| // SPDX-License-Identifier: GPL-2.0 |
| |
| /* |
| * Transitional page tables for kexec and hibernate |
| * |
| * This file derived from: arch/arm64/kernel/hibernate.c |
| * |
| * Copyright (c) 2021, Microsoft Corporation. |
| * Pasha Tatashin <pasha.tatashin@soleen.com> |
| * |
| */ |
| |
| /* |
| * Transitional tables are used during system transferring from one world to |
| * another: such as during hibernate restore, and kexec reboots. During these |
| * phases one cannot rely on page table not being overwritten. This is because |
| * hibernate and kexec can overwrite the current page tables during transition. |
| */ |
| |
| #include <asm/trans_pgd.h> |
| #include <asm/pgalloc.h> |
| #include <asm/pgtable.h> |
| #include <linux/suspend.h> |
| #include <linux/bug.h> |
| #include <linux/mm.h> |
| #include <linux/mmzone.h> |
| #include <linux/kfence.h> |
| |
| static void *trans_alloc(struct trans_pgd_info *info) |
| { |
| return info->trans_alloc_page(info->trans_alloc_arg); |
| } |
| |
| static void _copy_pte(pte_t *dst_ptep, pte_t *src_ptep, unsigned long addr) |
| { |
| pte_t pte = __ptep_get(src_ptep); |
| |
| if (pte_valid(pte)) { |
| /* |
| * Resume will overwrite areas that may be marked |
| * read only (code, rodata). Clear the RDONLY bit from |
| * the temporary mappings we use during restore. |
| */ |
| __set_pte(dst_ptep, pte_mkwrite_novma(pte)); |
| } else if ((debug_pagealloc_enabled() || |
| is_kfence_address((void *)addr)) && !pte_none(pte)) { |
| /* |
| * debug_pagealloc will removed the PTE_VALID bit if |
| * the page isn't in use by the resume kernel. It may have |
| * been in use by the original kernel, in which case we need |
| * to put it back in our copy to do the restore. |
| * |
| * Before marking this entry valid, check the pfn should |
| * be mapped. |
| */ |
| BUG_ON(!pfn_valid(pte_pfn(pte))); |
| |
| __set_pte(dst_ptep, pte_mkpresent(pte_mkwrite_novma(pte))); |
| } |
| } |
| |
| static int copy_pte(struct trans_pgd_info *info, pmd_t *dst_pmdp, |
| pmd_t *src_pmdp, unsigned long start, unsigned long end) |
| { |
| pte_t *src_ptep; |
| pte_t *dst_ptep; |
| unsigned long addr = start; |
| |
| dst_ptep = trans_alloc(info); |
| if (!dst_ptep) |
| return -ENOMEM; |
| pmd_populate_kernel(NULL, dst_pmdp, dst_ptep); |
| dst_ptep = pte_offset_kernel(dst_pmdp, start); |
| |
| src_ptep = pte_offset_kernel(src_pmdp, start); |
| do { |
| _copy_pte(dst_ptep, src_ptep, addr); |
| } while (dst_ptep++, src_ptep++, addr += PAGE_SIZE, addr != end); |
| |
| return 0; |
| } |
| |
| static int copy_pmd(struct trans_pgd_info *info, pud_t *dst_pudp, |
| pud_t *src_pudp, unsigned long start, unsigned long end) |
| { |
| pmd_t *src_pmdp; |
| pmd_t *dst_pmdp; |
| unsigned long next; |
| unsigned long addr = start; |
| |
| if (pud_none(READ_ONCE(*dst_pudp))) { |
| dst_pmdp = trans_alloc(info); |
| if (!dst_pmdp) |
| return -ENOMEM; |
| pud_populate(NULL, dst_pudp, dst_pmdp); |
| } |
| dst_pmdp = pmd_offset(dst_pudp, start); |
| |
| src_pmdp = pmd_offset(src_pudp, start); |
| do { |
| pmd_t pmd = READ_ONCE(*src_pmdp); |
| |
| next = pmd_addr_end(addr, end); |
| if (pmd_none(pmd)) |
| continue; |
| if (pmd_table(pmd)) { |
| if (copy_pte(info, dst_pmdp, src_pmdp, addr, next)) |
| return -ENOMEM; |
| } else { |
| set_pmd(dst_pmdp, |
| __pmd(pmd_val(pmd) & ~PMD_SECT_RDONLY)); |
| } |
| } while (dst_pmdp++, src_pmdp++, addr = next, addr != end); |
| |
| return 0; |
| } |
| |
| static int copy_pud(struct trans_pgd_info *info, p4d_t *dst_p4dp, |
| p4d_t *src_p4dp, unsigned long start, |
| unsigned long end) |
| { |
| pud_t *dst_pudp; |
| pud_t *src_pudp; |
| unsigned long next; |
| unsigned long addr = start; |
| |
| if (p4d_none(READ_ONCE(*dst_p4dp))) { |
| dst_pudp = trans_alloc(info); |
| if (!dst_pudp) |
| return -ENOMEM; |
| p4d_populate(NULL, dst_p4dp, dst_pudp); |
| } |
| dst_pudp = pud_offset(dst_p4dp, start); |
| |
| src_pudp = pud_offset(src_p4dp, start); |
| do { |
| pud_t pud = READ_ONCE(*src_pudp); |
| |
| next = pud_addr_end(addr, end); |
| if (pud_none(pud)) |
| continue; |
| if (pud_table(pud)) { |
| if (copy_pmd(info, dst_pudp, src_pudp, addr, next)) |
| return -ENOMEM; |
| } else { |
| set_pud(dst_pudp, |
| __pud(pud_val(pud) & ~PUD_SECT_RDONLY)); |
| } |
| } while (dst_pudp++, src_pudp++, addr = next, addr != end); |
| |
| return 0; |
| } |
| |
| static int copy_p4d(struct trans_pgd_info *info, pgd_t *dst_pgdp, |
| pgd_t *src_pgdp, unsigned long start, |
| unsigned long end) |
| { |
| p4d_t *dst_p4dp; |
| p4d_t *src_p4dp; |
| unsigned long next; |
| unsigned long addr = start; |
| |
| dst_p4dp = p4d_offset(dst_pgdp, start); |
| src_p4dp = p4d_offset(src_pgdp, start); |
| do { |
| next = p4d_addr_end(addr, end); |
| if (p4d_none(READ_ONCE(*src_p4dp))) |
| continue; |
| if (copy_pud(info, dst_p4dp, src_p4dp, addr, next)) |
| return -ENOMEM; |
| } while (dst_p4dp++, src_p4dp++, addr = next, addr != end); |
| |
| return 0; |
| } |
| |
| static int copy_page_tables(struct trans_pgd_info *info, pgd_t *dst_pgdp, |
| unsigned long start, unsigned long end) |
| { |
| unsigned long next; |
| unsigned long addr = start; |
| pgd_t *src_pgdp = pgd_offset_k(start); |
| |
| dst_pgdp = pgd_offset_pgd(dst_pgdp, start); |
| do { |
| next = pgd_addr_end(addr, end); |
| if (pgd_none(READ_ONCE(*src_pgdp))) |
| continue; |
| if (copy_p4d(info, dst_pgdp, src_pgdp, addr, next)) |
| return -ENOMEM; |
| } while (dst_pgdp++, src_pgdp++, addr = next, addr != end); |
| |
| return 0; |
| } |
| |
| /* |
| * Create trans_pgd and copy linear map. |
| * info: contains allocator and its argument |
| * dst_pgdp: new page table that is created, and to which map is copied. |
| * start: Start of the interval (inclusive). |
| * end: End of the interval (exclusive). |
| * |
| * Returns 0 on success, and -ENOMEM on failure. |
| */ |
| int trans_pgd_create_copy(struct trans_pgd_info *info, pgd_t **dst_pgdp, |
| unsigned long start, unsigned long end) |
| { |
| int rc; |
| pgd_t *trans_pgd = trans_alloc(info); |
| |
| if (!trans_pgd) { |
| pr_err("Failed to allocate memory for temporary page tables.\n"); |
| return -ENOMEM; |
| } |
| |
| rc = copy_page_tables(info, trans_pgd, start, end); |
| if (!rc) |
| *dst_pgdp = trans_pgd; |
| |
| return rc; |
| } |
| |
| /* |
| * The page we want to idmap may be outside the range covered by VA_BITS that |
| * can be built using the kernel's p?d_populate() helpers. As a one off, for a |
| * single page, we build these page tables bottom up and just assume that will |
| * need the maximum T0SZ. |
| * |
| * Returns 0 on success, and -ENOMEM on failure. |
| * On success trans_ttbr0 contains page table with idmapped page, t0sz is set to |
| * maximum T0SZ for this page. |
| */ |
| int trans_pgd_idmap_page(struct trans_pgd_info *info, phys_addr_t *trans_ttbr0, |
| unsigned long *t0sz, void *page) |
| { |
| phys_addr_t dst_addr = virt_to_phys(page); |
| unsigned long pfn = __phys_to_pfn(dst_addr); |
| int max_msb = (dst_addr & GENMASK(52, 48)) ? 51 : 47; |
| int bits_mapped = PAGE_SHIFT - 4; |
| unsigned long level_mask, prev_level_entry, *levels[4]; |
| int this_level, index, level_lsb, level_msb; |
| |
| dst_addr &= PAGE_MASK; |
| prev_level_entry = pte_val(pfn_pte(pfn, PAGE_KERNEL_ROX)); |
| |
| for (this_level = 3; this_level >= 0; this_level--) { |
| levels[this_level] = trans_alloc(info); |
| if (!levels[this_level]) |
| return -ENOMEM; |
| |
| level_lsb = ARM64_HW_PGTABLE_LEVEL_SHIFT(this_level); |
| level_msb = min(level_lsb + bits_mapped, max_msb); |
| level_mask = GENMASK_ULL(level_msb, level_lsb); |
| |
| index = (dst_addr & level_mask) >> level_lsb; |
| *(levels[this_level] + index) = prev_level_entry; |
| |
| pfn = virt_to_pfn(levels[this_level]); |
| prev_level_entry = pte_val(pfn_pte(pfn, |
| __pgprot(PMD_TYPE_TABLE))); |
| |
| if (level_msb == max_msb) |
| break; |
| } |
| |
| *trans_ttbr0 = phys_to_ttbr(__pfn_to_phys(pfn)); |
| *t0sz = TCR_T0SZ(max_msb + 1); |
| |
| return 0; |
| } |
| |
| /* |
| * Create a copy of the vector table so we can call HVC_SET_VECTORS or |
| * HVC_SOFT_RESTART from contexts where the table may be overwritten. |
| */ |
| int trans_pgd_copy_el2_vectors(struct trans_pgd_info *info, |
| phys_addr_t *el2_vectors) |
| { |
| void *hyp_stub = trans_alloc(info); |
| |
| if (!hyp_stub) |
| return -ENOMEM; |
| *el2_vectors = virt_to_phys(hyp_stub); |
| memcpy(hyp_stub, &trans_pgd_stub_vectors, ARM64_VECTOR_TABLE_LEN); |
| caches_clean_inval_pou((unsigned long)hyp_stub, |
| (unsigned long)hyp_stub + |
| ARM64_VECTOR_TABLE_LEN); |
| dcache_clean_inval_poc((unsigned long)hyp_stub, |
| (unsigned long)hyp_stub + |
| ARM64_VECTOR_TABLE_LEN); |
| |
| return 0; |
| } |