blob: 993b2fb429612c403821e060d0fb63cb83a19906 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/* Altera Triple-Speed Ethernet MAC driver
* Copyright (C) 2008-2014 Altera Corporation. All rights reserved
*
* Contributors:
* Dalon Westergreen
* Thomas Chou
* Ian Abbott
* Yuriy Kozlov
* Tobias Klauser
* Andriy Smolskyy
* Roman Bulgakov
* Dmytro Mytarchuk
* Matthew Gerlach
*
* Original driver contributed by SLS.
* Major updates contributed by GlobalLogic
*/
#include <linux/atomic.h>
#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/if_vlan.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mii.h>
#include <linux/netdevice.h>
#include <linux/of_device.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/of_platform.h>
#include <linux/phy.h>
#include <linux/platform_device.h>
#include <linux/skbuff.h>
#include <asm/cacheflush.h>
#include "altera_utils.h"
#include "altera_tse.h"
#include "altera_sgdma.h"
#include "altera_msgdma.h"
static atomic_t instance_count = ATOMIC_INIT(~0);
/* Module parameters */
static int debug = -1;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
NETIF_MSG_LINK | NETIF_MSG_IFUP |
NETIF_MSG_IFDOWN);
#define RX_DESCRIPTORS 64
static int dma_rx_num = RX_DESCRIPTORS;
module_param(dma_rx_num, int, 0644);
MODULE_PARM_DESC(dma_rx_num, "Number of descriptors in the RX list");
#define TX_DESCRIPTORS 64
static int dma_tx_num = TX_DESCRIPTORS;
module_param(dma_tx_num, int, 0644);
MODULE_PARM_DESC(dma_tx_num, "Number of descriptors in the TX list");
#define POLL_PHY (-1)
/* Make sure DMA buffer size is larger than the max frame size
* plus some alignment offset and a VLAN header. If the max frame size is
* 1518, a VLAN header would be additional 4 bytes and additional
* headroom for alignment is 2 bytes, 2048 is just fine.
*/
#define ALTERA_RXDMABUFFER_SIZE 2048
/* Allow network stack to resume queueing packets after we've
* finished transmitting at least 1/4 of the packets in the queue.
*/
#define TSE_TX_THRESH(x) (x->tx_ring_size / 4)
#define TXQUEUESTOP_THRESHHOLD 2
static const struct of_device_id altera_tse_ids[];
static inline u32 tse_tx_avail(struct altera_tse_private *priv)
{
return priv->tx_cons + priv->tx_ring_size - priv->tx_prod - 1;
}
/* PCS Register read/write functions
*/
static u16 sgmii_pcs_read(struct altera_tse_private *priv, int regnum)
{
return csrrd32(priv->mac_dev,
tse_csroffs(mdio_phy0) + regnum * 4) & 0xffff;
}
static void sgmii_pcs_write(struct altera_tse_private *priv, int regnum,
u16 value)
{
csrwr32(value, priv->mac_dev, tse_csroffs(mdio_phy0) + regnum * 4);
}
/* Check PCS scratch memory */
static int sgmii_pcs_scratch_test(struct altera_tse_private *priv, u16 value)
{
sgmii_pcs_write(priv, SGMII_PCS_SCRATCH, value);
return (sgmii_pcs_read(priv, SGMII_PCS_SCRATCH) == value);
}
/* MDIO specific functions
*/
static int altera_tse_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
{
struct net_device *ndev = bus->priv;
struct altera_tse_private *priv = netdev_priv(ndev);
/* set MDIO address */
csrwr32((mii_id & 0x1f), priv->mac_dev,
tse_csroffs(mdio_phy1_addr));
/* get the data */
return csrrd32(priv->mac_dev,
tse_csroffs(mdio_phy1) + regnum * 4) & 0xffff;
}
static int altera_tse_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
u16 value)
{
struct net_device *ndev = bus->priv;
struct altera_tse_private *priv = netdev_priv(ndev);
/* set MDIO address */
csrwr32((mii_id & 0x1f), priv->mac_dev,
tse_csroffs(mdio_phy1_addr));
/* write the data */
csrwr32(value, priv->mac_dev, tse_csroffs(mdio_phy1) + regnum * 4);
return 0;
}
static int altera_tse_mdio_create(struct net_device *dev, unsigned int id)
{
struct altera_tse_private *priv = netdev_priv(dev);
int ret;
struct device_node *mdio_node = NULL;
struct mii_bus *mdio = NULL;
struct device_node *child_node = NULL;
for_each_child_of_node(priv->device->of_node, child_node) {
if (of_device_is_compatible(child_node, "altr,tse-mdio")) {
mdio_node = child_node;
break;
}
}
if (mdio_node) {
netdev_dbg(dev, "FOUND MDIO subnode\n");
} else {
netdev_dbg(dev, "NO MDIO subnode\n");
return 0;
}
mdio = mdiobus_alloc();
if (mdio == NULL) {
netdev_err(dev, "Error allocating MDIO bus\n");
return -ENOMEM;
}
mdio->name = ALTERA_TSE_RESOURCE_NAME;
mdio->read = &altera_tse_mdio_read;
mdio->write = &altera_tse_mdio_write;
snprintf(mdio->id, MII_BUS_ID_SIZE, "%s-%u", mdio->name, id);
mdio->priv = dev;
mdio->parent = priv->device;
ret = of_mdiobus_register(mdio, mdio_node);
if (ret != 0) {
netdev_err(dev, "Cannot register MDIO bus %s\n",
mdio->id);
goto out_free_mdio;
}
if (netif_msg_drv(priv))
netdev_info(dev, "MDIO bus %s: created\n", mdio->id);
priv->mdio = mdio;
return 0;
out_free_mdio:
mdiobus_free(mdio);
mdio = NULL;
return ret;
}
static void altera_tse_mdio_destroy(struct net_device *dev)
{
struct altera_tse_private *priv = netdev_priv(dev);
if (priv->mdio == NULL)
return;
if (netif_msg_drv(priv))
netdev_info(dev, "MDIO bus %s: removed\n",
priv->mdio->id);
mdiobus_unregister(priv->mdio);
mdiobus_free(priv->mdio);
priv->mdio = NULL;
}
static int tse_init_rx_buffer(struct altera_tse_private *priv,
struct tse_buffer *rxbuffer, int len)
{
rxbuffer->skb = netdev_alloc_skb_ip_align(priv->dev, len);
if (!rxbuffer->skb)
return -ENOMEM;
rxbuffer->dma_addr = dma_map_single(priv->device, rxbuffer->skb->data,
len,
DMA_FROM_DEVICE);
if (dma_mapping_error(priv->device, rxbuffer->dma_addr)) {
netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
dev_kfree_skb_any(rxbuffer->skb);
return -EINVAL;
}
rxbuffer->dma_addr &= (dma_addr_t)~3;
rxbuffer->len = len;
return 0;
}
static void tse_free_rx_buffer(struct altera_tse_private *priv,
struct tse_buffer *rxbuffer)
{
struct sk_buff *skb = rxbuffer->skb;
dma_addr_t dma_addr = rxbuffer->dma_addr;
if (skb != NULL) {
if (dma_addr)
dma_unmap_single(priv->device, dma_addr,
rxbuffer->len,
DMA_FROM_DEVICE);
dev_kfree_skb_any(skb);
rxbuffer->skb = NULL;
rxbuffer->dma_addr = 0;
}
}
/* Unmap and free Tx buffer resources
*/
static void tse_free_tx_buffer(struct altera_tse_private *priv,
struct tse_buffer *buffer)
{
if (buffer->dma_addr) {
if (buffer->mapped_as_page)
dma_unmap_page(priv->device, buffer->dma_addr,
buffer->len, DMA_TO_DEVICE);
else
dma_unmap_single(priv->device, buffer->dma_addr,
buffer->len, DMA_TO_DEVICE);
buffer->dma_addr = 0;
}
if (buffer->skb) {
dev_kfree_skb_any(buffer->skb);
buffer->skb = NULL;
}
}
static int alloc_init_skbufs(struct altera_tse_private *priv)
{
unsigned int rx_descs = priv->rx_ring_size;
unsigned int tx_descs = priv->tx_ring_size;
int ret = -ENOMEM;
int i;
/* Create Rx ring buffer */
priv->rx_ring = kcalloc(rx_descs, sizeof(struct tse_buffer),
GFP_KERNEL);
if (!priv->rx_ring)
goto err_rx_ring;
/* Create Tx ring buffer */
priv->tx_ring = kcalloc(tx_descs, sizeof(struct tse_buffer),
GFP_KERNEL);
if (!priv->tx_ring)
goto err_tx_ring;
priv->tx_cons = 0;
priv->tx_prod = 0;
/* Init Rx ring */
for (i = 0; i < rx_descs; i++) {
ret = tse_init_rx_buffer(priv, &priv->rx_ring[i],
priv->rx_dma_buf_sz);
if (ret)
goto err_init_rx_buffers;
}
priv->rx_cons = 0;
priv->rx_prod = 0;
return 0;
err_init_rx_buffers:
while (--i >= 0)
tse_free_rx_buffer(priv, &priv->rx_ring[i]);
kfree(priv->tx_ring);
err_tx_ring:
kfree(priv->rx_ring);
err_rx_ring:
return ret;
}
static void free_skbufs(struct net_device *dev)
{
struct altera_tse_private *priv = netdev_priv(dev);
unsigned int rx_descs = priv->rx_ring_size;
unsigned int tx_descs = priv->tx_ring_size;
int i;
/* Release the DMA TX/RX socket buffers */
for (i = 0; i < rx_descs; i++)
tse_free_rx_buffer(priv, &priv->rx_ring[i]);
for (i = 0; i < tx_descs; i++)
tse_free_tx_buffer(priv, &priv->tx_ring[i]);
kfree(priv->tx_ring);
}
/* Reallocate the skb for the reception process
*/
static inline void tse_rx_refill(struct altera_tse_private *priv)
{
unsigned int rxsize = priv->rx_ring_size;
unsigned int entry;
int ret;
for (; priv->rx_cons - priv->rx_prod > 0;
priv->rx_prod++) {
entry = priv->rx_prod % rxsize;
if (likely(priv->rx_ring[entry].skb == NULL)) {
ret = tse_init_rx_buffer(priv, &priv->rx_ring[entry],
priv->rx_dma_buf_sz);
if (unlikely(ret != 0))
break;
priv->dmaops->add_rx_desc(priv, &priv->rx_ring[entry]);
}
}
}
/* Pull out the VLAN tag and fix up the packet
*/
static inline void tse_rx_vlan(struct net_device *dev, struct sk_buff *skb)
{
struct ethhdr *eth_hdr;
u16 vid;
if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
!__vlan_get_tag(skb, &vid)) {
eth_hdr = (struct ethhdr *)skb->data;
memmove(skb->data + VLAN_HLEN, eth_hdr, ETH_ALEN * 2);
skb_pull(skb, VLAN_HLEN);
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
}
}
/* Receive a packet: retrieve and pass over to upper levels
*/
static int tse_rx(struct altera_tse_private *priv, int limit)
{
unsigned int count = 0;
unsigned int next_entry;
struct sk_buff *skb;
unsigned int entry = priv->rx_cons % priv->rx_ring_size;
u32 rxstatus;
u16 pktlength;
u16 pktstatus;
/* Check for count < limit first as get_rx_status is changing
* the response-fifo so we must process the next packet
* after calling get_rx_status if a response is pending.
* (reading the last byte of the response pops the value from the fifo.)
*/
while ((count < limit) &&
((rxstatus = priv->dmaops->get_rx_status(priv)) != 0)) {
pktstatus = rxstatus >> 16;
pktlength = rxstatus & 0xffff;
if ((pktstatus & 0xFF) || (pktlength == 0))
netdev_err(priv->dev,
"RCV pktstatus %08X pktlength %08X\n",
pktstatus, pktlength);
/* DMA trasfer from TSE starts with 2 aditional bytes for
* IP payload alignment. Status returned by get_rx_status()
* contains DMA transfer length. Packet is 2 bytes shorter.
*/
pktlength -= 2;
count++;
next_entry = (++priv->rx_cons) % priv->rx_ring_size;
skb = priv->rx_ring[entry].skb;
if (unlikely(!skb)) {
netdev_err(priv->dev,
"%s: Inconsistent Rx descriptor chain\n",
__func__);
priv->dev->stats.rx_dropped++;
break;
}
priv->rx_ring[entry].skb = NULL;
skb_put(skb, pktlength);
dma_unmap_single(priv->device, priv->rx_ring[entry].dma_addr,
priv->rx_ring[entry].len, DMA_FROM_DEVICE);
if (netif_msg_pktdata(priv)) {
netdev_info(priv->dev, "frame received %d bytes\n",
pktlength);
print_hex_dump(KERN_ERR, "data: ", DUMP_PREFIX_OFFSET,
16, 1, skb->data, pktlength, true);
}
tse_rx_vlan(priv->dev, skb);
skb->protocol = eth_type_trans(skb, priv->dev);
skb_checksum_none_assert(skb);
napi_gro_receive(&priv->napi, skb);
priv->dev->stats.rx_packets++;
priv->dev->stats.rx_bytes += pktlength;
entry = next_entry;
tse_rx_refill(priv);
}
return count;
}
/* Reclaim resources after transmission completes
*/
static int tse_tx_complete(struct altera_tse_private *priv)
{
unsigned int txsize = priv->tx_ring_size;
u32 ready;
unsigned int entry;
struct tse_buffer *tx_buff;
int txcomplete = 0;
spin_lock(&priv->tx_lock);
ready = priv->dmaops->tx_completions(priv);
/* Free sent buffers */
while (ready && (priv->tx_cons != priv->tx_prod)) {
entry = priv->tx_cons % txsize;
tx_buff = &priv->tx_ring[entry];
if (netif_msg_tx_done(priv))
netdev_dbg(priv->dev, "%s: curr %d, dirty %d\n",
__func__, priv->tx_prod, priv->tx_cons);
if (likely(tx_buff->skb))
priv->dev->stats.tx_packets++;
tse_free_tx_buffer(priv, tx_buff);
priv->tx_cons++;
txcomplete++;
ready--;
}
if (unlikely(netif_queue_stopped(priv->dev) &&
tse_tx_avail(priv) > TSE_TX_THRESH(priv))) {
if (netif_queue_stopped(priv->dev) &&
tse_tx_avail(priv) > TSE_TX_THRESH(priv)) {
if (netif_msg_tx_done(priv))
netdev_dbg(priv->dev, "%s: restart transmit\n",
__func__);
netif_wake_queue(priv->dev);
}
}
spin_unlock(&priv->tx_lock);
return txcomplete;
}
/* NAPI polling function
*/
static int tse_poll(struct napi_struct *napi, int budget)
{
struct altera_tse_private *priv =
container_of(napi, struct altera_tse_private, napi);
int rxcomplete = 0;
unsigned long int flags;
tse_tx_complete(priv);
rxcomplete = tse_rx(priv, budget);
if (rxcomplete < budget) {
napi_complete_done(napi, rxcomplete);
netdev_dbg(priv->dev,
"NAPI Complete, did %d packets with budget %d\n",
rxcomplete, budget);
spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
priv->dmaops->enable_rxirq(priv);
priv->dmaops->enable_txirq(priv);
spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
}
return rxcomplete;
}
/* DMA TX & RX FIFO interrupt routing
*/
static irqreturn_t altera_isr(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct altera_tse_private *priv;
if (unlikely(!dev)) {
pr_err("%s: invalid dev pointer\n", __func__);
return IRQ_NONE;
}
priv = netdev_priv(dev);
spin_lock(&priv->rxdma_irq_lock);
/* reset IRQs */
priv->dmaops->clear_rxirq(priv);
priv->dmaops->clear_txirq(priv);
spin_unlock(&priv->rxdma_irq_lock);
if (likely(napi_schedule_prep(&priv->napi))) {
spin_lock(&priv->rxdma_irq_lock);
priv->dmaops->disable_rxirq(priv);
priv->dmaops->disable_txirq(priv);
spin_unlock(&priv->rxdma_irq_lock);
__napi_schedule(&priv->napi);
}
return IRQ_HANDLED;
}
/* Transmit a packet (called by the kernel). Dispatches
* either the SGDMA method for transmitting or the
* MSGDMA method, assumes no scatter/gather support,
* implying an assumption that there's only one
* physically contiguous fragment starting at
* skb->data, for length of skb_headlen(skb).
*/
static netdev_tx_t tse_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct altera_tse_private *priv = netdev_priv(dev);
unsigned int txsize = priv->tx_ring_size;
unsigned int entry;
struct tse_buffer *buffer = NULL;
int nfrags = skb_shinfo(skb)->nr_frags;
unsigned int nopaged_len = skb_headlen(skb);
netdev_tx_t ret = NETDEV_TX_OK;
dma_addr_t dma_addr;
spin_lock_bh(&priv->tx_lock);
if (unlikely(tse_tx_avail(priv) < nfrags + 1)) {
if (!netif_queue_stopped(dev)) {
netif_stop_queue(dev);
/* This is a hard error, log it. */
netdev_err(priv->dev,
"%s: Tx list full when queue awake\n",
__func__);
}
ret = NETDEV_TX_BUSY;
goto out;
}
/* Map the first skb fragment */
entry = priv->tx_prod % txsize;
buffer = &priv->tx_ring[entry];
dma_addr = dma_map_single(priv->device, skb->data, nopaged_len,
DMA_TO_DEVICE);
if (dma_mapping_error(priv->device, dma_addr)) {
netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
ret = NETDEV_TX_OK;
goto out;
}
buffer->skb = skb;
buffer->dma_addr = dma_addr;
buffer->len = nopaged_len;
priv->dmaops->tx_buffer(priv, buffer);
skb_tx_timestamp(skb);
priv->tx_prod++;
dev->stats.tx_bytes += skb->len;
if (unlikely(tse_tx_avail(priv) <= TXQUEUESTOP_THRESHHOLD)) {
if (netif_msg_hw(priv))
netdev_dbg(priv->dev, "%s: stop transmitted packets\n",
__func__);
netif_stop_queue(dev);
}
out:
spin_unlock_bh(&priv->tx_lock);
return ret;
}
/* Called every time the controller might need to be made
* aware of new link state. The PHY code conveys this
* information through variables in the phydev structure, and this
* function converts those variables into the appropriate
* register values, and can bring down the device if needed.
*/
static void altera_tse_adjust_link(struct net_device *dev)
{
struct altera_tse_private *priv = netdev_priv(dev);
struct phy_device *phydev = dev->phydev;
int new_state = 0;
/* only change config if there is a link */
spin_lock(&priv->mac_cfg_lock);
if (phydev->link) {
/* Read old config */
u32 cfg_reg = ioread32(&priv->mac_dev->command_config);
/* Check duplex */
if (phydev->duplex != priv->oldduplex) {
new_state = 1;
if (!(phydev->duplex))
cfg_reg |= MAC_CMDCFG_HD_ENA;
else
cfg_reg &= ~MAC_CMDCFG_HD_ENA;
netdev_dbg(priv->dev, "%s: Link duplex = 0x%x\n",
dev->name, phydev->duplex);
priv->oldduplex = phydev->duplex;
}
/* Check speed */
if (phydev->speed != priv->oldspeed) {
new_state = 1;
switch (phydev->speed) {
case 1000:
cfg_reg |= MAC_CMDCFG_ETH_SPEED;
cfg_reg &= ~MAC_CMDCFG_ENA_10;
break;
case 100:
cfg_reg &= ~MAC_CMDCFG_ETH_SPEED;
cfg_reg &= ~MAC_CMDCFG_ENA_10;
break;
case 10:
cfg_reg &= ~MAC_CMDCFG_ETH_SPEED;
cfg_reg |= MAC_CMDCFG_ENA_10;
break;
default:
if (netif_msg_link(priv))
netdev_warn(dev, "Speed (%d) is not 10/100/1000!\n",
phydev->speed);
break;
}
priv->oldspeed = phydev->speed;
}
iowrite32(cfg_reg, &priv->mac_dev->command_config);
if (!priv->oldlink) {
new_state = 1;
priv->oldlink = 1;
}
} else if (priv->oldlink) {
new_state = 1;
priv->oldlink = 0;
priv->oldspeed = 0;
priv->oldduplex = -1;
}
if (new_state && netif_msg_link(priv))
phy_print_status(phydev);
spin_unlock(&priv->mac_cfg_lock);
}
static struct phy_device *connect_local_phy(struct net_device *dev)
{
struct altera_tse_private *priv = netdev_priv(dev);
struct phy_device *phydev = NULL;
char phy_id_fmt[MII_BUS_ID_SIZE + 3];
if (priv->phy_addr != POLL_PHY) {
snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT,
priv->mdio->id, priv->phy_addr);
netdev_dbg(dev, "trying to attach to %s\n", phy_id_fmt);
phydev = phy_connect(dev, phy_id_fmt, &altera_tse_adjust_link,
priv->phy_iface);
if (IS_ERR(phydev)) {
netdev_err(dev, "Could not attach to PHY\n");
phydev = NULL;
}
} else {
int ret;
phydev = phy_find_first(priv->mdio);
if (phydev == NULL) {
netdev_err(dev, "No PHY found\n");
return phydev;
}
ret = phy_connect_direct(dev, phydev, &altera_tse_adjust_link,
priv->phy_iface);
if (ret != 0) {
netdev_err(dev, "Could not attach to PHY\n");
phydev = NULL;
}
}
return phydev;
}
static int altera_tse_phy_get_addr_mdio_create(struct net_device *dev)
{
struct altera_tse_private *priv = netdev_priv(dev);
struct device_node *np = priv->device->of_node;
int ret;
ret = of_get_phy_mode(np, &priv->phy_iface);
/* Avoid get phy addr and create mdio if no phy is present */
if (ret)
return 0;
/* try to get PHY address from device tree, use PHY autodetection if
* no valid address is given
*/
if (of_property_read_u32(priv->device->of_node, "phy-addr",
&priv->phy_addr)) {
priv->phy_addr = POLL_PHY;
}
if (!((priv->phy_addr == POLL_PHY) ||
((priv->phy_addr >= 0) && (priv->phy_addr < PHY_MAX_ADDR)))) {
netdev_err(dev, "invalid phy-addr specified %d\n",
priv->phy_addr);
return -ENODEV;
}
/* Create/attach to MDIO bus */
ret = altera_tse_mdio_create(dev,
atomic_add_return(1, &instance_count));
if (ret)
return -ENODEV;
return 0;
}
/* Initialize driver's PHY state, and attach to the PHY
*/
static int init_phy(struct net_device *dev)
{
struct altera_tse_private *priv = netdev_priv(dev);
struct phy_device *phydev;
struct device_node *phynode;
bool fixed_link = false;
int rc = 0;
/* Avoid init phy in case of no phy present */
if (!priv->phy_iface)
return 0;
priv->oldlink = 0;
priv->oldspeed = 0;
priv->oldduplex = -1;
phynode = of_parse_phandle(priv->device->of_node, "phy-handle", 0);
if (!phynode) {
/* check if a fixed-link is defined in device-tree */
if (of_phy_is_fixed_link(priv->device->of_node)) {
rc = of_phy_register_fixed_link(priv->device->of_node);
if (rc < 0) {
netdev_err(dev, "cannot register fixed PHY\n");
return rc;
}
/* In the case of a fixed PHY, the DT node associated
* to the PHY is the Ethernet MAC DT node.
*/
phynode = of_node_get(priv->device->of_node);
fixed_link = true;
netdev_dbg(dev, "fixed-link detected\n");
phydev = of_phy_connect(dev, phynode,
&altera_tse_adjust_link,
0, priv->phy_iface);
} else {
netdev_dbg(dev, "no phy-handle found\n");
if (!priv->mdio) {
netdev_err(dev, "No phy-handle nor local mdio specified\n");
return -ENODEV;
}
phydev = connect_local_phy(dev);
}
} else {
netdev_dbg(dev, "phy-handle found\n");
phydev = of_phy_connect(dev, phynode,
&altera_tse_adjust_link, 0, priv->phy_iface);
}
of_node_put(phynode);
if (!phydev) {
netdev_err(dev, "Could not find the PHY\n");
if (fixed_link)
of_phy_deregister_fixed_link(priv->device->of_node);
return -ENODEV;
}
/* Stop Advertising 1000BASE Capability if interface is not GMII
*/
if ((priv->phy_iface == PHY_INTERFACE_MODE_MII) ||
(priv->phy_iface == PHY_INTERFACE_MODE_RMII))
phy_set_max_speed(phydev, SPEED_100);
/* Broken HW is sometimes missing the pull-up resistor on the
* MDIO line, which results in reads to non-existent devices returning
* 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
* device as well. If a fixed-link is used the phy_id is always 0.
* Note: phydev->phy_id is the result of reading the UID PHY registers.
*/
if ((phydev->phy_id == 0) && !fixed_link) {
netdev_err(dev, "Bad PHY UID 0x%08x\n", phydev->phy_id);
phy_disconnect(phydev);
return -ENODEV;
}
netdev_dbg(dev, "attached to PHY %d UID 0x%08x Link = %d\n",
phydev->mdio.addr, phydev->phy_id, phydev->link);
return 0;
}
static void tse_update_mac_addr(struct altera_tse_private *priv, const u8 *addr)
{
u32 msb;
u32 lsb;
msb = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0];
lsb = ((addr[5] << 8) | addr[4]) & 0xffff;
/* Set primary MAC address */
csrwr32(msb, priv->mac_dev, tse_csroffs(mac_addr_0));
csrwr32(lsb, priv->mac_dev, tse_csroffs(mac_addr_1));
}
/* MAC software reset.
* When reset is triggered, the MAC function completes the current
* transmission or reception, and subsequently disables the transmit and
* receive logic, flushes the receive FIFO buffer, and resets the statistics
* counters.
*/
static int reset_mac(struct altera_tse_private *priv)
{
int counter;
u32 dat;
dat = csrrd32(priv->mac_dev, tse_csroffs(command_config));
dat &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA);
dat |= MAC_CMDCFG_SW_RESET | MAC_CMDCFG_CNT_RESET;
csrwr32(dat, priv->mac_dev, tse_csroffs(command_config));
counter = 0;
while (counter++ < ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) {
if (tse_bit_is_clear(priv->mac_dev, tse_csroffs(command_config),
MAC_CMDCFG_SW_RESET))
break;
udelay(1);
}
if (counter >= ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) {
dat = csrrd32(priv->mac_dev, tse_csroffs(command_config));
dat &= ~MAC_CMDCFG_SW_RESET;
csrwr32(dat, priv->mac_dev, tse_csroffs(command_config));
return -1;
}
return 0;
}
/* Initialize MAC core registers
*/
static int init_mac(struct altera_tse_private *priv)
{
unsigned int cmd = 0;
u32 frm_length;
/* Setup Rx FIFO */
csrwr32(priv->rx_fifo_depth - ALTERA_TSE_RX_SECTION_EMPTY,
priv->mac_dev, tse_csroffs(rx_section_empty));
csrwr32(ALTERA_TSE_RX_SECTION_FULL, priv->mac_dev,
tse_csroffs(rx_section_full));
csrwr32(ALTERA_TSE_RX_ALMOST_EMPTY, priv->mac_dev,
tse_csroffs(rx_almost_empty));
csrwr32(ALTERA_TSE_RX_ALMOST_FULL, priv->mac_dev,
tse_csroffs(rx_almost_full));
/* Setup Tx FIFO */
csrwr32(priv->tx_fifo_depth - ALTERA_TSE_TX_SECTION_EMPTY,
priv->mac_dev, tse_csroffs(tx_section_empty));
csrwr32(ALTERA_TSE_TX_SECTION_FULL, priv->mac_dev,
tse_csroffs(tx_section_full));
csrwr32(ALTERA_TSE_TX_ALMOST_EMPTY, priv->mac_dev,
tse_csroffs(tx_almost_empty));
csrwr32(ALTERA_TSE_TX_ALMOST_FULL, priv->mac_dev,
tse_csroffs(tx_almost_full));
/* MAC Address Configuration */
tse_update_mac_addr(priv, priv->dev->dev_addr);
/* MAC Function Configuration */
frm_length = ETH_HLEN + priv->dev->mtu + ETH_FCS_LEN;
csrwr32(frm_length, priv->mac_dev, tse_csroffs(frm_length));
csrwr32(ALTERA_TSE_TX_IPG_LENGTH, priv->mac_dev,
tse_csroffs(tx_ipg_length));
/* Disable RX/TX shift 16 for alignment of all received frames on 16-bit
* start address
*/
tse_set_bit(priv->mac_dev, tse_csroffs(rx_cmd_stat),
ALTERA_TSE_RX_CMD_STAT_RX_SHIFT16);
tse_clear_bit(priv->mac_dev, tse_csroffs(tx_cmd_stat),
ALTERA_TSE_TX_CMD_STAT_TX_SHIFT16 |
ALTERA_TSE_TX_CMD_STAT_OMIT_CRC);
/* Set the MAC options */
cmd = csrrd32(priv->mac_dev, tse_csroffs(command_config));
cmd &= ~MAC_CMDCFG_PAD_EN; /* No padding Removal on Receive */
cmd &= ~MAC_CMDCFG_CRC_FWD; /* CRC Removal */
cmd |= MAC_CMDCFG_RX_ERR_DISC; /* Automatically discard frames
* with CRC errors
*/
cmd |= MAC_CMDCFG_CNTL_FRM_ENA;
cmd &= ~MAC_CMDCFG_TX_ENA;
cmd &= ~MAC_CMDCFG_RX_ENA;
/* Default speed and duplex setting, full/100 */
cmd &= ~MAC_CMDCFG_HD_ENA;
cmd &= ~MAC_CMDCFG_ETH_SPEED;
cmd &= ~MAC_CMDCFG_ENA_10;
csrwr32(cmd, priv->mac_dev, tse_csroffs(command_config));
csrwr32(ALTERA_TSE_PAUSE_QUANTA, priv->mac_dev,
tse_csroffs(pause_quanta));
if (netif_msg_hw(priv))
dev_dbg(priv->device,
"MAC post-initialization: CMD_CONFIG = 0x%08x\n", cmd);
return 0;
}
/* Start/stop MAC transmission logic
*/
static void tse_set_mac(struct altera_tse_private *priv, bool enable)
{
u32 value = csrrd32(priv->mac_dev, tse_csroffs(command_config));
if (enable)
value |= MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA;
else
value &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA);
csrwr32(value, priv->mac_dev, tse_csroffs(command_config));
}
/* Change the MTU
*/
static int tse_change_mtu(struct net_device *dev, int new_mtu)
{
if (netif_running(dev)) {
netdev_err(dev, "must be stopped to change its MTU\n");
return -EBUSY;
}
dev->mtu = new_mtu;
netdev_update_features(dev);
return 0;
}
static void altera_tse_set_mcfilter(struct net_device *dev)
{
struct altera_tse_private *priv = netdev_priv(dev);
int i;
struct netdev_hw_addr *ha;
/* clear the hash filter */
for (i = 0; i < 64; i++)
csrwr32(0, priv->mac_dev, tse_csroffs(hash_table) + i * 4);
netdev_for_each_mc_addr(ha, dev) {
unsigned int hash = 0;
int mac_octet;
for (mac_octet = 5; mac_octet >= 0; mac_octet--) {
unsigned char xor_bit = 0;
unsigned char octet = ha->addr[mac_octet];
unsigned int bitshift;
for (bitshift = 0; bitshift < 8; bitshift++)
xor_bit ^= ((octet >> bitshift) & 0x01);
hash = (hash << 1) | xor_bit;
}
csrwr32(1, priv->mac_dev, tse_csroffs(hash_table) + hash * 4);
}
}
static void altera_tse_set_mcfilterall(struct net_device *dev)
{
struct altera_tse_private *priv = netdev_priv(dev);
int i;
/* set the hash filter */
for (i = 0; i < 64; i++)
csrwr32(1, priv->mac_dev, tse_csroffs(hash_table) + i * 4);
}
/* Set or clear the multicast filter for this adaptor
*/
static void tse_set_rx_mode_hashfilter(struct net_device *dev)
{
struct altera_tse_private *priv = netdev_priv(dev);
spin_lock(&priv->mac_cfg_lock);
if (dev->flags & IFF_PROMISC)
tse_set_bit(priv->mac_dev, tse_csroffs(command_config),
MAC_CMDCFG_PROMIS_EN);
if (dev->flags & IFF_ALLMULTI)
altera_tse_set_mcfilterall(dev);
else
altera_tse_set_mcfilter(dev);
spin_unlock(&priv->mac_cfg_lock);
}
/* Set or clear the multicast filter for this adaptor
*/
static void tse_set_rx_mode(struct net_device *dev)
{
struct altera_tse_private *priv = netdev_priv(dev);
spin_lock(&priv->mac_cfg_lock);
if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI) ||
!netdev_mc_empty(dev) || !netdev_uc_empty(dev))
tse_set_bit(priv->mac_dev, tse_csroffs(command_config),
MAC_CMDCFG_PROMIS_EN);
else
tse_clear_bit(priv->mac_dev, tse_csroffs(command_config),
MAC_CMDCFG_PROMIS_EN);
spin_unlock(&priv->mac_cfg_lock);
}
/* Initialise (if necessary) the SGMII PCS component
*/
static int init_sgmii_pcs(struct net_device *dev)
{
struct altera_tse_private *priv = netdev_priv(dev);
int n;
unsigned int tmp_reg = 0;
if (priv->phy_iface != PHY_INTERFACE_MODE_SGMII)
return 0; /* Nothing to do, not in SGMII mode */
/* The TSE SGMII PCS block looks a little like a PHY, it is
* mapped into the zeroth MDIO space of the MAC and it has
* ID registers like a PHY would. Sadly this is often
* configured to zeroes, so don't be surprised if it does
* show 0x00000000.
*/
if (sgmii_pcs_scratch_test(priv, 0x0000) &&
sgmii_pcs_scratch_test(priv, 0xffff) &&
sgmii_pcs_scratch_test(priv, 0xa5a5) &&
sgmii_pcs_scratch_test(priv, 0x5a5a)) {
netdev_info(dev, "PCS PHY ID: 0x%04x%04x\n",
sgmii_pcs_read(priv, MII_PHYSID1),
sgmii_pcs_read(priv, MII_PHYSID2));
} else {
netdev_err(dev, "SGMII PCS Scratch memory test failed.\n");
return -ENOMEM;
}
/* Starting on page 5-29 of the MegaCore Function User Guide
* Set SGMII Link timer to 1.6ms
*/
sgmii_pcs_write(priv, SGMII_PCS_LINK_TIMER_0, 0x0D40);
sgmii_pcs_write(priv, SGMII_PCS_LINK_TIMER_1, 0x03);
/* Enable SGMII Interface and Enable SGMII Auto Negotiation */
sgmii_pcs_write(priv, SGMII_PCS_IF_MODE, 0x3);
/* Enable Autonegotiation */
tmp_reg = sgmii_pcs_read(priv, MII_BMCR);
tmp_reg |= (BMCR_SPEED1000 | BMCR_FULLDPLX | BMCR_ANENABLE);
sgmii_pcs_write(priv, MII_BMCR, tmp_reg);
/* Reset PCS block */
tmp_reg |= BMCR_RESET;
sgmii_pcs_write(priv, MII_BMCR, tmp_reg);
for (n = 0; n < SGMII_PCS_SW_RESET_TIMEOUT; n++) {
if (!(sgmii_pcs_read(priv, MII_BMCR) & BMCR_RESET)) {
netdev_info(dev, "SGMII PCS block initialised OK\n");
return 0;
}
udelay(1);
}
/* We failed to reset the block, return a timeout */
netdev_err(dev, "SGMII PCS block reset failed.\n");
return -ETIMEDOUT;
}
/* Open and initialize the interface
*/
static int tse_open(struct net_device *dev)
{
struct altera_tse_private *priv = netdev_priv(dev);
int ret = 0;
int i;
unsigned long int flags;
/* Reset and configure TSE MAC and probe associated PHY */
ret = priv->dmaops->init_dma(priv);
if (ret != 0) {
netdev_err(dev, "Cannot initialize DMA\n");
goto phy_error;
}
if (netif_msg_ifup(priv))
netdev_warn(dev, "device MAC address %pM\n",
dev->dev_addr);
if ((priv->revision < 0xd00) || (priv->revision > 0xe00))
netdev_warn(dev, "TSE revision %x\n", priv->revision);
spin_lock(&priv->mac_cfg_lock);
/* no-op if MAC not operating in SGMII mode*/
ret = init_sgmii_pcs(dev);
if (ret) {
netdev_err(dev,
"Cannot init the SGMII PCS (error: %d)\n", ret);
spin_unlock(&priv->mac_cfg_lock);
goto phy_error;
}
ret = reset_mac(priv);
/* Note that reset_mac will fail if the clocks are gated by the PHY
* due to the PHY being put into isolation or power down mode.
* This is not an error if reset fails due to no clock.
*/
if (ret)
netdev_dbg(dev, "Cannot reset MAC core (error: %d)\n", ret);
ret = init_mac(priv);
spin_unlock(&priv->mac_cfg_lock);
if (ret) {
netdev_err(dev, "Cannot init MAC core (error: %d)\n", ret);
goto alloc_skbuf_error;
}
priv->dmaops->reset_dma(priv);
/* Create and initialize the TX/RX descriptors chains. */
priv->rx_ring_size = dma_rx_num;
priv->tx_ring_size = dma_tx_num;
ret = alloc_init_skbufs(priv);
if (ret) {
netdev_err(dev, "DMA descriptors initialization failed\n");
goto alloc_skbuf_error;
}
/* Register RX interrupt */
ret = request_irq(priv->rx_irq, altera_isr, IRQF_SHARED,
dev->name, dev);
if (ret) {
netdev_err(dev, "Unable to register RX interrupt %d\n",
priv->rx_irq);
goto init_error;
}
/* Register TX interrupt */
ret = request_irq(priv->tx_irq, altera_isr, IRQF_SHARED,
dev->name, dev);
if (ret) {
netdev_err(dev, "Unable to register TX interrupt %d\n",
priv->tx_irq);
goto tx_request_irq_error;
}
/* Enable DMA interrupts */
spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
priv->dmaops->enable_rxirq(priv);
priv->dmaops->enable_txirq(priv);
/* Setup RX descriptor chain */
for (i = 0; i < priv->rx_ring_size; i++)
priv->dmaops->add_rx_desc(priv, &priv->rx_ring[i]);
spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
if (dev->phydev)
phy_start(dev->phydev);
napi_enable(&priv->napi);
netif_start_queue(dev);
priv->dmaops->start_rxdma(priv);
/* Start MAC Rx/Tx */
spin_lock(&priv->mac_cfg_lock);
tse_set_mac(priv, true);
spin_unlock(&priv->mac_cfg_lock);
return 0;
tx_request_irq_error:
free_irq(priv->rx_irq, dev);
init_error:
free_skbufs(dev);
alloc_skbuf_error:
phy_error:
return ret;
}
/* Stop TSE MAC interface and put the device in an inactive state
*/
static int tse_shutdown(struct net_device *dev)
{
struct altera_tse_private *priv = netdev_priv(dev);
int ret;
unsigned long int flags;
/* Stop the PHY */
if (dev->phydev)
phy_stop(dev->phydev);
netif_stop_queue(dev);
napi_disable(&priv->napi);
/* Disable DMA interrupts */
spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
priv->dmaops->disable_rxirq(priv);
priv->dmaops->disable_txirq(priv);
spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
/* Free the IRQ lines */
free_irq(priv->rx_irq, dev);
free_irq(priv->tx_irq, dev);
/* disable and reset the MAC, empties fifo */
spin_lock(&priv->mac_cfg_lock);
spin_lock(&priv->tx_lock);
ret = reset_mac(priv);
/* Note that reset_mac will fail if the clocks are gated by the PHY
* due to the PHY being put into isolation or power down mode.
* This is not an error if reset fails due to no clock.
*/
if (ret)
netdev_dbg(dev, "Cannot reset MAC core (error: %d)\n", ret);
priv->dmaops->reset_dma(priv);
free_skbufs(dev);
spin_unlock(&priv->tx_lock);
spin_unlock(&priv->mac_cfg_lock);
priv->dmaops->uninit_dma(priv);
return 0;
}
static struct net_device_ops altera_tse_netdev_ops = {
.ndo_open = tse_open,
.ndo_stop = tse_shutdown,
.ndo_start_xmit = tse_start_xmit,
.ndo_set_mac_address = eth_mac_addr,
.ndo_set_rx_mode = tse_set_rx_mode,
.ndo_change_mtu = tse_change_mtu,
.ndo_validate_addr = eth_validate_addr,
};
static int request_and_map(struct platform_device *pdev, const char *name,
struct resource **res, void __iomem **ptr)
{
struct resource *region;
struct device *device = &pdev->dev;
*res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name);
if (*res == NULL) {
dev_err(device, "resource %s not defined\n", name);
return -ENODEV;
}
region = devm_request_mem_region(device, (*res)->start,
resource_size(*res), dev_name(device));
if (region == NULL) {
dev_err(device, "unable to request %s\n", name);
return -EBUSY;
}
*ptr = devm_ioremap(device, region->start,
resource_size(region));
if (*ptr == NULL) {
dev_err(device, "ioremap of %s failed!", name);
return -ENOMEM;
}
return 0;
}
/* Probe Altera TSE MAC device
*/
static int altera_tse_probe(struct platform_device *pdev)
{
struct net_device *ndev;
int ret = -ENODEV;
struct resource *control_port;
struct resource *dma_res;
struct altera_tse_private *priv;
void __iomem *descmap;
const struct of_device_id *of_id = NULL;
ndev = alloc_etherdev(sizeof(struct altera_tse_private));
if (!ndev) {
dev_err(&pdev->dev, "Could not allocate network device\n");
return -ENODEV;
}
SET_NETDEV_DEV(ndev, &pdev->dev);
priv = netdev_priv(ndev);
priv->device = &pdev->dev;
priv->dev = ndev;
priv->msg_enable = netif_msg_init(debug, default_msg_level);
of_id = of_match_device(altera_tse_ids, &pdev->dev);
if (of_id)
priv->dmaops = (struct altera_dmaops *)of_id->data;
if (priv->dmaops &&
priv->dmaops->altera_dtype == ALTERA_DTYPE_SGDMA) {
/* Get the mapped address to the SGDMA descriptor memory */
ret = request_and_map(pdev, "s1", &dma_res, &descmap);
if (ret)
goto err_free_netdev;
/* Start of that memory is for transmit descriptors */
priv->tx_dma_desc = descmap;
/* First half is for tx descriptors, other half for tx */
priv->txdescmem = resource_size(dma_res)/2;
priv->txdescmem_busaddr = (dma_addr_t)dma_res->start;
priv->rx_dma_desc = (void __iomem *)((uintptr_t)(descmap +
priv->txdescmem));
priv->rxdescmem = resource_size(dma_res)/2;
priv->rxdescmem_busaddr = dma_res->start;
priv->rxdescmem_busaddr += priv->txdescmem;
if (upper_32_bits(priv->rxdescmem_busaddr)) {
dev_dbg(priv->device,
"SGDMA bus addresses greater than 32-bits\n");
ret = -EINVAL;
goto err_free_netdev;
}
if (upper_32_bits(priv->txdescmem_busaddr)) {
dev_dbg(priv->device,
"SGDMA bus addresses greater than 32-bits\n");
ret = -EINVAL;
goto err_free_netdev;
}
} else if (priv->dmaops &&
priv->dmaops->altera_dtype == ALTERA_DTYPE_MSGDMA) {
ret = request_and_map(pdev, "rx_resp", &dma_res,
&priv->rx_dma_resp);
if (ret)
goto err_free_netdev;
ret = request_and_map(pdev, "tx_desc", &dma_res,
&priv->tx_dma_desc);
if (ret)
goto err_free_netdev;
priv->txdescmem = resource_size(dma_res);
priv->txdescmem_busaddr = dma_res->start;
ret = request_and_map(pdev, "rx_desc", &dma_res,
&priv->rx_dma_desc);
if (ret)
goto err_free_netdev;
priv->rxdescmem = resource_size(dma_res);
priv->rxdescmem_busaddr = dma_res->start;
} else {
ret = -ENODEV;
goto err_free_netdev;
}
if (!dma_set_mask(priv->device, DMA_BIT_MASK(priv->dmaops->dmamask))) {
dma_set_coherent_mask(priv->device,
DMA_BIT_MASK(priv->dmaops->dmamask));
} else if (!dma_set_mask(priv->device, DMA_BIT_MASK(32))) {
dma_set_coherent_mask(priv->device, DMA_BIT_MASK(32));
} else {
ret = -EIO;
goto err_free_netdev;
}
/* MAC address space */
ret = request_and_map(pdev, "control_port", &control_port,
(void __iomem **)&priv->mac_dev);
if (ret)
goto err_free_netdev;
/* xSGDMA Rx Dispatcher address space */
ret = request_and_map(pdev, "rx_csr", &dma_res,
&priv->rx_dma_csr);
if (ret)
goto err_free_netdev;
/* xSGDMA Tx Dispatcher address space */
ret = request_and_map(pdev, "tx_csr", &dma_res,
&priv->tx_dma_csr);
if (ret)
goto err_free_netdev;
/* Rx IRQ */
priv->rx_irq = platform_get_irq_byname(pdev, "rx_irq");
if (priv->rx_irq == -ENXIO) {
dev_err(&pdev->dev, "cannot obtain Rx IRQ\n");
ret = -ENXIO;
goto err_free_netdev;
}
/* Tx IRQ */
priv->tx_irq = platform_get_irq_byname(pdev, "tx_irq");
if (priv->tx_irq == -ENXIO) {
dev_err(&pdev->dev, "cannot obtain Tx IRQ\n");
ret = -ENXIO;
goto err_free_netdev;
}
/* get FIFO depths from device tree */
if (of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
&priv->rx_fifo_depth)) {
dev_err(&pdev->dev, "cannot obtain rx-fifo-depth\n");
ret = -ENXIO;
goto err_free_netdev;
}
if (of_property_read_u32(pdev->dev.of_node, "tx-fifo-depth",
&priv->tx_fifo_depth)) {
dev_err(&pdev->dev, "cannot obtain tx-fifo-depth\n");
ret = -ENXIO;
goto err_free_netdev;
}
/* get hash filter settings for this instance */
priv->hash_filter =
of_property_read_bool(pdev->dev.of_node,
"altr,has-hash-multicast-filter");
/* Set hash filter to not set for now until the
* multicast filter receive issue is debugged
*/
priv->hash_filter = 0;
/* get supplemental address settings for this instance */
priv->added_unicast =
of_property_read_bool(pdev->dev.of_node,
"altr,has-supplementary-unicast");
priv->dev->min_mtu = ETH_ZLEN + ETH_FCS_LEN;
/* Max MTU is 1500, ETH_DATA_LEN */
priv->dev->max_mtu = ETH_DATA_LEN;
/* Get the max mtu from the device tree. Note that the
* "max-frame-size" parameter is actually max mtu. Definition
* in the ePAPR v1.1 spec and usage differ, so go with usage.
*/
of_property_read_u32(pdev->dev.of_node, "max-frame-size",
&priv->dev->max_mtu);
/* The DMA buffer size already accounts for an alignment bias
* to avoid unaligned access exceptions for the NIOS processor,
*/
priv->rx_dma_buf_sz = ALTERA_RXDMABUFFER_SIZE;
/* get default MAC address from device tree */
ret = of_get_ethdev_address(pdev->dev.of_node, ndev);
if (ret)
eth_hw_addr_random(ndev);
/* get phy addr and create mdio */
ret = altera_tse_phy_get_addr_mdio_create(ndev);
if (ret)
goto err_free_netdev;
/* initialize netdev */
ndev->mem_start = control_port->start;
ndev->mem_end = control_port->end;
ndev->netdev_ops = &altera_tse_netdev_ops;
altera_tse_set_ethtool_ops(ndev);
altera_tse_netdev_ops.ndo_set_rx_mode = tse_set_rx_mode;
if (priv->hash_filter)
altera_tse_netdev_ops.ndo_set_rx_mode =
tse_set_rx_mode_hashfilter;
/* Scatter/gather IO is not supported,
* so it is turned off
*/
ndev->hw_features &= ~NETIF_F_SG;
ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
/* VLAN offloading of tagging, stripping and filtering is not
* supported by hardware, but driver will accommodate the
* extra 4-byte VLAN tag for processing by upper layers
*/
ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
/* setup NAPI interface */
netif_napi_add(ndev, &priv->napi, tse_poll, NAPI_POLL_WEIGHT);
spin_lock_init(&priv->mac_cfg_lock);
spin_lock_init(&priv->tx_lock);
spin_lock_init(&priv->rxdma_irq_lock);
netif_carrier_off(ndev);
ret = register_netdev(ndev);
if (ret) {
dev_err(&pdev->dev, "failed to register TSE net device\n");
goto err_register_netdev;
}
platform_set_drvdata(pdev, ndev);
priv->revision = ioread32(&priv->mac_dev->megacore_revision);
if (netif_msg_probe(priv))
dev_info(&pdev->dev, "Altera TSE MAC version %d.%d at 0x%08lx irq %d/%d\n",
(priv->revision >> 8) & 0xff,
priv->revision & 0xff,
(unsigned long) control_port->start, priv->rx_irq,
priv->tx_irq);
ret = init_phy(ndev);
if (ret != 0) {
netdev_err(ndev, "Cannot attach to PHY (error: %d)\n", ret);
goto err_init_phy;
}
return 0;
err_init_phy:
unregister_netdev(ndev);
err_register_netdev:
netif_napi_del(&priv->napi);
altera_tse_mdio_destroy(ndev);
err_free_netdev:
free_netdev(ndev);
return ret;
}
/* Remove Altera TSE MAC device
*/
static int altera_tse_remove(struct platform_device *pdev)
{
struct net_device *ndev = platform_get_drvdata(pdev);
struct altera_tse_private *priv = netdev_priv(ndev);
if (ndev->phydev) {
phy_disconnect(ndev->phydev);
if (of_phy_is_fixed_link(priv->device->of_node))
of_phy_deregister_fixed_link(priv->device->of_node);
}
platform_set_drvdata(pdev, NULL);
altera_tse_mdio_destroy(ndev);
unregister_netdev(ndev);
free_netdev(ndev);
return 0;
}
static const struct altera_dmaops altera_dtype_sgdma = {
.altera_dtype = ALTERA_DTYPE_SGDMA,
.dmamask = 32,
.reset_dma = sgdma_reset,
.enable_txirq = sgdma_enable_txirq,
.enable_rxirq = sgdma_enable_rxirq,
.disable_txirq = sgdma_disable_txirq,
.disable_rxirq = sgdma_disable_rxirq,
.clear_txirq = sgdma_clear_txirq,
.clear_rxirq = sgdma_clear_rxirq,
.tx_buffer = sgdma_tx_buffer,
.tx_completions = sgdma_tx_completions,
.add_rx_desc = sgdma_add_rx_desc,
.get_rx_status = sgdma_rx_status,
.init_dma = sgdma_initialize,
.uninit_dma = sgdma_uninitialize,
.start_rxdma = sgdma_start_rxdma,
};
static const struct altera_dmaops altera_dtype_msgdma = {
.altera_dtype = ALTERA_DTYPE_MSGDMA,
.dmamask = 64,
.reset_dma = msgdma_reset,
.enable_txirq = msgdma_enable_txirq,
.enable_rxirq = msgdma_enable_rxirq,
.disable_txirq = msgdma_disable_txirq,
.disable_rxirq = msgdma_disable_rxirq,
.clear_txirq = msgdma_clear_txirq,
.clear_rxirq = msgdma_clear_rxirq,
.tx_buffer = msgdma_tx_buffer,
.tx_completions = msgdma_tx_completions,
.add_rx_desc = msgdma_add_rx_desc,
.get_rx_status = msgdma_rx_status,
.init_dma = msgdma_initialize,
.uninit_dma = msgdma_uninitialize,
.start_rxdma = msgdma_start_rxdma,
};
static const struct of_device_id altera_tse_ids[] = {
{ .compatible = "altr,tse-msgdma-1.0", .data = &altera_dtype_msgdma, },
{ .compatible = "altr,tse-1.0", .data = &altera_dtype_sgdma, },
{ .compatible = "ALTR,tse-1.0", .data = &altera_dtype_sgdma, },
{},
};
MODULE_DEVICE_TABLE(of, altera_tse_ids);
static struct platform_driver altera_tse_driver = {
.probe = altera_tse_probe,
.remove = altera_tse_remove,
.suspend = NULL,
.resume = NULL,
.driver = {
.name = ALTERA_TSE_RESOURCE_NAME,
.of_match_table = altera_tse_ids,
},
};
module_platform_driver(altera_tse_driver);
MODULE_AUTHOR("Altera Corporation");
MODULE_DESCRIPTION("Altera Triple Speed Ethernet MAC driver");
MODULE_LICENSE("GPL v2");