * "num_intlv_bits" has been calculated to tell us how many "I" |
| * bits there are. "intlv_addr_bit" tells us how many "Y" bits |
| * there are (where "I" starts). |
| */ |
| temp_addr_y = ret_addr & GENMASK_ULL(intlv_addr_bit-1, 0); |
| temp_addr_i = (cs_id << intlv_addr_bit); |
| temp_addr_x = (ret_addr & GENMASK_ULL(63, intlv_addr_bit)) << num_intlv_bits; |
| ret_addr = temp_addr_x | temp_addr_i | temp_addr_y; |
| } |
| |
| /* Add dram base address */ |
| ret_addr += dram_base_addr; |
| |
| /* If legacy MMIO hole enabled */ |
| if (lgcy_mmio_hole_en) { |
| if (amd_df_indirect_read(nid, 0, 0x104, umc, &tmp)) |
| goto out_err; |
| |
| dram_hole_base = tmp & GENMASK(31, 24); |
| if (ret_addr >= dram_hole_base) |
| ret_addr += (BIT_ULL(32) - dram_hole_base); |
| } |
| |
| if (hash_enabled) { |
| /* Save some parentheses and grab ls-bit at the end. */ |
| hashed_bit = (ret_addr >> 12) ^ |
| (ret_addr >> 18) ^ |
| (ret_addr >> 21) ^ |
| (ret_addr >> 30) ^ |
| cs_id; |
| |
| hashed_bit &= BIT(0); |
| |
| if (hashed_bit != ((ret_addr >> intlv_addr_bit) & BIT(0))) |
| ret_addr ^= BIT(intlv_addr_bit); |
| } |
| |
| /* Is calculated system address is above DRAM limit address? */ |
| if (ret_addr > dram_limit_addr) |
| goto out_err; |
| |
| *sys_addr = ret_addr; |
| return 0; |
| |
| out_err: |
| return -EINVAL; |
| } |
| EXPORT_SYMBOL_GPL(umc_normaddr_to_sysaddr); |
| |
| static void |
| __log_error(unsigned int bank, bool deferred_err, bool threshold_err, u64 misc) |
| { |
| u32 msr_status = msr_ops.status(bank); |
| u32 msr_addr = msr_ops.addr(bank); |
| struct mce m; |
| u64 status; |
| |
| WARN_ON_ONCE(deferred_err && threshold_err); |
| |
| if (deferred_err && mce_flags.smca) { |
| msr_status = MSR_AMD64_SMCA_MCx_DESTAT(bank); |
| msr_addr = MSR_AMD64_SMCA_MCx_DEADDR(bank); |
| } |
| |
| rdmsrl(msr_status, status); |
| |
| if (!(status & MCI_STATUS_VAL)) |
| return; |
| |
| mce_setup(&m); |
| |
| m.status = status; |
| m.bank = bank; |
| |
| if (threshold_err) |
| m.misc = misc; |
| |
| if (m.status & MCI_STATUS_ADDRV) { |
| rdmsrl(msr_addr, m.addr); |
| |
| /* |
| * Extract [55:<lsb>] where lsb is the least significant |
| * *valid* bit of the address bits. |
| */ |
| if (mce_flags.smca) { |
| u8 lsb = (m.addr >> 56) & 0x3f; |
| |
| m.addr &= GENMASK_ULL(55, lsb); |
| } |
| } |
| |
| if (mce_flags.smca) { |
| rdmsrl(MSR_AMD64_SMCA_MCx_IPID(bank), m.ipid); |
| |
| if (m.status & MCI_STATUS_SYNDV) |
| rdmsrl(MSR_AMD64_SMCA_MCx_SYND(bank), m.synd); |
| } |
| |
| mce_log(&m); |
| |
| wrmsrl(msr_status, 0); |
| } |
| |
| static inline void __smp_deferred_error_interrupt(void) |
| { |
| inc_irq_stat(irq_deferred_error_count); |
| deferred_error_int_vector(); |
| } |
| |
| asmlinkage __visible void smp_deferred_error_interrupt(void) |
| { |
| entering_irq(); |
| __smp_deferred_error_interrupt(); |
| exiting_ack_irq(); |
| } |
| |
| asmlinkage __visible void smp_trace_deferred_error_interrupt(void) |
| { |
| entering_irq(); |
| trace_deferred_error_apic_entry(DEFERRED_ERROR_VECTOR); |
| __smp_deferred_error_interrupt(); |
| trace_deferred_error_apic_exit(DEFERRED_ERROR_VECTOR); |
| exiting_ack_irq(); |
| } |
| |
| /* APIC interrupt handler for deferred errors */ |
| static void amd_deferred_error_interrupt(void) |
| { |
| unsigned int bank; |
| u32 msr_status; |
| u64 status; |
| |
| for (bank = 0; bank < mca_cfg.banks; ++bank) { |
| msr_status = (mce_flags.smca) ? MSR_AMD64_SMCA_MCx_DESTAT(bank) |
| : msr_ops.status(bank); |
| |
| rdmsrl(msr_status, status); |
| |
| if (!(status & MCI_STATUS_VAL) || |
| !(status & MCI_STATUS_DEFERRED)) |
| continue; |
| |
| __log_error(bank, true, false, 0); |
| break; |
| } |
| } |
| |
| /* |
| * APIC Interrupt Handler |
| */ |
| |
| /* |
| * threshold interrupt handler will service THRESHOLD_APIC_VECTOR. |
| * the interrupt goes off when error_count reaches threshold_limit. |
| * the handler will simply log mcelog w/ software defined bank number. |
| */ |
| |
| static void amd_threshold_interrupt(void) |
| { |
| u32 low = 0, high = 0, address = 0; |
| unsigned int bank, block, cpu = smp_processor_id(); |
| struct thresh_restart tr; |
| |
| /* assume first bank caused it */ |
| for (bank = 0; bank < mca_cfg.banks; ++bank) { |
| if (!(per_cpu(bank_map, cpu) & (1 << bank))) |
| continue; |
| for (block = 0; block < NR_BLOCKS; ++block) { |
| address = get_block_address(cpu, address, low, high, bank, block); |
| if (!address) |
| break; |
| |
| if (rdmsr_safe(address, &low, &high)) |
| break; |
| |
| if (!(high & MASK_VALID_HI)) { |
| if (block) |
| continue; |
| else |
| break; |
| } |
| |
| if (!(high & MASK_CNTP_HI) || |
| (high & MASK_LOCKED_HI)) |
| continue; |
| |
| /* |
| * Log the machine check that caused the threshold |
| * event. |
| */ |
| if (high & MASK_OVERFLOW_HI) |
| goto log; |
| } |
| } |
| return; |
| |
| log: |
| __log_error(bank, false, true, ((u64)high << 32) | low); |
| |
| /* Reset threshold block after logging error. */ |
| memset(&tr, 0, sizeof(tr)); |
| tr.b = &per_cpu(threshold_banks, cpu)[bank]->blocks[block]; |
| threshold_restart_bank(&tr); |
| } |
| |
| /* |
| * Sysfs Interface |
| */ |
| |
| struct threshold_attr { |
| struct attribute attr; |
| ssize_t (*show) (struct threshold_block *, char *); |
| ssize_t (*store) (struct threshold_block *, const char *, size_t count); |
| }; |
| |
| #define SHOW_FIELDS(name) \ |
| static ssize_t show_ ## name(struct threshold_block *b, char *buf) \ |
| { \ |
| return sprintf(buf, "%lu\n", (unsigned long) b->name); \ |
| } |
| SHOW_FIELDS(interrupt_enable) |
| SHOW_FIELDS(threshold_limit) |
| |
| static ssize_t |
| store_interrupt_enable(struct threshold_block *b, const char *buf, size_t size) |
| { |
| struct thresh_restart tr; |
| unsigned long new; |
| |
| if (!b->interrupt_capable) |
| return -EINVAL; |
| |
| if (kstrtoul(buf, 0, &new) < 0) |
| return -EINVAL; |
| |
| b->interrupt_enable = !!new; |
| |
| memset(&tr, 0, sizeof(tr)); |
| tr.b = b; |
| |
| smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1); |
| |
| return size; |
| } |
| |
| static ssize_t |
| store_threshold_limit(struct threshold_block *b, const char *buf, size_t size) |
| { |
| struct thresh_restart tr; |
| unsigned long new; |
| |
| if (kstrtoul(buf, 0, &new) < 0) |
| return -EINVAL; |
| |
| if (new > THRESHOLD_MAX) |
| new = THRESHOLD_MAX; |
| if (new < 1) |
| new = 1; |
| |
| memset(&tr, 0, sizeof(tr)); |
| tr.old_limit = b->threshold_limit; |
| b->threshold_limit = new; |
| tr.b = b; |
| |
| smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1); |
| |
| return size; |
| } |
| |
| static ssize_t show_error_count(struct threshold_block *b, char *buf) |
| { |
| u32 lo, hi; |
| |
| rdmsr_on_cpu(b->cpu, b->address, &lo, &hi); |
| |
| return sprintf(buf, "%u\n", ((hi & THRESHOLD_MAX) - |
| (THRESHOLD_MAX - b->threshold_limit))); |
| } |
| |
| static struct threshold_attr error_count = { |
| .attr = {.name = __stringify(error_count), .mode = 0444 }, |
| .show = show_error_count, |
| }; |
| |
| #define RW_ATTR(val) \ |
| static struct threshold_attr val = { \ |
| .attr = {.name = __stringify(val), .mode = 0644 }, \ |
| .show = show_## val, \ |
| .store = store_## val, \ |
| }; |
| |
| RW_ATTR(interrupt_enable); |
| RW_ATTR(threshold_limit); |
| |
| static struct attribute *default_attrs[] = { |
| &threshold_limit.attr, |
| &error_count.attr, |
| NULL, /* possibly interrupt_enable if supported, see below */ |
| NULL, |
| }; |
| |
| #define to_block(k) container_of(k, struct threshold_block, kobj) |
| #define to_attr(a) container_of(a, struct threshold_attr, attr) |
| |
| static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) |
| { |
| struct threshold_block *b = to_block(kobj); |
| struct threshold_attr *a = to_attr(attr); |
| ssize_t ret; |
| |
| ret = a->show ? a->show(b, buf) : -EIO; |
| |
| return ret; |
| } |
| |
| static ssize_t store(struct kobject *kobj, struct attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct threshold_block *b = to_block(kobj); |
| struct threshold_attr *a = to_attr(attr); |
| ssize_t ret; |
| |
| ret = a->store ? a->store(b, buf, count) : -EIO; |
| |
| return ret; |
| } |
| |
| static const struct sysfs_ops threshold_ops = { |
| .show = show, |
| .store = store, |
| }; |
| |
| static struct kobj_type threshold_ktype = { |
| .sysfs_ops = &threshold_ops, |
| .default_attrs = default_attrs, |
| }; |
| |
| static const char *get_name(unsigned int bank, struct threshold_block *b) |
| { |
| unsigned int bank_type; |
| |
| if (!mce_flags.smca) { |
| if (b && bank == 4) |
| return bank4_names(b); |
| |
| return th_names[bank]; |
| } |
| |
| if (!smca_banks[bank].hwid) |
| return NULL; |
| |
| bank_type = smca_banks[bank].hwid->bank_type; |
| |
| if (b && bank_type == SMCA_UMC) { |
| if (b->block < ARRAY_SIZE(smca_umc_block_names)) |
| return smca_umc_block_names[b->block]; |
| return NULL; |
| } |
| |
| snprintf(buf_mcatype, MAX_MCATYPE_NAME_LEN, |
| "%s_%x", smca_get_name(bank_type), |
| smca_banks[bank].id); |
| return buf_mcatype; |
| } |
| |
| static int allocate_threshold_blocks(unsigned int cpu, unsigned int bank, |
| unsigned int block, u32 address) |
| { |
| struct threshold_block *b = NULL; |
| u32 low, high; |
| int err; |
| |
| if ((bank >= mca_cfg.banks) || (block >= NR_BLOCKS)) |
| return 0; |
| |
| if (rdmsr_safe_on_cpu(cpu, address, &low, &high)) |
| return 0; |
| |
| if (!(high & MASK_VALID_HI)) { |
| if (block) |
| goto recurse; |
| else |
| return 0; |
| } |
| |
| if (!(high & MASK_CNTP_HI) || |
| (high & MASK_LOCKED_HI)) |
| goto recurse; |
| |
| b = kzalloc(sizeof(struct threshold_block), GFP_KERNEL); |
| if (!b) |
| return -ENOMEM; |
| |
| b->block = block; |
| b->bank = bank; |
| b->cpu = cpu; |
| b->address = address; |
| b->interrupt_enable = 0; |
| b->interrupt_capable = lvt_interrupt_supported(bank, high); |
| b->threshold_limit = THRESHOLD_MAX; |
| |
| if (b->interrupt_capable) { |
| threshold_ktype.default_attrs[2] = &interrupt_enable.attr; |
| b->interrupt_enable = 1; |
| } else { |
| threshold_ktype.default_attrs[2] = NULL; |
| } |
| |
| INIT_LIST_HEAD(&b->miscj); |
| |
| if (per_cpu(threshold_banks, cpu)[bank]->blocks) { |
| list_add(&b->miscj, |
| &per_cpu(threshold_banks, cpu)[bank]->blocks->miscj); |
| } else { |
| per_cpu(threshold_banks, cpu)[bank]->blocks = b; |
| } |
| |
| err = kobject_init_and_add(&b->kobj, &threshold_ktype, |
| per_cpu(threshold_banks, cpu)[bank]->kobj, |
| get_name(bank, b)); |
| if (err) |
| goto out_free; |
| recurse: |
| address = get_block_address(cpu, address, low, high, bank, ++block); |
| if (!address) |
| return 0; |
| |
| err = allocate_threshold_blocks(cpu, bank, block, address); |
| if (err) |
| goto out_free; |
| |
| if (b) |
| kobject_uevent(&b->kobj, KOBJ_ADD); |
| |
| return err; |
| |
| out_free: |
| if (b) { |
| kobject_put(&b->kobj); |
| list_del(&b->miscj); |
| kfree(b); |
| } |
| return err; |
| } |
| |
| static int __threshold_add_blocks(struct threshold_bank *b) |
| { |
| struct list_head *head = &b->blocks->miscj; |
| struct threshold_block *pos = NULL; |
| struct threshold_block *tmp = NULL; |
| int err = 0; |
| |
| err = kobject_add(&b->blocks->kobj, b->kobj, b->blocks->kobj.name); |
| if (err) |
| return err; |
| |
| list_for_each_entry_safe(pos, tmp, head, miscj) { |
| |
| err = kobject_add(&pos->kobj, b->kobj, pos->kobj.name); |
| if (err) { |
| list_for_each_entry_safe_reverse(pos, tmp, head, miscj) |
| kobject_del(&pos->kobj); |
| |
| return err; |
| } |
| } |
| return err; |
| } |
| |
| static int threshold_create_bank(unsigned int cpu, unsigned int bank) |
| { |
| struct device *dev = per_cpu(mce_device, cpu); |
| struct amd_northbridge *nb = NULL; |
| struct threshold_bank *b = NULL; |
| const char *name = get_name(bank, NULL); |
| int err = 0; |
| |
| if (!dev) |
| return -ENODEV; |
| |
| if (is_shared_bank(bank)) { |
| nb = node_to_amd_nb(amd_get_nb_id(cpu)); |
| |
| /* threshold descriptor already initialized on this node? */ |
| if (nb && nb->bank4) { |
| /* yes, use it */ |
| b = nb->bank4; |
| err = kobject_add(b->kobj, &dev->kobj, name); |
| if (err) |
| goto out; |
| |
| per_cpu(threshold_banks, cpu)[bank] = b; |
| atomic_inc(&b->cpus); |
| |
| err = __threshold_add_blocks(b); |
| |
| goto out; |
| } |
| } |
| |
| b = kzalloc(sizeof(struct threshold_bank), GFP_KERNEL); |
| if (!b) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| b->kobj = kobject_create_and_add(name, &dev->kobj); |
| if (!b->kobj) { |
| err = -EINVAL; |
| goto out_free; |
| } |
| |
| per_cpu(threshold_banks, cpu)[bank] = b; |
| |
| if (is_shared_bank(bank)) { |
| atomic_set(&b->cpus, 1); |
| |
| /* nb is already initialized, see above */ |
| if (nb) { |
| WARN_ON(nb->bank4); |
| nb->bank4 = b; |
| } |
| } |
| |
| err = allocate_threshold_blocks(cpu, bank, 0, msr_ops.misc(bank)); |
| if (!err) |
| goto out; |
| |
| out_free: |
| kfree(b); |
| |
| out: |
| return err; |
| } |
| |
| static void deallocate_threshold_block(unsigned int cpu, |
| unsigned int bank) |
| { |
| struct threshold_block *pos = NULL; |
| struct threshold_block *tmp = NULL; |
| struct threshold_bank *head = per_cpu(threshold_banks, cpu)[bank]; |
| |
| if (!head) |
| return; |
| |
| list_for_each_entry_safe(pos, tmp, &head->blocks->miscj, miscj) { |
| kobject_put(&pos->kobj); |
| list_del(&pos->miscj); |
| kfree(pos); |
| } |
| |
| kfree(per_cpu(threshold_banks, cpu)[bank]->blocks); |
| per_cpu(threshold_banks, cpu)[bank]->blocks = NULL; |
| } |
| |
| static void __threshold_remove_blocks(struct threshold_bank *b) |
| { |
| struct threshold_block *pos = NULL; |
| struct threshold_block *tmp = NULL; |
| |
| kobject_del(b->kobj); |
| |
| list_for_each_entry_safe(pos, tmp, &b->blocks->miscj, miscj) |
| kobject_del(&pos->kobj); |
| } |
| |
| static void threshold_remove_bank(unsigned int cpu, int bank) |
| { |
| struct amd_northbridge *nb; |
| struct threshold_bank *b; |
| |
| b = per_cpu(threshold_banks, cpu)[bank]; |
| if (!b) |
| return; |
| |
| if (!b->blocks) |
| goto free_out; |
| |
| if (is_shared_bank(bank)) { |
| if (!atomic_dec_and_test(&b->cpus)) { |
| __threshold_remove_blocks(b); |
| per_cpu(threshold_banks, cpu)[bank] = NULL; |
| return; |
| } else { |
| /* |
| * the last CPU on this node using the shared bank is |
| * going away, remove that bank now. |
| */ |
| nb = node_to_amd_nb(amd_get_nb_id(cpu)); |
| nb->bank4 = NULL; |
| } |
| } |
| |
| deallocate_threshold_block(cpu, bank); |
| |
| free_out: |
| kobject_del(b->kobj); |
| kobject_put(b->kobj); |
| kfree(b); |
| per_cpu(threshold_banks, cpu)[bank] = NULL; |
| } |
| |
| int mce_threshold_remove_device(unsigned int cpu) |
| { |
| unsigned int bank; |
| |
| if (!thresholding_en) |
| return 0; |
| |
| for (bank = 0; bank < mca_cfg.banks; ++bank) { |
| if (!(per_cpu(bank_map, cpu) & (1 << bank))) |
| continue; |
| threshold_remove_bank(cpu, bank); |
| } |
| kfree(per_cpu(threshold_banks, cpu)); |
| per_cpu(threshold_banks, cpu) = NULL; |
| return 0; |
| } |
| |
| /* create dir/files for all valid threshold banks */ |
| int mce_threshold_create_device(unsigned int cpu) |
| { |
| unsigned int bank; |
| struct threshold_bank **bp; |
| int err = 0; |
| |
| if (!thresholding_en) |
| return 0; |
| |
| bp = per_cpu(threshold_banks, cpu); |
| if (bp) |
| return 0; |
| |
| bp = kzalloc(sizeof(struct threshold_bank *) * mca_cfg.banks, |
| GFP_KERNEL); |
| if (!bp) |
| return -ENOMEM; |
| |
| per_cpu(threshold_banks, cpu) = bp; |
| |
| for (bank = 0; bank < mca_cfg.banks; ++bank) { |
| if (!(per_cpu(bank_map, cpu) & (1 << bank))) |
| continue; |
| err = threshold_create_bank(cpu, bank); |
| if (err) |
| goto err; |
| } |
| return err; |
| err: |
| mce_threshold_remove_device(cpu); |
| return err; |
| } |
| |
| static __init int threshold_init_device(void) |
| { |
| unsigned lcpu = 0; |
| |
| if (mce_threshold_vector == amd_threshold_interrupt) |
| thresholding_en = true; |
| |
| /* to hit CPUs online before the notifier is up */ |
| for_each_online_cpu(lcpu) { |
| int err = mce_threshold_create_device(lcpu); |
| |
| if (err) |
| return err; |
| } |
| |
| return 0; |
| } |
| /* |
| * there are 3 funcs which need to be _initcalled in a logic sequence: |
| * 1. xen_late_init_mcelog |
| * 2. mcheck_init_device |
| * 3. threshold_init_device |
| * |
| * xen_late_init_mcelog must register xen_mce_chrdev_device before |
| * native mce_chrdev_device registration if running under xen platform; |
| * |
| * mcheck_init_device should be inited before threshold_init_device to |
| * initialize mce_device, otherwise a NULL ptr dereference will cause panic. |
| * |
| * so we use following _initcalls |
| * 1. device_initcall(xen_late_init_mcelog); |
| * 2. device_initcall_sync(mcheck_init_device); |
| * 3. late_initcall(threshold_init_device); |
| * |
| * when running under xen, the initcall order is 1,2,3; |
| * on baremetal, we skip 1 and we do only 2 and 3. |
| */ |
| late_initcall(threshold_init_device); |