blob: b8682818bafa6cd9b39919447d4ac3ee64ceb625 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/* Copyright (C) 2018 Broadcom */
/**
* DOC: Broadcom V3D scheduling
*
* The shared DRM GPU scheduler is used to coordinate submitting jobs
* to the hardware. Each DRM fd (roughly a client process) gets its
* own scheduler entity, which will process jobs in order. The GPU
* scheduler will round-robin between clients to submit the next job.
*
* For simplicity, and in order to keep latency low for interactive
* jobs when bulk background jobs are queued up, we submit a new job
* to the HW only when it has completed the last one, instead of
* filling up the CT[01]Q FIFOs with jobs. Similarly, we use
* drm_sched_job_add_dependency() to manage the dependency between bin and
* render, instead of having the clients submit jobs using the HW's
* semaphores to interlock between them.
*/
#include <linux/sched/clock.h>
#include <linux/kthread.h>
#include <drm/drm_syncobj.h>
#include "v3d_drv.h"
#include "v3d_regs.h"
#include "v3d_trace.h"
#define V3D_CSD_CFG012_WG_COUNT_SHIFT 16
static struct v3d_job *
to_v3d_job(struct drm_sched_job *sched_job)
{
return container_of(sched_job, struct v3d_job, base);
}
static struct v3d_bin_job *
to_bin_job(struct drm_sched_job *sched_job)
{
return container_of(sched_job, struct v3d_bin_job, base.base);
}
static struct v3d_render_job *
to_render_job(struct drm_sched_job *sched_job)
{
return container_of(sched_job, struct v3d_render_job, base.base);
}
static struct v3d_tfu_job *
to_tfu_job(struct drm_sched_job *sched_job)
{
return container_of(sched_job, struct v3d_tfu_job, base.base);
}
static struct v3d_csd_job *
to_csd_job(struct drm_sched_job *sched_job)
{
return container_of(sched_job, struct v3d_csd_job, base.base);
}
static struct v3d_cpu_job *
to_cpu_job(struct drm_sched_job *sched_job)
{
return container_of(sched_job, struct v3d_cpu_job, base.base);
}
static void
v3d_sched_job_free(struct drm_sched_job *sched_job)
{
struct v3d_job *job = to_v3d_job(sched_job);
v3d_job_cleanup(job);
}
void
v3d_timestamp_query_info_free(struct v3d_timestamp_query_info *query_info,
unsigned int count)
{
if (query_info->queries) {
unsigned int i;
for (i = 0; i < count; i++)
drm_syncobj_put(query_info->queries[i].syncobj);
kvfree(query_info->queries);
}
}
void
v3d_performance_query_info_free(struct v3d_performance_query_info *query_info,
unsigned int count)
{
if (query_info->queries) {
unsigned int i;
for (i = 0; i < count; i++)
drm_syncobj_put(query_info->queries[i].syncobj);
kvfree(query_info->queries);
}
}
static void
v3d_cpu_job_free(struct drm_sched_job *sched_job)
{
struct v3d_cpu_job *job = to_cpu_job(sched_job);
v3d_timestamp_query_info_free(&job->timestamp_query,
job->timestamp_query.count);
v3d_performance_query_info_free(&job->performance_query,
job->performance_query.count);
v3d_job_cleanup(&job->base);
}
static void
v3d_switch_perfmon(struct v3d_dev *v3d, struct v3d_job *job)
{
if (job->perfmon != v3d->active_perfmon)
v3d_perfmon_stop(v3d, v3d->active_perfmon, true);
if (job->perfmon && v3d->active_perfmon != job->perfmon)
v3d_perfmon_start(v3d, job->perfmon);
}
static void
v3d_job_start_stats(struct v3d_job *job, enum v3d_queue queue)
{
struct v3d_dev *v3d = job->v3d;
struct v3d_file_priv *file = job->file->driver_priv;
struct v3d_stats *global_stats = &v3d->queue[queue].stats;
struct v3d_stats *local_stats = &file->stats[queue];
u64 now = local_clock();
write_seqcount_begin(&local_stats->lock);
local_stats->start_ns = now;
write_seqcount_end(&local_stats->lock);
write_seqcount_begin(&global_stats->lock);
global_stats->start_ns = now;
write_seqcount_end(&global_stats->lock);
}
static void
v3d_stats_update(struct v3d_stats *stats, u64 now)
{
write_seqcount_begin(&stats->lock);
stats->enabled_ns += now - stats->start_ns;
stats->jobs_completed++;
stats->start_ns = 0;
write_seqcount_end(&stats->lock);
}
void
v3d_job_update_stats(struct v3d_job *job, enum v3d_queue queue)
{
struct v3d_dev *v3d = job->v3d;
struct v3d_file_priv *file = job->file->driver_priv;
struct v3d_stats *global_stats = &v3d->queue[queue].stats;
struct v3d_stats *local_stats = &file->stats[queue];
u64 now = local_clock();
v3d_stats_update(local_stats, now);
v3d_stats_update(global_stats, now);
}
static struct dma_fence *v3d_bin_job_run(struct drm_sched_job *sched_job)
{
struct v3d_bin_job *job = to_bin_job(sched_job);
struct v3d_dev *v3d = job->base.v3d;
struct drm_device *dev = &v3d->drm;
struct dma_fence *fence;
unsigned long irqflags;
if (unlikely(job->base.base.s_fence->finished.error))
return NULL;
/* Lock required around bin_job update vs
* v3d_overflow_mem_work().
*/
spin_lock_irqsave(&v3d->job_lock, irqflags);
v3d->bin_job = job;
/* Clear out the overflow allocation, so we don't
* reuse the overflow attached to a previous job.
*/
V3D_CORE_WRITE(0, V3D_PTB_BPOS, 0);
spin_unlock_irqrestore(&v3d->job_lock, irqflags);
v3d_invalidate_caches(v3d);
fence = v3d_fence_create(v3d, V3D_BIN);
if (IS_ERR(fence))
return NULL;
if (job->base.irq_fence)
dma_fence_put(job->base.irq_fence);
job->base.irq_fence = dma_fence_get(fence);
trace_v3d_submit_cl(dev, false, to_v3d_fence(fence)->seqno,
job->start, job->end);
v3d_job_start_stats(&job->base, V3D_BIN);
v3d_switch_perfmon(v3d, &job->base);
/* Set the current and end address of the control list.
* Writing the end register is what starts the job.
*/
if (job->qma) {
V3D_CORE_WRITE(0, V3D_CLE_CT0QMA, job->qma);
V3D_CORE_WRITE(0, V3D_CLE_CT0QMS, job->qms);
}
if (job->qts) {
V3D_CORE_WRITE(0, V3D_CLE_CT0QTS,
V3D_CLE_CT0QTS_ENABLE |
job->qts);
}
V3D_CORE_WRITE(0, V3D_CLE_CT0QBA, job->start);
V3D_CORE_WRITE(0, V3D_CLE_CT0QEA, job->end);
return fence;
}
static struct dma_fence *v3d_render_job_run(struct drm_sched_job *sched_job)
{
struct v3d_render_job *job = to_render_job(sched_job);
struct v3d_dev *v3d = job->base.v3d;
struct drm_device *dev = &v3d->drm;
struct dma_fence *fence;
if (unlikely(job->base.base.s_fence->finished.error))
return NULL;
v3d->render_job = job;
/* Can we avoid this flush? We need to be careful of
* scheduling, though -- imagine job0 rendering to texture and
* job1 reading, and them being executed as bin0, bin1,
* render0, render1, so that render1's flush at bin time
* wasn't enough.
*/
v3d_invalidate_caches(v3d);
fence = v3d_fence_create(v3d, V3D_RENDER);
if (IS_ERR(fence))
return NULL;
if (job->base.irq_fence)
dma_fence_put(job->base.irq_fence);
job->base.irq_fence = dma_fence_get(fence);
trace_v3d_submit_cl(dev, true, to_v3d_fence(fence)->seqno,
job->start, job->end);
v3d_job_start_stats(&job->base, V3D_RENDER);
v3d_switch_perfmon(v3d, &job->base);
/* XXX: Set the QCFG */
/* Set the current and end address of the control list.
* Writing the end register is what starts the job.
*/
V3D_CORE_WRITE(0, V3D_CLE_CT1QBA, job->start);
V3D_CORE_WRITE(0, V3D_CLE_CT1QEA, job->end);
return fence;
}
static struct dma_fence *
v3d_tfu_job_run(struct drm_sched_job *sched_job)
{
struct v3d_tfu_job *job = to_tfu_job(sched_job);
struct v3d_dev *v3d = job->base.v3d;
struct drm_device *dev = &v3d->drm;
struct dma_fence *fence;
fence = v3d_fence_create(v3d, V3D_TFU);
if (IS_ERR(fence))
return NULL;
v3d->tfu_job = job;
if (job->base.irq_fence)
dma_fence_put(job->base.irq_fence);
job->base.irq_fence = dma_fence_get(fence);
trace_v3d_submit_tfu(dev, to_v3d_fence(fence)->seqno);
v3d_job_start_stats(&job->base, V3D_TFU);
V3D_WRITE(V3D_TFU_IIA(v3d->ver), job->args.iia);
V3D_WRITE(V3D_TFU_IIS(v3d->ver), job->args.iis);
V3D_WRITE(V3D_TFU_ICA(v3d->ver), job->args.ica);
V3D_WRITE(V3D_TFU_IUA(v3d->ver), job->args.iua);
V3D_WRITE(V3D_TFU_IOA(v3d->ver), job->args.ioa);
if (v3d->ver >= 71)
V3D_WRITE(V3D_V7_TFU_IOC, job->args.v71.ioc);
V3D_WRITE(V3D_TFU_IOS(v3d->ver), job->args.ios);
V3D_WRITE(V3D_TFU_COEF0(v3d->ver), job->args.coef[0]);
if (v3d->ver >= 71 || (job->args.coef[0] & V3D_TFU_COEF0_USECOEF)) {
V3D_WRITE(V3D_TFU_COEF1(v3d->ver), job->args.coef[1]);
V3D_WRITE(V3D_TFU_COEF2(v3d->ver), job->args.coef[2]);
V3D_WRITE(V3D_TFU_COEF3(v3d->ver), job->args.coef[3]);
}
/* ICFG kicks off the job. */
V3D_WRITE(V3D_TFU_ICFG(v3d->ver), job->args.icfg | V3D_TFU_ICFG_IOC);
return fence;
}
static struct dma_fence *
v3d_csd_job_run(struct drm_sched_job *sched_job)
{
struct v3d_csd_job *job = to_csd_job(sched_job);
struct v3d_dev *v3d = job->base.v3d;
struct drm_device *dev = &v3d->drm;
struct dma_fence *fence;
int i, csd_cfg0_reg;
v3d->csd_job = job;
v3d_invalidate_caches(v3d);
fence = v3d_fence_create(v3d, V3D_CSD);
if (IS_ERR(fence))
return NULL;
if (job->base.irq_fence)
dma_fence_put(job->base.irq_fence);
job->base.irq_fence = dma_fence_get(fence);
trace_v3d_submit_csd(dev, to_v3d_fence(fence)->seqno);
v3d_job_start_stats(&job->base, V3D_CSD);
v3d_switch_perfmon(v3d, &job->base);
csd_cfg0_reg = V3D_CSD_QUEUED_CFG0(v3d->ver);
for (i = 1; i <= 6; i++)
V3D_CORE_WRITE(0, csd_cfg0_reg + 4 * i, job->args.cfg[i]);
/* Although V3D 7.1 has an eighth configuration register, we are not
* using it. Therefore, make sure it remains unused.
*
* XXX: Set the CFG7 register
*/
if (v3d->ver >= 71)
V3D_CORE_WRITE(0, V3D_V7_CSD_QUEUED_CFG7, 0);
/* CFG0 write kicks off the job. */
V3D_CORE_WRITE(0, csd_cfg0_reg, job->args.cfg[0]);
return fence;
}
static void
v3d_rewrite_csd_job_wg_counts_from_indirect(struct v3d_cpu_job *job)
{
struct v3d_indirect_csd_info *indirect_csd = &job->indirect_csd;
struct v3d_bo *bo = to_v3d_bo(job->base.bo[0]);
struct v3d_bo *indirect = to_v3d_bo(indirect_csd->indirect);
struct drm_v3d_submit_csd *args = &indirect_csd->job->args;
struct v3d_dev *v3d = job->base.v3d;
u32 num_batches, *wg_counts;
v3d_get_bo_vaddr(bo);
v3d_get_bo_vaddr(indirect);
wg_counts = (uint32_t *)(bo->vaddr + indirect_csd->offset);
if (wg_counts[0] == 0 || wg_counts[1] == 0 || wg_counts[2] == 0)
return;
args->cfg[0] = wg_counts[0] << V3D_CSD_CFG012_WG_COUNT_SHIFT;
args->cfg[1] = wg_counts[1] << V3D_CSD_CFG012_WG_COUNT_SHIFT;
args->cfg[2] = wg_counts[2] << V3D_CSD_CFG012_WG_COUNT_SHIFT;
num_batches = DIV_ROUND_UP(indirect_csd->wg_size, 16) *
(wg_counts[0] * wg_counts[1] * wg_counts[2]);
/* V3D 7.1.6 and later don't subtract 1 from the number of batches */
if (v3d->ver < 71 || (v3d->ver == 71 && v3d->rev < 6))
args->cfg[4] = num_batches - 1;
else
args->cfg[4] = num_batches;
WARN_ON(args->cfg[4] == ~0);
for (int i = 0; i < 3; i++) {
/* 0xffffffff indicates that the uniform rewrite is not needed */
if (indirect_csd->wg_uniform_offsets[i] != 0xffffffff) {
u32 uniform_idx = indirect_csd->wg_uniform_offsets[i];
((uint32_t *)indirect->vaddr)[uniform_idx] = wg_counts[i];
}
}
v3d_put_bo_vaddr(indirect);
v3d_put_bo_vaddr(bo);
}
static void
v3d_timestamp_query(struct v3d_cpu_job *job)
{
struct v3d_timestamp_query_info *timestamp_query = &job->timestamp_query;
struct v3d_bo *bo = to_v3d_bo(job->base.bo[0]);
u8 *value_addr;
v3d_get_bo_vaddr(bo);
for (int i = 0; i < timestamp_query->count; i++) {
value_addr = ((u8 *)bo->vaddr) + timestamp_query->queries[i].offset;
*((u64 *)value_addr) = i == 0 ? ktime_get_ns() : 0ull;
drm_syncobj_replace_fence(timestamp_query->queries[i].syncobj,
job->base.done_fence);
}
v3d_put_bo_vaddr(bo);
}
static void
v3d_reset_timestamp_queries(struct v3d_cpu_job *job)
{
struct v3d_timestamp_query_info *timestamp_query = &job->timestamp_query;
struct v3d_timestamp_query *queries = timestamp_query->queries;
struct v3d_bo *bo = to_v3d_bo(job->base.bo[0]);
u8 *value_addr;
v3d_get_bo_vaddr(bo);
for (int i = 0; i < timestamp_query->count; i++) {
value_addr = ((u8 *)bo->vaddr) + queries[i].offset;
*((u64 *)value_addr) = 0;
drm_syncobj_replace_fence(queries[i].syncobj, NULL);
}
v3d_put_bo_vaddr(bo);
}
static void
write_to_buffer(void *dst, u32 idx, bool do_64bit, u64 value)
{
if (do_64bit) {
u64 *dst64 = (u64 *)dst;
dst64[idx] = value;
} else {
u32 *dst32 = (u32 *)dst;
dst32[idx] = (u32)value;
}
}
static void
v3d_copy_query_results(struct v3d_cpu_job *job)
{
struct v3d_timestamp_query_info *timestamp_query = &job->timestamp_query;
struct v3d_timestamp_query *queries = timestamp_query->queries;
struct v3d_bo *bo = to_v3d_bo(job->base.bo[0]);
struct v3d_bo *timestamp = to_v3d_bo(job->base.bo[1]);
struct v3d_copy_query_results_info *copy = &job->copy;
struct dma_fence *fence;
u8 *query_addr;
bool available, write_result;
u8 *data;
int i;
v3d_get_bo_vaddr(bo);
v3d_get_bo_vaddr(timestamp);
data = ((u8 *)bo->vaddr) + copy->offset;
for (i = 0; i < timestamp_query->count; i++) {
fence = drm_syncobj_fence_get(queries[i].syncobj);
available = fence ? dma_fence_is_signaled(fence) : false;
write_result = available || copy->do_partial;
if (write_result) {
query_addr = ((u8 *)timestamp->vaddr) + queries[i].offset;
write_to_buffer(data, 0, copy->do_64bit, *((u64 *)query_addr));
}
if (copy->availability_bit)
write_to_buffer(data, 1, copy->do_64bit, available ? 1u : 0u);
data += copy->stride;
dma_fence_put(fence);
}
v3d_put_bo_vaddr(timestamp);
v3d_put_bo_vaddr(bo);
}
static void
v3d_reset_performance_queries(struct v3d_cpu_job *job)
{
struct v3d_performance_query_info *performance_query = &job->performance_query;
struct v3d_file_priv *v3d_priv = job->base.file->driver_priv;
struct v3d_dev *v3d = job->base.v3d;
struct v3d_perfmon *perfmon;
for (int i = 0; i < performance_query->count; i++) {
for (int j = 0; j < performance_query->nperfmons; j++) {
perfmon = v3d_perfmon_find(v3d_priv,
performance_query->queries[i].kperfmon_ids[j]);
if (!perfmon) {
DRM_DEBUG("Failed to find perfmon.");
continue;
}
v3d_perfmon_stop(v3d, perfmon, false);
memset(perfmon->values, 0, perfmon->ncounters * sizeof(u64));
v3d_perfmon_put(perfmon);
}
drm_syncobj_replace_fence(performance_query->queries[i].syncobj, NULL);
}
}
static void
v3d_write_performance_query_result(struct v3d_cpu_job *job, void *data, u32 query)
{
struct v3d_performance_query_info *performance_query = &job->performance_query;
struct v3d_copy_query_results_info *copy = &job->copy;
struct v3d_file_priv *v3d_priv = job->base.file->driver_priv;
struct v3d_dev *v3d = job->base.v3d;
struct v3d_perfmon *perfmon;
u64 counter_values[V3D_MAX_COUNTERS];
for (int i = 0; i < performance_query->nperfmons; i++) {
perfmon = v3d_perfmon_find(v3d_priv,
performance_query->queries[query].kperfmon_ids[i]);
if (!perfmon) {
DRM_DEBUG("Failed to find perfmon.");
continue;
}
v3d_perfmon_stop(v3d, perfmon, true);
memcpy(&counter_values[i * DRM_V3D_MAX_PERF_COUNTERS], perfmon->values,
perfmon->ncounters * sizeof(u64));
v3d_perfmon_put(perfmon);
}
for (int i = 0; i < performance_query->ncounters; i++)
write_to_buffer(data, i, copy->do_64bit, counter_values[i]);
}
static void
v3d_copy_performance_query(struct v3d_cpu_job *job)
{
struct v3d_performance_query_info *performance_query = &job->performance_query;
struct v3d_copy_query_results_info *copy = &job->copy;
struct v3d_bo *bo = to_v3d_bo(job->base.bo[0]);
struct dma_fence *fence;
bool available, write_result;
u8 *data;
v3d_get_bo_vaddr(bo);
data = ((u8 *)bo->vaddr) + copy->offset;
for (int i = 0; i < performance_query->count; i++) {
fence = drm_syncobj_fence_get(performance_query->queries[i].syncobj);
available = fence ? dma_fence_is_signaled(fence) : false;
write_result = available || copy->do_partial;
if (write_result)
v3d_write_performance_query_result(job, data, i);
if (copy->availability_bit)
write_to_buffer(data, performance_query->ncounters,
copy->do_64bit, available ? 1u : 0u);
data += copy->stride;
dma_fence_put(fence);
}
v3d_put_bo_vaddr(bo);
}
static const v3d_cpu_job_fn cpu_job_function[] = {
[V3D_CPU_JOB_TYPE_INDIRECT_CSD] = v3d_rewrite_csd_job_wg_counts_from_indirect,
[V3D_CPU_JOB_TYPE_TIMESTAMP_QUERY] = v3d_timestamp_query,
[V3D_CPU_JOB_TYPE_RESET_TIMESTAMP_QUERY] = v3d_reset_timestamp_queries,
[V3D_CPU_JOB_TYPE_COPY_TIMESTAMP_QUERY] = v3d_copy_query_results,
[V3D_CPU_JOB_TYPE_RESET_PERFORMANCE_QUERY] = v3d_reset_performance_queries,
[V3D_CPU_JOB_TYPE_COPY_PERFORMANCE_QUERY] = v3d_copy_performance_query,
};
static struct dma_fence *
v3d_cpu_job_run(struct drm_sched_job *sched_job)
{
struct v3d_cpu_job *job = to_cpu_job(sched_job);
struct v3d_dev *v3d = job->base.v3d;
v3d->cpu_job = job;
if (job->job_type >= ARRAY_SIZE(cpu_job_function)) {
DRM_DEBUG_DRIVER("Unknown CPU job: %d\n", job->job_type);
return NULL;
}
v3d_job_start_stats(&job->base, V3D_CPU);
trace_v3d_cpu_job_begin(&v3d->drm, job->job_type);
cpu_job_function[job->job_type](job);
trace_v3d_cpu_job_end(&v3d->drm, job->job_type);
v3d_job_update_stats(&job->base, V3D_CPU);
return NULL;
}
static struct dma_fence *
v3d_cache_clean_job_run(struct drm_sched_job *sched_job)
{
struct v3d_job *job = to_v3d_job(sched_job);
struct v3d_dev *v3d = job->v3d;
v3d_job_start_stats(job, V3D_CACHE_CLEAN);
v3d_clean_caches(v3d);
v3d_job_update_stats(job, V3D_CACHE_CLEAN);
return NULL;
}
static enum drm_gpu_sched_stat
v3d_gpu_reset_for_timeout(struct v3d_dev *v3d, struct drm_sched_job *sched_job)
{
enum v3d_queue q;
mutex_lock(&v3d->reset_lock);
/* block scheduler */
for (q = 0; q < V3D_MAX_QUEUES; q++)
drm_sched_stop(&v3d->queue[q].sched, sched_job);
if (sched_job)
drm_sched_increase_karma(sched_job);
/* get the GPU back into the init state */
v3d_reset(v3d);
for (q = 0; q < V3D_MAX_QUEUES; q++)
drm_sched_resubmit_jobs(&v3d->queue[q].sched);
/* Unblock schedulers and restart their jobs. */
for (q = 0; q < V3D_MAX_QUEUES; q++) {
drm_sched_start(&v3d->queue[q].sched, true);
}
mutex_unlock(&v3d->reset_lock);
return DRM_GPU_SCHED_STAT_NOMINAL;
}
/* If the current address or return address have changed, then the GPU
* has probably made progress and we should delay the reset. This
* could fail if the GPU got in an infinite loop in the CL, but that
* is pretty unlikely outside of an i-g-t testcase.
*/
static enum drm_gpu_sched_stat
v3d_cl_job_timedout(struct drm_sched_job *sched_job, enum v3d_queue q,
u32 *timedout_ctca, u32 *timedout_ctra)
{
struct v3d_job *job = to_v3d_job(sched_job);
struct v3d_dev *v3d = job->v3d;
u32 ctca = V3D_CORE_READ(0, V3D_CLE_CTNCA(q));
u32 ctra = V3D_CORE_READ(0, V3D_CLE_CTNRA(q));
if (*timedout_ctca != ctca || *timedout_ctra != ctra) {
*timedout_ctca = ctca;
*timedout_ctra = ctra;
return DRM_GPU_SCHED_STAT_NOMINAL;
}
return v3d_gpu_reset_for_timeout(v3d, sched_job);
}
static enum drm_gpu_sched_stat
v3d_bin_job_timedout(struct drm_sched_job *sched_job)
{
struct v3d_bin_job *job = to_bin_job(sched_job);
return v3d_cl_job_timedout(sched_job, V3D_BIN,
&job->timedout_ctca, &job->timedout_ctra);
}
static enum drm_gpu_sched_stat
v3d_render_job_timedout(struct drm_sched_job *sched_job)
{
struct v3d_render_job *job = to_render_job(sched_job);
return v3d_cl_job_timedout(sched_job, V3D_RENDER,
&job->timedout_ctca, &job->timedout_ctra);
}
static enum drm_gpu_sched_stat
v3d_generic_job_timedout(struct drm_sched_job *sched_job)
{
struct v3d_job *job = to_v3d_job(sched_job);
return v3d_gpu_reset_for_timeout(job->v3d, sched_job);
}
static enum drm_gpu_sched_stat
v3d_csd_job_timedout(struct drm_sched_job *sched_job)
{
struct v3d_csd_job *job = to_csd_job(sched_job);
struct v3d_dev *v3d = job->base.v3d;
u32 batches = V3D_CORE_READ(0, V3D_CSD_CURRENT_CFG4(v3d->ver));
/* If we've made progress, skip reset and let the timer get
* rearmed.
*/
if (job->timedout_batches != batches) {
job->timedout_batches = batches;
return DRM_GPU_SCHED_STAT_NOMINAL;
}
return v3d_gpu_reset_for_timeout(v3d, sched_job);
}
static const struct drm_sched_backend_ops v3d_bin_sched_ops = {
.run_job = v3d_bin_job_run,
.timedout_job = v3d_bin_job_timedout,
.free_job = v3d_sched_job_free,
};
static const struct drm_sched_backend_ops v3d_render_sched_ops = {
.run_job = v3d_render_job_run,
.timedout_job = v3d_render_job_timedout,
.free_job = v3d_sched_job_free,
};
static const struct drm_sched_backend_ops v3d_tfu_sched_ops = {
.run_job = v3d_tfu_job_run,
.timedout_job = v3d_generic_job_timedout,
.free_job = v3d_sched_job_free,
};
static const struct drm_sched_backend_ops v3d_csd_sched_ops = {
.run_job = v3d_csd_job_run,
.timedout_job = v3d_csd_job_timedout,
.free_job = v3d_sched_job_free
};
static const struct drm_sched_backend_ops v3d_cache_clean_sched_ops = {
.run_job = v3d_cache_clean_job_run,
.timedout_job = v3d_generic_job_timedout,
.free_job = v3d_sched_job_free
};
static const struct drm_sched_backend_ops v3d_cpu_sched_ops = {
.run_job = v3d_cpu_job_run,
.timedout_job = v3d_generic_job_timedout,
.free_job = v3d_cpu_job_free
};
int
v3d_sched_init(struct v3d_dev *v3d)
{
int hw_jobs_limit = 1;
int job_hang_limit = 0;
int hang_limit_ms = 500;
int ret;
ret = drm_sched_init(&v3d->queue[V3D_BIN].sched,
&v3d_bin_sched_ops, NULL,
DRM_SCHED_PRIORITY_COUNT,
hw_jobs_limit, job_hang_limit,
msecs_to_jiffies(hang_limit_ms), NULL,
NULL, "v3d_bin", v3d->drm.dev);
if (ret)
return ret;
ret = drm_sched_init(&v3d->queue[V3D_RENDER].sched,
&v3d_render_sched_ops, NULL,
DRM_SCHED_PRIORITY_COUNT,
hw_jobs_limit, job_hang_limit,
msecs_to_jiffies(hang_limit_ms), NULL,
NULL, "v3d_render", v3d->drm.dev);
if (ret)
goto fail;
ret = drm_sched_init(&v3d->queue[V3D_TFU].sched,
&v3d_tfu_sched_ops, NULL,
DRM_SCHED_PRIORITY_COUNT,
hw_jobs_limit, job_hang_limit,
msecs_to_jiffies(hang_limit_ms), NULL,
NULL, "v3d_tfu", v3d->drm.dev);
if (ret)
goto fail;
if (v3d_has_csd(v3d)) {
ret = drm_sched_init(&v3d->queue[V3D_CSD].sched,
&v3d_csd_sched_ops, NULL,
DRM_SCHED_PRIORITY_COUNT,
hw_jobs_limit, job_hang_limit,
msecs_to_jiffies(hang_limit_ms), NULL,
NULL, "v3d_csd", v3d->drm.dev);
if (ret)
goto fail;
ret = drm_sched_init(&v3d->queue[V3D_CACHE_CLEAN].sched,
&v3d_cache_clean_sched_ops, NULL,
DRM_SCHED_PRIORITY_COUNT,
hw_jobs_limit, job_hang_limit,
msecs_to_jiffies(hang_limit_ms), NULL,
NULL, "v3d_cache_clean", v3d->drm.dev);
if (ret)
goto fail;
}
ret = drm_sched_init(&v3d->queue[V3D_CPU].sched,
&v3d_cpu_sched_ops, NULL,
DRM_SCHED_PRIORITY_COUNT,
1, job_hang_limit,
msecs_to_jiffies(hang_limit_ms), NULL,
NULL, "v3d_cpu", v3d->drm.dev);
if (ret)
goto fail;
return 0;
fail:
v3d_sched_fini(v3d);
return ret;
}
void
v3d_sched_fini(struct v3d_dev *v3d)
{
enum v3d_queue q;
for (q = 0; q < V3D_MAX_QUEUES; q++) {
if (v3d->queue[q].sched.ready)
drm_sched_fini(&v3d->queue[q].sched);
}
}