| // SPDX-License-Identifier: GPL-2.0 |
| |
| /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. |
| * Copyright (C) 2019-2020 Linaro Ltd. |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/bits.h> |
| #include <linux/bitfield.h> |
| #include <linux/refcount.h> |
| #include <linux/scatterlist.h> |
| #include <linux/dma-direction.h> |
| |
| #include "gsi.h" |
| #include "gsi_private.h" |
| #include "gsi_trans.h" |
| #include "ipa_gsi.h" |
| #include "ipa_data.h" |
| #include "ipa_cmd.h" |
| |
| /** |
| * DOC: GSI Transactions |
| * |
| * A GSI transaction abstracts the behavior of a GSI channel by representing |
| * everything about a related group of IPA commands in a single structure. |
| * (A "command" in this sense is either a data transfer or an IPA immediate |
| * command.) Most details of interaction with the GSI hardware are managed |
| * by the GSI transaction core, allowing users to simply describe commands |
| * to be performed. When a transaction has completed a callback function |
| * (dependent on the type of endpoint associated with the channel) allows |
| * cleanup of resources associated with the transaction. |
| * |
| * To perform a command (or set of them), a user of the GSI transaction |
| * interface allocates a transaction, indicating the number of TREs required |
| * (one per command). If sufficient TREs are available, they are reserved |
| * for use in the transaction and the allocation succeeds. This way |
| * exhaustion of the available TREs in a channel ring is detected |
| * as early as possible. All resources required to complete a transaction |
| * are allocated at transaction allocation time. |
| * |
| * Commands performed as part of a transaction are represented in an array |
| * of Linux scatterlist structures. This array is allocated with the |
| * transaction, and its entries are initialized using standard scatterlist |
| * functions (such as sg_set_buf() or skb_to_sgvec()). |
| * |
| * Once a transaction's scatterlist structures have been initialized, the |
| * transaction is committed. The caller is responsible for mapping buffers |
| * for DMA if necessary, and this should be done *before* allocating |
| * the transaction. Between a successful allocation and commit of a |
| * transaction no errors should occur. |
| * |
| * Committing transfers ownership of the entire transaction to the GSI |
| * transaction core. The GSI transaction code formats the content of |
| * the scatterlist array into the channel ring buffer and informs the |
| * hardware that new TREs are available to process. |
| * |
| * The last TRE in each transaction is marked to interrupt the AP when the |
| * GSI hardware has completed it. Because transfers described by TREs are |
| * performed strictly in order, signaling the completion of just the last |
| * TRE in the transaction is sufficient to indicate the full transaction |
| * is complete. |
| * |
| * When a transaction is complete, ipa_gsi_trans_complete() is called by the |
| * GSI code into the IPA layer, allowing it to perform any final cleanup |
| * required before the transaction is freed. |
| */ |
| |
| /* Hardware values representing a transfer element type */ |
| enum gsi_tre_type { |
| GSI_RE_XFER = 0x2, |
| GSI_RE_IMMD_CMD = 0x3, |
| }; |
| |
| /* An entry in a channel ring */ |
| struct gsi_tre { |
| __le64 addr; /* DMA address */ |
| __le16 len_opcode; /* length in bytes or enum IPA_CMD_* */ |
| __le16 reserved; |
| __le32 flags; /* TRE_FLAGS_* */ |
| }; |
| |
| /* gsi_tre->flags mask values (in CPU byte order) */ |
| #define TRE_FLAGS_CHAIN_FMASK GENMASK(0, 0) |
| #define TRE_FLAGS_IEOT_FMASK GENMASK(9, 9) |
| #define TRE_FLAGS_BEI_FMASK GENMASK(10, 10) |
| #define TRE_FLAGS_TYPE_FMASK GENMASK(23, 16) |
| |
| int gsi_trans_pool_init(struct gsi_trans_pool *pool, size_t size, u32 count, |
| u32 max_alloc) |
| { |
| void *virt; |
| |
| if (!size) |
| return -EINVAL; |
| if (count < max_alloc) |
| return -EINVAL; |
| if (!max_alloc) |
| return -EINVAL; |
| |
| /* By allocating a few extra entries in our pool (one less |
| * than the maximum number that will be requested in a |
| * single allocation), we can always satisfy requests without |
| * ever worrying about straddling the end of the pool array. |
| * If there aren't enough entries starting at the free index, |
| * we just allocate free entries from the beginning of the pool. |
| */ |
| virt = kcalloc(count + max_alloc - 1, size, GFP_KERNEL); |
| if (!virt) |
| return -ENOMEM; |
| |
| pool->base = virt; |
| /* If the allocator gave us any extra memory, use it */ |
| pool->count = ksize(pool->base) / size; |
| pool->free = 0; |
| pool->max_alloc = max_alloc; |
| pool->size = size; |
| pool->addr = 0; /* Only used for DMA pools */ |
| |
| return 0; |
| } |
| |
| void gsi_trans_pool_exit(struct gsi_trans_pool *pool) |
| { |
| kfree(pool->base); |
| memset(pool, 0, sizeof(*pool)); |
| } |
| |
| /* Allocate the requested number of (zeroed) entries from the pool */ |
| /* Home-grown DMA pool. This way we can preallocate and use the tre_count |
| * to guarantee allocations will succeed. Even though we specify max_alloc |
| * (and it can be more than one), we only allow allocation of a single |
| * element from a DMA pool. |
| */ |
| int gsi_trans_pool_init_dma(struct device *dev, struct gsi_trans_pool *pool, |
| size_t size, u32 count, u32 max_alloc) |
| { |
| size_t total_size; |
| dma_addr_t addr; |
| void *virt; |
| |
| if (!size) |
| return -EINVAL; |
| if (count < max_alloc) |
| return -EINVAL; |
| if (!max_alloc) |
| return -EINVAL; |
| |
| /* Don't let allocations cross a power-of-two boundary */ |
| size = __roundup_pow_of_two(size); |
| total_size = (count + max_alloc - 1) * size; |
| |
| /* The allocator will give us a power-of-2 number of pages |
| * sufficient to satisfy our request. Round up our requested |
| * size to avoid any unused space in the allocation. This way |
| * gsi_trans_pool_exit_dma() can assume the total allocated |
| * size is exactly (count * size). |
| */ |
| total_size = get_order(total_size) << PAGE_SHIFT; |
| |
| virt = dma_alloc_coherent(dev, total_size, &addr, GFP_KERNEL); |
| if (!virt) |
| return -ENOMEM; |
| |
| pool->base = virt; |
| pool->count = total_size / size; |
| pool->free = 0; |
| pool->size = size; |
| pool->max_alloc = max_alloc; |
| pool->addr = addr; |
| |
| return 0; |
| } |
| |
| void gsi_trans_pool_exit_dma(struct device *dev, struct gsi_trans_pool *pool) |
| { |
| size_t total_size = pool->count * pool->size; |
| |
| dma_free_coherent(dev, total_size, pool->base, pool->addr); |
| memset(pool, 0, sizeof(*pool)); |
| } |
| |
| /* Return the byte offset of the next free entry in the pool */ |
| static u32 gsi_trans_pool_alloc_common(struct gsi_trans_pool *pool, u32 count) |
| { |
| u32 offset; |
| |
| WARN_ON(!count); |
| WARN_ON(count > pool->max_alloc); |
| |
| /* Allocate from beginning if wrap would occur */ |
| if (count > pool->count - pool->free) |
| pool->free = 0; |
| |
| offset = pool->free * pool->size; |
| pool->free += count; |
| memset(pool->base + offset, 0, count * pool->size); |
| |
| return offset; |
| } |
| |
| /* Allocate a contiguous block of zeroed entries from a pool */ |
| void *gsi_trans_pool_alloc(struct gsi_trans_pool *pool, u32 count) |
| { |
| return pool->base + gsi_trans_pool_alloc_common(pool, count); |
| } |
| |
| /* Allocate a single zeroed entry from a DMA pool */ |
| void *gsi_trans_pool_alloc_dma(struct gsi_trans_pool *pool, dma_addr_t *addr) |
| { |
| u32 offset = gsi_trans_pool_alloc_common(pool, 1); |
| |
| *addr = pool->addr + offset; |
| |
| return pool->base + offset; |
| } |
| |
| /* Return the pool element that immediately follows the one given. |
| * This only works done if elements are allocated one at a time. |
| */ |
| void *gsi_trans_pool_next(struct gsi_trans_pool *pool, void *element) |
| { |
| void *end = pool->base + pool->count * pool->size; |
| |
| WARN_ON(element < pool->base); |
| WARN_ON(element >= end); |
| WARN_ON(pool->max_alloc != 1); |
| |
| element += pool->size; |
| |
| return element < end ? element : pool->base; |
| } |
| |
| /* Map a given ring entry index to the transaction associated with it */ |
| static void gsi_channel_trans_map(struct gsi_channel *channel, u32 index, |
| struct gsi_trans *trans) |
| { |
| /* Note: index *must* be used modulo the ring count here */ |
| channel->trans_info.map[index % channel->tre_ring.count] = trans; |
| } |
| |
| /* Return the transaction mapped to a given ring entry */ |
| struct gsi_trans * |
| gsi_channel_trans_mapped(struct gsi_channel *channel, u32 index) |
| { |
| /* Note: index *must* be used modulo the ring count here */ |
| return channel->trans_info.map[index % channel->tre_ring.count]; |
| } |
| |
| /* Return the oldest completed transaction for a channel (or null) */ |
| struct gsi_trans *gsi_channel_trans_complete(struct gsi_channel *channel) |
| { |
| return list_first_entry_or_null(&channel->trans_info.complete, |
| struct gsi_trans, links); |
| } |
| |
| /* Move a transaction from the allocated list to the pending list */ |
| static void gsi_trans_move_pending(struct gsi_trans *trans) |
| { |
| struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id]; |
| struct gsi_trans_info *trans_info = &channel->trans_info; |
| |
| spin_lock_bh(&trans_info->spinlock); |
| |
| list_move_tail(&trans->links, &trans_info->pending); |
| |
| spin_unlock_bh(&trans_info->spinlock); |
| } |
| |
| /* Move a transaction and all of its predecessors from the pending list |
| * to the completed list. |
| */ |
| void gsi_trans_move_complete(struct gsi_trans *trans) |
| { |
| struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id]; |
| struct gsi_trans_info *trans_info = &channel->trans_info; |
| struct list_head list; |
| |
| spin_lock_bh(&trans_info->spinlock); |
| |
| /* Move this transaction and all predecessors to completed list */ |
| list_cut_position(&list, &trans_info->pending, &trans->links); |
| list_splice_tail(&list, &trans_info->complete); |
| |
| spin_unlock_bh(&trans_info->spinlock); |
| } |
| |
| /* Move a transaction from the completed list to the polled list */ |
| void gsi_trans_move_polled(struct gsi_trans *trans) |
| { |
| struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id]; |
| struct gsi_trans_info *trans_info = &channel->trans_info; |
| |
| spin_lock_bh(&trans_info->spinlock); |
| |
| list_move_tail(&trans->links, &trans_info->polled); |
| |
| spin_unlock_bh(&trans_info->spinlock); |
| } |
| |
| /* Reserve some number of TREs on a channel. Returns true if successful */ |
| static bool |
| gsi_trans_tre_reserve(struct gsi_trans_info *trans_info, u32 tre_count) |
| { |
| int avail = atomic_read(&trans_info->tre_avail); |
| int new; |
| |
| do { |
| new = avail - (int)tre_count; |
| if (unlikely(new < 0)) |
| return false; |
| } while (!atomic_try_cmpxchg(&trans_info->tre_avail, &avail, new)); |
| |
| return true; |
| } |
| |
| /* Release previously-reserved TRE entries to a channel */ |
| static void |
| gsi_trans_tre_release(struct gsi_trans_info *trans_info, u32 tre_count) |
| { |
| atomic_add(tre_count, &trans_info->tre_avail); |
| } |
| |
| /* Return true if no transactions are allocated, false otherwise */ |
| bool gsi_channel_trans_idle(struct gsi *gsi, u32 channel_id) |
| { |
| u32 tre_max = gsi_channel_tre_max(gsi, channel_id); |
| struct gsi_trans_info *trans_info; |
| |
| trans_info = &gsi->channel[channel_id].trans_info; |
| |
| return atomic_read(&trans_info->tre_avail) == tre_max; |
| } |
| |
| /* Allocate a GSI transaction on a channel */ |
| struct gsi_trans *gsi_channel_trans_alloc(struct gsi *gsi, u32 channel_id, |
| u32 tre_count, |
| enum dma_data_direction direction) |
| { |
| struct gsi_channel *channel = &gsi->channel[channel_id]; |
| struct gsi_trans_info *trans_info; |
| struct gsi_trans *trans; |
| |
| if (WARN_ON(tre_count > gsi_channel_trans_tre_max(gsi, channel_id))) |
| return NULL; |
| |
| trans_info = &channel->trans_info; |
| |
| /* We reserve the TREs now, but consume them at commit time. |
| * If there aren't enough available, we're done. |
| */ |
| if (!gsi_trans_tre_reserve(trans_info, tre_count)) |
| return NULL; |
| |
| /* Allocate and initialize non-zero fields in the the transaction */ |
| trans = gsi_trans_pool_alloc(&trans_info->pool, 1); |
| trans->gsi = gsi; |
| trans->channel_id = channel_id; |
| trans->tre_count = tre_count; |
| init_completion(&trans->completion); |
| |
| /* Allocate the scatterlist and (if requested) info entries. */ |
| trans->sgl = gsi_trans_pool_alloc(&trans_info->sg_pool, tre_count); |
| sg_init_marker(trans->sgl, tre_count); |
| |
| trans->direction = direction; |
| |
| spin_lock_bh(&trans_info->spinlock); |
| |
| list_add_tail(&trans->links, &trans_info->alloc); |
| |
| spin_unlock_bh(&trans_info->spinlock); |
| |
| refcount_set(&trans->refcount, 1); |
| |
| return trans; |
| } |
| |
| /* Free a previously-allocated transaction */ |
| void gsi_trans_free(struct gsi_trans *trans) |
| { |
| refcount_t *refcount = &trans->refcount; |
| struct gsi_trans_info *trans_info; |
| bool last; |
| |
| /* We must hold the lock to release the last reference */ |
| if (refcount_dec_not_one(refcount)) |
| return; |
| |
| trans_info = &trans->gsi->channel[trans->channel_id].trans_info; |
| |
| spin_lock_bh(&trans_info->spinlock); |
| |
| /* Reference might have been added before we got the lock */ |
| last = refcount_dec_and_test(refcount); |
| if (last) |
| list_del(&trans->links); |
| |
| spin_unlock_bh(&trans_info->spinlock); |
| |
| if (!last) |
| return; |
| |
| ipa_gsi_trans_release(trans); |
| |
| /* Releasing the reserved TREs implicitly frees the sgl[] and |
| * (if present) info[] arrays, plus the transaction itself. |
| */ |
| gsi_trans_tre_release(trans_info, trans->tre_count); |
| } |
| |
| /* Add an immediate command to a transaction */ |
| void gsi_trans_cmd_add(struct gsi_trans *trans, void *buf, u32 size, |
| dma_addr_t addr, enum ipa_cmd_opcode opcode) |
| { |
| u32 which = trans->used++; |
| struct scatterlist *sg; |
| |
| WARN_ON(which >= trans->tre_count); |
| |
| /* Commands are quite different from data transfer requests. |
| * Their payloads come from a pool whose memory is allocated |
| * using dma_alloc_coherent(). We therefore do *not* map them |
| * for DMA (unlike what we do for pages and skbs). |
| * |
| * When a transaction completes, the SGL is normally unmapped. |
| * A command transaction has direction DMA_NONE, which tells |
| * gsi_trans_complete() to skip the unmapping step. |
| * |
| * The only things we use directly in a command scatter/gather |
| * entry are the DMA address and length. We still need the SG |
| * table flags to be maintained though, so assign a NULL page |
| * pointer for that purpose. |
| */ |
| sg = &trans->sgl[which]; |
| sg_assign_page(sg, NULL); |
| sg_dma_address(sg) = addr; |
| sg_dma_len(sg) = size; |
| |
| trans->cmd_opcode[which] = opcode; |
| } |
| |
| /* Add a page transfer to a transaction. It will fill the only TRE. */ |
| int gsi_trans_page_add(struct gsi_trans *trans, struct page *page, u32 size, |
| u32 offset) |
| { |
| struct scatterlist *sg = &trans->sgl[0]; |
| int ret; |
| |
| if (WARN_ON(trans->tre_count != 1)) |
| return -EINVAL; |
| if (WARN_ON(trans->used)) |
| return -EINVAL; |
| |
| sg_set_page(sg, page, size, offset); |
| ret = dma_map_sg(trans->gsi->dev, sg, 1, trans->direction); |
| if (!ret) |
| return -ENOMEM; |
| |
| trans->used++; /* Transaction now owns the (DMA mapped) page */ |
| |
| return 0; |
| } |
| |
| /* Add an SKB transfer to a transaction. No other TREs will be used. */ |
| int gsi_trans_skb_add(struct gsi_trans *trans, struct sk_buff *skb) |
| { |
| struct scatterlist *sg = &trans->sgl[0]; |
| u32 used; |
| int ret; |
| |
| if (WARN_ON(trans->tre_count != 1)) |
| return -EINVAL; |
| if (WARN_ON(trans->used)) |
| return -EINVAL; |
| |
| /* skb->len will not be 0 (checked early) */ |
| ret = skb_to_sgvec(skb, sg, 0, skb->len); |
| if (ret < 0) |
| return ret; |
| used = ret; |
| |
| ret = dma_map_sg(trans->gsi->dev, sg, used, trans->direction); |
| if (!ret) |
| return -ENOMEM; |
| |
| trans->used += used; /* Transaction now owns the (DMA mapped) skb */ |
| |
| return 0; |
| } |
| |
| /* Compute the length/opcode value to use for a TRE */ |
| static __le16 gsi_tre_len_opcode(enum ipa_cmd_opcode opcode, u32 len) |
| { |
| return opcode == IPA_CMD_NONE ? cpu_to_le16((u16)len) |
| : cpu_to_le16((u16)opcode); |
| } |
| |
| /* Compute the flags value to use for a given TRE */ |
| static __le32 gsi_tre_flags(bool last_tre, bool bei, enum ipa_cmd_opcode opcode) |
| { |
| enum gsi_tre_type tre_type; |
| u32 tre_flags; |
| |
| tre_type = opcode == IPA_CMD_NONE ? GSI_RE_XFER : GSI_RE_IMMD_CMD; |
| tre_flags = u32_encode_bits(tre_type, TRE_FLAGS_TYPE_FMASK); |
| |
| /* Last TRE contains interrupt flags */ |
| if (last_tre) { |
| /* All transactions end in a transfer completion interrupt */ |
| tre_flags |= TRE_FLAGS_IEOT_FMASK; |
| /* Don't interrupt when outbound commands are acknowledged */ |
| if (bei) |
| tre_flags |= TRE_FLAGS_BEI_FMASK; |
| } else { /* All others indicate there's more to come */ |
| tre_flags |= TRE_FLAGS_CHAIN_FMASK; |
| } |
| |
| return cpu_to_le32(tre_flags); |
| } |
| |
| static void gsi_trans_tre_fill(struct gsi_tre *dest_tre, dma_addr_t addr, |
| u32 len, bool last_tre, bool bei, |
| enum ipa_cmd_opcode opcode) |
| { |
| struct gsi_tre tre; |
| |
| tre.addr = cpu_to_le64(addr); |
| tre.len_opcode = gsi_tre_len_opcode(opcode, len); |
| tre.reserved = 0; |
| tre.flags = gsi_tre_flags(last_tre, bei, opcode); |
| |
| /* ARM64 can write 16 bytes as a unit with a single instruction. |
| * Doing the assignment this way is an attempt to make that happen. |
| */ |
| *dest_tre = tre; |
| } |
| |
| /** |
| * __gsi_trans_commit() - Common GSI transaction commit code |
| * @trans: Transaction to commit |
| * @ring_db: Whether to tell the hardware about these queued transfers |
| * |
| * Formats channel ring TRE entries based on the content of the scatterlist. |
| * Maps a transaction pointer to the last ring entry used for the transaction, |
| * so it can be recovered when it completes. Moves the transaction to the |
| * pending list. Finally, updates the channel ring pointer and optionally |
| * rings the doorbell. |
| */ |
| static void __gsi_trans_commit(struct gsi_trans *trans, bool ring_db) |
| { |
| struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id]; |
| struct gsi_ring *ring = &channel->tre_ring; |
| enum ipa_cmd_opcode opcode = IPA_CMD_NONE; |
| bool bei = channel->toward_ipa; |
| struct gsi_tre *dest_tre; |
| struct scatterlist *sg; |
| u32 byte_count = 0; |
| u8 *cmd_opcode; |
| u32 avail; |
| u32 i; |
| |
| WARN_ON(!trans->used); |
| |
| /* Consume the entries. If we cross the end of the ring while |
| * filling them we'll switch to the beginning to finish. |
| * If there is no info array we're doing a simple data |
| * transfer request, whose opcode is IPA_CMD_NONE. |
| */ |
| cmd_opcode = channel->command ? &trans->cmd_opcode[0] : NULL; |
| avail = ring->count - ring->index % ring->count; |
| dest_tre = gsi_ring_virt(ring, ring->index); |
| for_each_sg(trans->sgl, sg, trans->used, i) { |
| bool last_tre = i == trans->used - 1; |
| dma_addr_t addr = sg_dma_address(sg); |
| u32 len = sg_dma_len(sg); |
| |
| byte_count += len; |
| if (!avail--) |
| dest_tre = gsi_ring_virt(ring, 0); |
| if (cmd_opcode) |
| opcode = *cmd_opcode++; |
| |
| gsi_trans_tre_fill(dest_tre, addr, len, last_tre, bei, opcode); |
| dest_tre++; |
| } |
| ring->index += trans->used; |
| |
| if (channel->toward_ipa) { |
| /* We record TX bytes when they are sent */ |
| trans->len = byte_count; |
| trans->trans_count = channel->trans_count; |
| trans->byte_count = channel->byte_count; |
| channel->trans_count++; |
| channel->byte_count += byte_count; |
| } |
| |
| /* Associate the last TRE with the transaction */ |
| gsi_channel_trans_map(channel, ring->index - 1, trans); |
| |
| gsi_trans_move_pending(trans); |
| |
| /* Ring doorbell if requested, or if all TREs are allocated */ |
| if (ring_db || !atomic_read(&channel->trans_info.tre_avail)) { |
| /* Report what we're handing off to hardware for TX channels */ |
| if (channel->toward_ipa) |
| gsi_channel_tx_queued(channel); |
| gsi_channel_doorbell(channel); |
| } |
| } |
| |
| /* Commit a GSI transaction */ |
| void gsi_trans_commit(struct gsi_trans *trans, bool ring_db) |
| { |
| if (trans->used) |
| __gsi_trans_commit(trans, ring_db); |
| else |
| gsi_trans_free(trans); |
| } |
| |
| /* Commit a GSI transaction and wait for it to complete */ |
| void gsi_trans_commit_wait(struct gsi_trans *trans) |
| { |
| if (!trans->used) |
| goto out_trans_free; |
| |
| refcount_inc(&trans->refcount); |
| |
| __gsi_trans_commit(trans, true); |
| |
| wait_for_completion(&trans->completion); |
| |
| out_trans_free: |
| gsi_trans_free(trans); |
| } |
| |
| /* Process the completion of a transaction; called while polling */ |
| void gsi_trans_complete(struct gsi_trans *trans) |
| { |
| /* If the entire SGL was mapped when added, unmap it now */ |
| if (trans->direction != DMA_NONE) |
| dma_unmap_sg(trans->gsi->dev, trans->sgl, trans->used, |
| trans->direction); |
| |
| ipa_gsi_trans_complete(trans); |
| |
| complete(&trans->completion); |
| |
| gsi_trans_free(trans); |
| } |
| |
| /* Cancel a channel's pending transactions */ |
| void gsi_channel_trans_cancel_pending(struct gsi_channel *channel) |
| { |
| struct gsi_trans_info *trans_info = &channel->trans_info; |
| struct gsi_trans *trans; |
| bool cancelled; |
| |
| /* channel->gsi->mutex is held by caller */ |
| spin_lock_bh(&trans_info->spinlock); |
| |
| cancelled = !list_empty(&trans_info->pending); |
| list_for_each_entry(trans, &trans_info->pending, links) |
| trans->cancelled = true; |
| |
| list_splice_tail_init(&trans_info->pending, &trans_info->complete); |
| |
| spin_unlock_bh(&trans_info->spinlock); |
| |
| /* Schedule NAPI polling to complete the cancelled transactions */ |
| if (cancelled) |
| napi_schedule(&channel->napi); |
| } |
| |
| /* Issue a command to read a single byte from a channel */ |
| int gsi_trans_read_byte(struct gsi *gsi, u32 channel_id, dma_addr_t addr) |
| { |
| struct gsi_channel *channel = &gsi->channel[channel_id]; |
| struct gsi_ring *ring = &channel->tre_ring; |
| struct gsi_trans_info *trans_info; |
| struct gsi_tre *dest_tre; |
| |
| trans_info = &channel->trans_info; |
| |
| /* First reserve the TRE, if possible */ |
| if (!gsi_trans_tre_reserve(trans_info, 1)) |
| return -EBUSY; |
| |
| /* Now fill the the reserved TRE and tell the hardware */ |
| |
| dest_tre = gsi_ring_virt(ring, ring->index); |
| gsi_trans_tre_fill(dest_tre, addr, 1, true, false, IPA_CMD_NONE); |
| |
| ring->index++; |
| gsi_channel_doorbell(channel); |
| |
| return 0; |
| } |
| |
| /* Mark a gsi_trans_read_byte() request done */ |
| void gsi_trans_read_byte_done(struct gsi *gsi, u32 channel_id) |
| { |
| struct gsi_channel *channel = &gsi->channel[channel_id]; |
| |
| gsi_trans_tre_release(&channel->trans_info, 1); |
| } |
| |
| /* Initialize a channel's GSI transaction info */ |
| int gsi_channel_trans_init(struct gsi *gsi, u32 channel_id) |
| { |
| struct gsi_channel *channel = &gsi->channel[channel_id]; |
| struct gsi_trans_info *trans_info; |
| u32 tre_max; |
| int ret; |
| |
| /* Ensure the size of a channel element is what's expected */ |
| BUILD_BUG_ON(sizeof(struct gsi_tre) != GSI_RING_ELEMENT_SIZE); |
| |
| /* The map array is used to determine what transaction is associated |
| * with a TRE that the hardware reports has completed. We need one |
| * map entry per TRE. |
| */ |
| trans_info = &channel->trans_info; |
| trans_info->map = kcalloc(channel->tre_count, sizeof(*trans_info->map), |
| GFP_KERNEL); |
| if (!trans_info->map) |
| return -ENOMEM; |
| |
| /* We can't use more TREs than there are available in the ring. |
| * This limits the number of transactions that can be oustanding. |
| * Worst case is one TRE per transaction (but we actually limit |
| * it to something a little less than that). We allocate resources |
| * for transactions (including transaction structures) based on |
| * this maximum number. |
| */ |
| tre_max = gsi_channel_tre_max(channel->gsi, channel_id); |
| |
| /* Transactions are allocated one at a time. */ |
| ret = gsi_trans_pool_init(&trans_info->pool, sizeof(struct gsi_trans), |
| tre_max, 1); |
| if (ret) |
| goto err_kfree; |
| |
| /* A transaction uses a scatterlist array to represent the data |
| * transfers implemented by the transaction. Each scatterlist |
| * element is used to fill a single TRE when the transaction is |
| * committed. So we need as many scatterlist elements as the |
| * maximum number of TREs that can be outstanding. |
| * |
| * All TREs in a transaction must fit within the channel's TLV FIFO. |
| * A transaction on a channel can allocate as many TREs as that but |
| * no more. |
| */ |
| ret = gsi_trans_pool_init(&trans_info->sg_pool, |
| sizeof(struct scatterlist), |
| tre_max, channel->tlv_count); |
| if (ret) |
| goto err_trans_pool_exit; |
| |
| /* Finally, the tre_avail field is what ultimately limits the number |
| * of outstanding transactions and their resources. A transaction |
| * allocation succeeds only if the TREs available are sufficient for |
| * what the transaction might need. Transaction resource pools are |
| * sized based on the maximum number of outstanding TREs, so there |
| * will always be resources available if there are TREs available. |
| */ |
| atomic_set(&trans_info->tre_avail, tre_max); |
| |
| spin_lock_init(&trans_info->spinlock); |
| INIT_LIST_HEAD(&trans_info->alloc); |
| INIT_LIST_HEAD(&trans_info->pending); |
| INIT_LIST_HEAD(&trans_info->complete); |
| INIT_LIST_HEAD(&trans_info->polled); |
| |
| return 0; |
| |
| err_trans_pool_exit: |
| gsi_trans_pool_exit(&trans_info->pool); |
| err_kfree: |
| kfree(trans_info->map); |
| |
| dev_err(gsi->dev, "error %d initializing channel %u transactions\n", |
| ret, channel_id); |
| |
| return ret; |
| } |
| |
| /* Inverse of gsi_channel_trans_init() */ |
| void gsi_channel_trans_exit(struct gsi_channel *channel) |
| { |
| struct gsi_trans_info *trans_info = &channel->trans_info; |
| |
| gsi_trans_pool_exit(&trans_info->sg_pool); |
| gsi_trans_pool_exit(&trans_info->pool); |
| kfree(trans_info->map); |
| } |