| /* |
| * Procedures for maintaining information about logical memory blocks. |
| * |
| * Peter Bergner, IBM Corp. June 2001. |
| * Copyright (C) 2001 Peter Bergner. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/init.h> |
| #include <linux/bitops.h> |
| #include <linux/poison.h> |
| #include <linux/pfn.h> |
| #include <linux/memblock.h> |
| |
| struct memblock memblock; |
| |
| static int memblock_debug, memblock_can_resize; |
| static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS + 1]; |
| static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS + 1]; |
| |
| #define MEMBLOCK_ERROR (~(phys_addr_t)0) |
| |
| /* inline so we don't get a warning when pr_debug is compiled out */ |
| static inline const char *memblock_type_name(struct memblock_type *type) |
| { |
| if (type == &memblock.memory) |
| return "memory"; |
| else if (type == &memblock.reserved) |
| return "reserved"; |
| else |
| return "unknown"; |
| } |
| |
| /* |
| * Address comparison utilities |
| */ |
| |
| static phys_addr_t memblock_align_down(phys_addr_t addr, phys_addr_t size) |
| { |
| return addr & ~(size - 1); |
| } |
| |
| static phys_addr_t memblock_align_up(phys_addr_t addr, phys_addr_t size) |
| { |
| return (addr + (size - 1)) & ~(size - 1); |
| } |
| |
| static unsigned long memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, |
| phys_addr_t base2, phys_addr_t size2) |
| { |
| return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); |
| } |
| |
| static long memblock_addrs_adjacent(phys_addr_t base1, phys_addr_t size1, |
| phys_addr_t base2, phys_addr_t size2) |
| { |
| if (base2 == base1 + size1) |
| return 1; |
| else if (base1 == base2 + size2) |
| return -1; |
| |
| return 0; |
| } |
| |
| static long memblock_regions_adjacent(struct memblock_type *type, |
| unsigned long r1, unsigned long r2) |
| { |
| phys_addr_t base1 = type->regions[r1].base; |
| phys_addr_t size1 = type->regions[r1].size; |
| phys_addr_t base2 = type->regions[r2].base; |
| phys_addr_t size2 = type->regions[r2].size; |
| |
| return memblock_addrs_adjacent(base1, size1, base2, size2); |
| } |
| |
| long memblock_overlaps_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size) |
| { |
| unsigned long i; |
| |
| for (i = 0; i < type->cnt; i++) { |
| phys_addr_t rgnbase = type->regions[i].base; |
| phys_addr_t rgnsize = type->regions[i].size; |
| if (memblock_addrs_overlap(base, size, rgnbase, rgnsize)) |
| break; |
| } |
| |
| return (i < type->cnt) ? i : -1; |
| } |
| |
| /* |
| * Find, allocate, deallocate or reserve unreserved regions. All allocations |
| * are top-down. |
| */ |
| |
| static phys_addr_t __init memblock_find_region(phys_addr_t start, phys_addr_t end, |
| phys_addr_t size, phys_addr_t align) |
| { |
| phys_addr_t base, res_base; |
| long j; |
| |
| base = memblock_align_down((end - size), align); |
| while (start <= base) { |
| j = memblock_overlaps_region(&memblock.reserved, base, size); |
| if (j < 0) |
| return base; |
| res_base = memblock.reserved.regions[j].base; |
| if (res_base < size) |
| break; |
| base = memblock_align_down(res_base - size, align); |
| } |
| |
| return MEMBLOCK_ERROR; |
| } |
| |
| static phys_addr_t __init memblock_find_base(phys_addr_t size, phys_addr_t align, |
| phys_addr_t start, phys_addr_t end) |
| { |
| long i; |
| |
| BUG_ON(0 == size); |
| |
| size = memblock_align_up(size, align); |
| |
| /* Pump up max_addr */ |
| if (end == MEMBLOCK_ALLOC_ACCESSIBLE) |
| end = memblock.current_limit; |
| |
| /* We do a top-down search, this tends to limit memory |
| * fragmentation by keeping early boot allocs near the |
| * top of memory |
| */ |
| for (i = memblock.memory.cnt - 1; i >= 0; i--) { |
| phys_addr_t memblockbase = memblock.memory.regions[i].base; |
| phys_addr_t memblocksize = memblock.memory.regions[i].size; |
| phys_addr_t bottom, top, found; |
| |
| if (memblocksize < size) |
| continue; |
| if ((memblockbase + memblocksize) <= start) |
| break; |
| bottom = max(memblockbase, start); |
| top = min(memblockbase + memblocksize, end); |
| if (bottom >= top) |
| continue; |
| found = memblock_find_region(bottom, top, size, align); |
| if (found != MEMBLOCK_ERROR) |
| return found; |
| } |
| return MEMBLOCK_ERROR; |
| } |
| |
| static void memblock_remove_region(struct memblock_type *type, unsigned long r) |
| { |
| unsigned long i; |
| |
| for (i = r; i < type->cnt - 1; i++) { |
| type->regions[i].base = type->regions[i + 1].base; |
| type->regions[i].size = type->regions[i + 1].size; |
| } |
| type->cnt--; |
| } |
| |
| /* Assumption: base addr of region 1 < base addr of region 2 */ |
| static void memblock_coalesce_regions(struct memblock_type *type, |
| unsigned long r1, unsigned long r2) |
| { |
| type->regions[r1].size += type->regions[r2].size; |
| memblock_remove_region(type, r2); |
| } |
| |
| /* Defined below but needed now */ |
| static long memblock_add_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size); |
| |
| static int memblock_double_array(struct memblock_type *type) |
| { |
| struct memblock_region *new_array, *old_array; |
| phys_addr_t old_size, new_size, addr; |
| int use_slab = slab_is_available(); |
| |
| /* We don't allow resizing until we know about the reserved regions |
| * of memory that aren't suitable for allocation |
| */ |
| if (!memblock_can_resize) |
| return -1; |
| |
| pr_debug("memblock: %s array full, doubling...", memblock_type_name(type)); |
| |
| /* Calculate new doubled size */ |
| old_size = type->max * sizeof(struct memblock_region); |
| new_size = old_size << 1; |
| |
| /* Try to find some space for it. |
| * |
| * WARNING: We assume that either slab_is_available() and we use it or |
| * we use MEMBLOCK for allocations. That means that this is unsafe to use |
| * when bootmem is currently active (unless bootmem itself is implemented |
| * on top of MEMBLOCK which isn't the case yet) |
| * |
| * This should however not be an issue for now, as we currently only |
| * call into MEMBLOCK while it's still active, or much later when slab is |
| * active for memory hotplug operations |
| */ |
| if (use_slab) { |
| new_array = kmalloc(new_size, GFP_KERNEL); |
| addr = new_array == NULL ? MEMBLOCK_ERROR : __pa(new_array); |
| } else |
| addr = memblock_find_base(new_size, sizeof(phys_addr_t), 0, MEMBLOCK_ALLOC_ACCESSIBLE); |
| if (addr == MEMBLOCK_ERROR) { |
| pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", |
| memblock_type_name(type), type->max, type->max * 2); |
| return -1; |
| } |
| new_array = __va(addr); |
| |
| /* Found space, we now need to move the array over before |
| * we add the reserved region since it may be our reserved |
| * array itself that is full. |
| */ |
| memcpy(new_array, type->regions, old_size); |
| memset(new_array + type->max, 0, old_size); |
| old_array = type->regions; |
| type->regions = new_array; |
| type->max <<= 1; |
| |
| /* If we use SLAB that's it, we are done */ |
| if (use_slab) |
| return 0; |
| |
| /* Add the new reserved region now. Should not fail ! */ |
| BUG_ON(memblock_add_region(&memblock.reserved, addr, new_size) < 0); |
| |
| /* If the array wasn't our static init one, then free it. We only do |
| * that before SLAB is available as later on, we don't know whether |
| * to use kfree or free_bootmem_pages(). Shouldn't be a big deal |
| * anyways |
| */ |
| if (old_array != memblock_memory_init_regions && |
| old_array != memblock_reserved_init_regions) |
| memblock_free(__pa(old_array), old_size); |
| |
| return 0; |
| } |
| |
| extern int __weak memblock_memory_can_coalesce(phys_addr_t addr1, phys_addr_t size1, |
| phys_addr_t addr2, phys_addr_t size2) |
| { |
| return 1; |
| } |
| |
| static long memblock_add_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size) |
| { |
| unsigned long coalesced = 0; |
| long adjacent, i; |
| |
| if ((type->cnt == 1) && (type->regions[0].size == 0)) { |
| type->regions[0].base = base; |
| type->regions[0].size = size; |
| return 0; |
| } |
| |
| /* First try and coalesce this MEMBLOCK with another. */ |
| for (i = 0; i < type->cnt; i++) { |
| phys_addr_t rgnbase = type->regions[i].base; |
| phys_addr_t rgnsize = type->regions[i].size; |
| |
| if ((rgnbase == base) && (rgnsize == size)) |
| /* Already have this region, so we're done */ |
| return 0; |
| |
| adjacent = memblock_addrs_adjacent(base, size, rgnbase, rgnsize); |
| /* Check if arch allows coalescing */ |
| if (adjacent != 0 && type == &memblock.memory && |
| !memblock_memory_can_coalesce(base, size, rgnbase, rgnsize)) |
| break; |
| if (adjacent > 0) { |
| type->regions[i].base -= size; |
| type->regions[i].size += size; |
| coalesced++; |
| break; |
| } else if (adjacent < 0) { |
| type->regions[i].size += size; |
| coalesced++; |
| break; |
| } |
| } |
| |
| /* If we plugged a hole, we may want to also coalesce with the |
| * next region |
| */ |
| if ((i < type->cnt - 1) && memblock_regions_adjacent(type, i, i+1) && |
| ((type != &memblock.memory || memblock_memory_can_coalesce(type->regions[i].base, |
| type->regions[i].size, |
| type->regions[i+1].base, |
| type->regions[i+1].size)))) { |
| memblock_coalesce_regions(type, i, i+1); |
| coalesced++; |
| } |
| |
| if (coalesced) |
| return coalesced; |
| |
| /* If we are out of space, we fail. It's too late to resize the array |
| * but then this shouldn't have happened in the first place. |
| */ |
| if (WARN_ON(type->cnt >= type->max)) |
| return -1; |
| |
| /* Couldn't coalesce the MEMBLOCK, so add it to the sorted table. */ |
| for (i = type->cnt - 1; i >= 0; i--) { |
| if (base < type->regions[i].base) { |
| type->regions[i+1].base = type->regions[i].base; |
| type->regions[i+1].size = type->regions[i].size; |
| } else { |
| type->regions[i+1].base = base; |
| type->regions[i+1].size = size; |
| break; |
| } |
| } |
| |
| if (base < type->regions[0].base) { |
| type->regions[0].base = base; |
| type->regions[0].size = size; |
| } |
| type->cnt++; |
| |
| /* The array is full ? Try to resize it. If that fails, we undo |
| * our allocation and return an error |
| */ |
| if (type->cnt == type->max && memblock_double_array(type)) { |
| type->cnt--; |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| long memblock_add(phys_addr_t base, phys_addr_t size) |
| { |
| return memblock_add_region(&memblock.memory, base, size); |
| |
| } |
| |
| static long __memblock_remove(struct memblock_type *type, phys_addr_t base, phys_addr_t size) |
| { |
| phys_addr_t rgnbegin, rgnend; |
| phys_addr_t end = base + size; |
| int i; |
| |
| rgnbegin = rgnend = 0; /* supress gcc warnings */ |
| |
| /* Find the region where (base, size) belongs to */ |
| for (i=0; i < type->cnt; i++) { |
| rgnbegin = type->regions[i].base; |
| rgnend = rgnbegin + type->regions[i].size; |
| |
| if ((rgnbegin <= base) && (end <= rgnend)) |
| break; |
| } |
| |
| /* Didn't find the region */ |
| if (i == type->cnt) |
| return -1; |
| |
| /* Check to see if we are removing entire region */ |
| if ((rgnbegin == base) && (rgnend == end)) { |
| memblock_remove_region(type, i); |
| return 0; |
| } |
| |
| /* Check to see if region is matching at the front */ |
| if (rgnbegin == base) { |
| type->regions[i].base = end; |
| type->regions[i].size -= size; |
| return 0; |
| } |
| |
| /* Check to see if the region is matching at the end */ |
| if (rgnend == end) { |
| type->regions[i].size -= size; |
| return 0; |
| } |
| |
| /* |
| * We need to split the entry - adjust the current one to the |
| * beginging of the hole and add the region after hole. |
| */ |
| type->regions[i].size = base - type->regions[i].base; |
| return memblock_add_region(type, end, rgnend - end); |
| } |
| |
| long memblock_remove(phys_addr_t base, phys_addr_t size) |
| { |
| return __memblock_remove(&memblock.memory, base, size); |
| } |
| |
| long __init memblock_free(phys_addr_t base, phys_addr_t size) |
| { |
| return __memblock_remove(&memblock.reserved, base, size); |
| } |
| |
| long __init memblock_reserve(phys_addr_t base, phys_addr_t size) |
| { |
| struct memblock_type *_rgn = &memblock.reserved; |
| |
| BUG_ON(0 == size); |
| |
| return memblock_add_region(_rgn, base, size); |
| } |
| |
| phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) |
| { |
| phys_addr_t found; |
| |
| /* We align the size to limit fragmentation. Without this, a lot of |
| * small allocs quickly eat up the whole reserve array on sparc |
| */ |
| size = memblock_align_up(size, align); |
| |
| found = memblock_find_base(size, align, 0, max_addr); |
| if (found != MEMBLOCK_ERROR && |
| memblock_add_region(&memblock.reserved, found, size) >= 0) |
| return found; |
| |
| return 0; |
| } |
| |
| phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) |
| { |
| phys_addr_t alloc; |
| |
| alloc = __memblock_alloc_base(size, align, max_addr); |
| |
| if (alloc == 0) |
| panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n", |
| (unsigned long long) size, (unsigned long long) max_addr); |
| |
| return alloc; |
| } |
| |
| phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align) |
| { |
| return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); |
| } |
| |
| |
| /* |
| * Additional node-local allocators. Search for node memory is bottom up |
| * and walks memblock regions within that node bottom-up as well, but allocation |
| * within an memblock region is top-down. XXX I plan to fix that at some stage |
| * |
| * WARNING: Only available after early_node_map[] has been populated, |
| * on some architectures, that is after all the calls to add_active_range() |
| * have been done to populate it. |
| */ |
| |
| phys_addr_t __weak __init memblock_nid_range(phys_addr_t start, phys_addr_t end, int *nid) |
| { |
| #ifdef CONFIG_ARCH_POPULATES_NODE_MAP |
| /* |
| * This code originates from sparc which really wants use to walk by addresses |
| * and returns the nid. This is not very convenient for early_pfn_map[] users |
| * as the map isn't sorted yet, and it really wants to be walked by nid. |
| * |
| * For now, I implement the inefficient method below which walks the early |
| * map multiple times. Eventually we may want to use an ARCH config option |
| * to implement a completely different method for both case. |
| */ |
| unsigned long start_pfn, end_pfn; |
| int i; |
| |
| for (i = 0; i < MAX_NUMNODES; i++) { |
| get_pfn_range_for_nid(i, &start_pfn, &end_pfn); |
| if (start < PFN_PHYS(start_pfn) || start >= PFN_PHYS(end_pfn)) |
| continue; |
| *nid = i; |
| return min(end, PFN_PHYS(end_pfn)); |
| } |
| #endif |
| *nid = 0; |
| |
| return end; |
| } |
| |
| static phys_addr_t __init memblock_alloc_nid_region(struct memblock_region *mp, |
| phys_addr_t size, |
| phys_addr_t align, int nid) |
| { |
| phys_addr_t start, end; |
| |
| start = mp->base; |
| end = start + mp->size; |
| |
| start = memblock_align_up(start, align); |
| while (start < end) { |
| phys_addr_t this_end; |
| int this_nid; |
| |
| this_end = memblock_nid_range(start, end, &this_nid); |
| if (this_nid == nid) { |
| phys_addr_t ret = memblock_find_region(start, this_end, size, align); |
| if (ret != MEMBLOCK_ERROR && |
| memblock_add_region(&memblock.reserved, ret, size) >= 0) |
| return ret; |
| } |
| start = this_end; |
| } |
| |
| return MEMBLOCK_ERROR; |
| } |
| |
| phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid) |
| { |
| struct memblock_type *mem = &memblock.memory; |
| int i; |
| |
| BUG_ON(0 == size); |
| |
| /* We align the size to limit fragmentation. Without this, a lot of |
| * small allocs quickly eat up the whole reserve array on sparc |
| */ |
| size = memblock_align_up(size, align); |
| |
| /* We do a bottom-up search for a region with the right |
| * nid since that's easier considering how memblock_nid_range() |
| * works |
| */ |
| for (i = 0; i < mem->cnt; i++) { |
| phys_addr_t ret = memblock_alloc_nid_region(&mem->regions[i], |
| size, align, nid); |
| if (ret != MEMBLOCK_ERROR) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) |
| { |
| phys_addr_t res = memblock_alloc_nid(size, align, nid); |
| |
| if (res) |
| return res; |
| return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ANYWHERE); |
| } |
| |
| |
| /* |
| * Remaining API functions |
| */ |
| |
| /* You must call memblock_analyze() before this. */ |
| phys_addr_t __init memblock_phys_mem_size(void) |
| { |
| return memblock.memory_size; |
| } |
| |
| phys_addr_t memblock_end_of_DRAM(void) |
| { |
| int idx = memblock.memory.cnt - 1; |
| |
| return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); |
| } |
| |
| /* You must call memblock_analyze() after this. */ |
| void __init memblock_enforce_memory_limit(phys_addr_t memory_limit) |
| { |
| unsigned long i; |
| phys_addr_t limit; |
| struct memblock_region *p; |
| |
| if (!memory_limit) |
| return; |
| |
| /* Truncate the memblock regions to satisfy the memory limit. */ |
| limit = memory_limit; |
| for (i = 0; i < memblock.memory.cnt; i++) { |
| if (limit > memblock.memory.regions[i].size) { |
| limit -= memblock.memory.regions[i].size; |
| continue; |
| } |
| |
| memblock.memory.regions[i].size = limit; |
| memblock.memory.cnt = i + 1; |
| break; |
| } |
| |
| memory_limit = memblock_end_of_DRAM(); |
| |
| /* And truncate any reserves above the limit also. */ |
| for (i = 0; i < memblock.reserved.cnt; i++) { |
| p = &memblock.reserved.regions[i]; |
| |
| if (p->base > memory_limit) |
| p->size = 0; |
| else if ((p->base + p->size) > memory_limit) |
| p->size = memory_limit - p->base; |
| |
| if (p->size == 0) { |
| memblock_remove_region(&memblock.reserved, i); |
| i--; |
| } |
| } |
| } |
| |
| static int memblock_search(struct memblock_type *type, phys_addr_t addr) |
| { |
| unsigned int left = 0, right = type->cnt; |
| |
| do { |
| unsigned int mid = (right + left) / 2; |
| |
| if (addr < type->regions[mid].base) |
| right = mid; |
| else if (addr >= (type->regions[mid].base + |
| type->regions[mid].size)) |
| left = mid + 1; |
| else |
| return mid; |
| } while (left < right); |
| return -1; |
| } |
| |
| int __init memblock_is_reserved(phys_addr_t addr) |
| { |
| return memblock_search(&memblock.reserved, addr) != -1; |
| } |
| |
| int memblock_is_memory(phys_addr_t addr) |
| { |
| return memblock_search(&memblock.memory, addr) != -1; |
| } |
| |
| int memblock_is_region_memory(phys_addr_t base, phys_addr_t size) |
| { |
| int idx = memblock_search(&memblock.reserved, base); |
| |
| if (idx == -1) |
| return 0; |
| return memblock.reserved.regions[idx].base <= base && |
| (memblock.reserved.regions[idx].base + |
| memblock.reserved.regions[idx].size) >= (base + size); |
| } |
| |
| int memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) |
| { |
| return memblock_overlaps_region(&memblock.reserved, base, size) >= 0; |
| } |
| |
| |
| void __init memblock_set_current_limit(phys_addr_t limit) |
| { |
| memblock.current_limit = limit; |
| } |
| |
| static void memblock_dump(struct memblock_type *region, char *name) |
| { |
| unsigned long long base, size; |
| int i; |
| |
| pr_info(" %s.cnt = 0x%lx\n", name, region->cnt); |
| |
| for (i = 0; i < region->cnt; i++) { |
| base = region->regions[i].base; |
| size = region->regions[i].size; |
| |
| pr_info(" %s[0x%x]\t0x%016llx - 0x%016llx, 0x%llx bytes\n", |
| name, i, base, base + size - 1, size); |
| } |
| } |
| |
| void memblock_dump_all(void) |
| { |
| if (!memblock_debug) |
| return; |
| |
| pr_info("MEMBLOCK configuration:\n"); |
| pr_info(" memory size = 0x%llx\n", (unsigned long long)memblock.memory_size); |
| |
| memblock_dump(&memblock.memory, "memory"); |
| memblock_dump(&memblock.reserved, "reserved"); |
| } |
| |
| void __init memblock_analyze(void) |
| { |
| int i; |
| |
| /* Check marker in the unused last array entry */ |
| WARN_ON(memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS].base |
| != (phys_addr_t)RED_INACTIVE); |
| WARN_ON(memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS].base |
| != (phys_addr_t)RED_INACTIVE); |
| |
| memblock.memory_size = 0; |
| |
| for (i = 0; i < memblock.memory.cnt; i++) |
| memblock.memory_size += memblock.memory.regions[i].size; |
| |
| /* We allow resizing from there */ |
| memblock_can_resize = 1; |
| } |
| |
| void __init memblock_init(void) |
| { |
| /* Hookup the initial arrays */ |
| memblock.memory.regions = memblock_memory_init_regions; |
| memblock.memory.max = INIT_MEMBLOCK_REGIONS; |
| memblock.reserved.regions = memblock_reserved_init_regions; |
| memblock.reserved.max = INIT_MEMBLOCK_REGIONS; |
| |
| /* Write a marker in the unused last array entry */ |
| memblock.memory.regions[INIT_MEMBLOCK_REGIONS].base = (phys_addr_t)RED_INACTIVE; |
| memblock.reserved.regions[INIT_MEMBLOCK_REGIONS].base = (phys_addr_t)RED_INACTIVE; |
| |
| /* Create a dummy zero size MEMBLOCK which will get coalesced away later. |
| * This simplifies the memblock_add() code below... |
| */ |
| memblock.memory.regions[0].base = 0; |
| memblock.memory.regions[0].size = 0; |
| memblock.memory.cnt = 1; |
| |
| /* Ditto. */ |
| memblock.reserved.regions[0].base = 0; |
| memblock.reserved.regions[0].size = 0; |
| memblock.reserved.cnt = 1; |
| |
| memblock.current_limit = MEMBLOCK_ALLOC_ANYWHERE; |
| } |
| |
| static int __init early_memblock(char *p) |
| { |
| if (p && strstr(p, "debug")) |
| memblock_debug = 1; |
| return 0; |
| } |
| early_param("memblock", early_memblock); |
| |