| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * This only handles 32bit MTRR on 32bit hosts. This is strictly wrong |
| * because MTRRs can span up to 40 bits (36bits on most modern x86) |
| */ |
| |
| #include <linux/export.h> |
| #include <linux/init.h> |
| #include <linux/io.h> |
| #include <linux/mm.h> |
| #include <linux/cc_platform.h> |
| #include <asm/processor-flags.h> |
| #include <asm/cacheinfo.h> |
| #include <asm/cpufeature.h> |
| #include <asm/hypervisor.h> |
| #include <asm/mshyperv.h> |
| #include <asm/tlbflush.h> |
| #include <asm/mtrr.h> |
| #include <asm/msr.h> |
| #include <asm/memtype.h> |
| |
| #include "mtrr.h" |
| |
| struct fixed_range_block { |
| int base_msr; /* start address of an MTRR block */ |
| int ranges; /* number of MTRRs in this block */ |
| }; |
| |
| static struct fixed_range_block fixed_range_blocks[] = { |
| { MSR_MTRRfix64K_00000, 1 }, /* one 64k MTRR */ |
| { MSR_MTRRfix16K_80000, 2 }, /* two 16k MTRRs */ |
| { MSR_MTRRfix4K_C0000, 8 }, /* eight 4k MTRRs */ |
| {} |
| }; |
| |
| struct cache_map { |
| u64 start; |
| u64 end; |
| u64 flags; |
| u64 type:8; |
| u64 fixed:1; |
| }; |
| |
| bool mtrr_debug; |
| |
| static int __init mtrr_param_setup(char *str) |
| { |
| int rc = 0; |
| |
| if (!str) |
| return -EINVAL; |
| if (!strcmp(str, "debug")) |
| mtrr_debug = true; |
| else |
| rc = -EINVAL; |
| |
| return rc; |
| } |
| early_param("mtrr", mtrr_param_setup); |
| |
| /* |
| * CACHE_MAP_MAX is the maximum number of memory ranges in cache_map, where |
| * no 2 adjacent ranges have the same cache mode (those would be merged). |
| * The number is based on the worst case: |
| * - no two adjacent fixed MTRRs share the same cache mode |
| * - one variable MTRR is spanning a huge area with mode WB |
| * - 255 variable MTRRs with mode UC all overlap with the WB MTRR, creating 2 |
| * additional ranges each (result like "ababababa...aba" with a = WB, b = UC), |
| * accounting for MTRR_MAX_VAR_RANGES * 2 - 1 range entries |
| * - a TOP_MEM2 area (even with overlapping an UC MTRR can't add 2 range entries |
| * to the possible maximum, as it always starts at 4GB, thus it can't be in |
| * the middle of that MTRR, unless that MTRR starts at 0, which would remove |
| * the initial "a" from the "abababa" pattern above) |
| * The map won't contain ranges with no matching MTRR (those fall back to the |
| * default cache mode). |
| */ |
| #define CACHE_MAP_MAX (MTRR_NUM_FIXED_RANGES + MTRR_MAX_VAR_RANGES * 2) |
| |
| static struct cache_map init_cache_map[CACHE_MAP_MAX] __initdata; |
| static struct cache_map *cache_map __refdata = init_cache_map; |
| static unsigned int cache_map_size = CACHE_MAP_MAX; |
| static unsigned int cache_map_n; |
| static unsigned int cache_map_fixed; |
| |
| static unsigned long smp_changes_mask; |
| static int mtrr_state_set; |
| u64 mtrr_tom2; |
| |
| struct mtrr_state_type mtrr_state; |
| EXPORT_SYMBOL_GPL(mtrr_state); |
| |
| /* Reserved bits in the high portion of the MTRRphysBaseN MSR. */ |
| u32 phys_hi_rsvd; |
| |
| /* |
| * BIOS is expected to clear MtrrFixDramModEn bit, see for example |
| * "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD |
| * Opteron Processors" (26094 Rev. 3.30 February 2006), section |
| * "13.2.1.2 SYSCFG Register": "The MtrrFixDramModEn bit should be set |
| * to 1 during BIOS initialization of the fixed MTRRs, then cleared to |
| * 0 for operation." |
| */ |
| static inline void k8_check_syscfg_dram_mod_en(void) |
| { |
| u32 lo, hi; |
| |
| if (!((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && |
| (boot_cpu_data.x86 >= 0x0f))) |
| return; |
| |
| if (cpu_feature_enabled(X86_FEATURE_SEV_SNP)) |
| return; |
| |
| rdmsr(MSR_AMD64_SYSCFG, lo, hi); |
| if (lo & K8_MTRRFIXRANGE_DRAM_MODIFY) { |
| pr_err(FW_WARN "MTRR: CPU %u: SYSCFG[MtrrFixDramModEn]" |
| " not cleared by BIOS, clearing this bit\n", |
| smp_processor_id()); |
| lo &= ~K8_MTRRFIXRANGE_DRAM_MODIFY; |
| mtrr_wrmsr(MSR_AMD64_SYSCFG, lo, hi); |
| } |
| } |
| |
| /* Get the size of contiguous MTRR range */ |
| static u64 get_mtrr_size(u64 mask) |
| { |
| u64 size; |
| |
| mask |= (u64)phys_hi_rsvd << 32; |
| size = -mask; |
| |
| return size; |
| } |
| |
| static u8 get_var_mtrr_state(unsigned int reg, u64 *start, u64 *size) |
| { |
| struct mtrr_var_range *mtrr = mtrr_state.var_ranges + reg; |
| |
| if (!(mtrr->mask_lo & MTRR_PHYSMASK_V)) |
| return MTRR_TYPE_INVALID; |
| |
| *start = (((u64)mtrr->base_hi) << 32) + (mtrr->base_lo & PAGE_MASK); |
| *size = get_mtrr_size((((u64)mtrr->mask_hi) << 32) + |
| (mtrr->mask_lo & PAGE_MASK)); |
| |
| return mtrr->base_lo & MTRR_PHYSBASE_TYPE; |
| } |
| |
| static u8 get_effective_type(u8 type1, u8 type2) |
| { |
| if (type1 == MTRR_TYPE_UNCACHABLE || type2 == MTRR_TYPE_UNCACHABLE) |
| return MTRR_TYPE_UNCACHABLE; |
| |
| if ((type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH) || |
| (type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK)) |
| return MTRR_TYPE_WRTHROUGH; |
| |
| if (type1 != type2) |
| return MTRR_TYPE_UNCACHABLE; |
| |
| return type1; |
| } |
| |
| static void rm_map_entry_at(int idx) |
| { |
| cache_map_n--; |
| if (cache_map_n > idx) { |
| memmove(cache_map + idx, cache_map + idx + 1, |
| sizeof(*cache_map) * (cache_map_n - idx)); |
| } |
| } |
| |
| /* |
| * Add an entry into cache_map at a specific index. Merges adjacent entries if |
| * appropriate. Return the number of merges for correcting the scan index |
| * (this is needed as merging will reduce the number of entries, which will |
| * result in skipping entries in future iterations if the scan index isn't |
| * corrected). |
| * Note that the corrected index can never go below -1 (resulting in being 0 in |
| * the next scan iteration), as "2" is returned only if the current index is |
| * larger than zero. |
| */ |
| static int add_map_entry_at(u64 start, u64 end, u8 type, int idx) |
| { |
| bool merge_prev = false, merge_next = false; |
| |
| if (start >= end) |
| return 0; |
| |
| if (idx > 0) { |
| struct cache_map *prev = cache_map + idx - 1; |
| |
| if (!prev->fixed && start == prev->end && type == prev->type) |
| merge_prev = true; |
| } |
| |
| if (idx < cache_map_n) { |
| struct cache_map *next = cache_map + idx; |
| |
| if (!next->fixed && end == next->start && type == next->type) |
| merge_next = true; |
| } |
| |
| if (merge_prev && merge_next) { |
| cache_map[idx - 1].end = cache_map[idx].end; |
| rm_map_entry_at(idx); |
| return 2; |
| } |
| if (merge_prev) { |
| cache_map[idx - 1].end = end; |
| return 1; |
| } |
| if (merge_next) { |
| cache_map[idx].start = start; |
| return 1; |
| } |
| |
| /* Sanity check: the array should NEVER be too small! */ |
| if (cache_map_n == cache_map_size) { |
| WARN(1, "MTRR cache mode memory map exhausted!\n"); |
| cache_map_n = cache_map_fixed; |
| return 0; |
| } |
| |
| if (cache_map_n > idx) { |
| memmove(cache_map + idx + 1, cache_map + idx, |
| sizeof(*cache_map) * (cache_map_n - idx)); |
| } |
| |
| cache_map[idx].start = start; |
| cache_map[idx].end = end; |
| cache_map[idx].type = type; |
| cache_map[idx].fixed = 0; |
| cache_map_n++; |
| |
| return 0; |
| } |
| |
| /* Clear a part of an entry. Return 1 if start of entry is still valid. */ |
| static int clr_map_range_at(u64 start, u64 end, int idx) |
| { |
| int ret = start != cache_map[idx].start; |
| u64 tmp; |
| |
| if (start == cache_map[idx].start && end == cache_map[idx].end) { |
| rm_map_entry_at(idx); |
| } else if (start == cache_map[idx].start) { |
| cache_map[idx].start = end; |
| } else if (end == cache_map[idx].end) { |
| cache_map[idx].end = start; |
| } else { |
| tmp = cache_map[idx].end; |
| cache_map[idx].end = start; |
| add_map_entry_at(end, tmp, cache_map[idx].type, idx + 1); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Add MTRR to the map. The current map is scanned and each part of the MTRR |
| * either overlapping with an existing entry or with a hole in the map is |
| * handled separately. |
| */ |
| static void add_map_entry(u64 start, u64 end, u8 type) |
| { |
| u8 new_type, old_type; |
| u64 tmp; |
| int i; |
| |
| for (i = 0; i < cache_map_n && start < end; i++) { |
| if (start >= cache_map[i].end) |
| continue; |
| |
| if (start < cache_map[i].start) { |
| /* Region start has no overlap. */ |
| tmp = min(end, cache_map[i].start); |
| i -= add_map_entry_at(start, tmp, type, i); |
| start = tmp; |
| continue; |
| } |
| |
| new_type = get_effective_type(type, cache_map[i].type); |
| old_type = cache_map[i].type; |
| |
| if (cache_map[i].fixed || new_type == old_type) { |
| /* Cut off start of new entry. */ |
| start = cache_map[i].end; |
| continue; |
| } |
| |
| /* Handle only overlapping part of region. */ |
| tmp = min(end, cache_map[i].end); |
| i += clr_map_range_at(start, tmp, i); |
| i -= add_map_entry_at(start, tmp, new_type, i); |
| start = tmp; |
| } |
| |
| /* Add rest of region after last map entry (rest might be empty). */ |
| add_map_entry_at(start, end, type, i); |
| } |
| |
| /* Add variable MTRRs to cache map. */ |
| static void map_add_var(void) |
| { |
| u64 start, size; |
| unsigned int i; |
| u8 type; |
| |
| /* |
| * Add AMD TOP_MEM2 area. Can't be added in mtrr_build_map(), as it |
| * needs to be added again when rebuilding the map due to potentially |
| * having moved as a result of variable MTRRs for memory below 4GB. |
| */ |
| if (mtrr_tom2) { |
| add_map_entry(BIT_ULL(32), mtrr_tom2, MTRR_TYPE_WRBACK); |
| cache_map[cache_map_n - 1].fixed = 1; |
| } |
| |
| for (i = 0; i < num_var_ranges; i++) { |
| type = get_var_mtrr_state(i, &start, &size); |
| if (type != MTRR_TYPE_INVALID) |
| add_map_entry(start, start + size, type); |
| } |
| } |
| |
| /* |
| * Rebuild map by replacing variable entries. Needs to be called when MTRR |
| * registers are being changed after boot, as such changes could include |
| * removals of registers, which are complicated to handle without rebuild of |
| * the map. |
| */ |
| void generic_rebuild_map(void) |
| { |
| if (mtrr_if != &generic_mtrr_ops) |
| return; |
| |
| cache_map_n = cache_map_fixed; |
| |
| map_add_var(); |
| } |
| |
| static unsigned int __init get_cache_map_size(void) |
| { |
| return cache_map_fixed + 2 * num_var_ranges + (mtrr_tom2 != 0); |
| } |
| |
| /* Build the cache_map containing the cache modes per memory range. */ |
| void __init mtrr_build_map(void) |
| { |
| u64 start, end, size; |
| unsigned int i; |
| u8 type; |
| |
| /* Add fixed MTRRs, optimize for adjacent entries with same type. */ |
| if (mtrr_state.enabled & MTRR_STATE_MTRR_FIXED_ENABLED) { |
| /* |
| * Start with 64k size fixed entries, preset 1st one (hence the |
| * loop below is starting with index 1). |
| */ |
| start = 0; |
| end = size = 0x10000; |
| type = mtrr_state.fixed_ranges[0]; |
| |
| for (i = 1; i < MTRR_NUM_FIXED_RANGES; i++) { |
| /* 8 64k entries, then 16 16k ones, rest 4k. */ |
| if (i == 8 || i == 24) |
| size >>= 2; |
| |
| if (mtrr_state.fixed_ranges[i] != type) { |
| add_map_entry(start, end, type); |
| start = end; |
| type = mtrr_state.fixed_ranges[i]; |
| } |
| end += size; |
| } |
| add_map_entry(start, end, type); |
| } |
| |
| /* Mark fixed, they take precedence. */ |
| for (i = 0; i < cache_map_n; i++) |
| cache_map[i].fixed = 1; |
| cache_map_fixed = cache_map_n; |
| |
| map_add_var(); |
| |
| pr_info("MTRR map: %u entries (%u fixed + %u variable; max %u), built from %u variable MTRRs\n", |
| cache_map_n, cache_map_fixed, cache_map_n - cache_map_fixed, |
| get_cache_map_size(), num_var_ranges + (mtrr_tom2 != 0)); |
| |
| if (mtrr_debug) { |
| for (i = 0; i < cache_map_n; i++) { |
| pr_info("%3u: %016llx-%016llx %s\n", i, |
| cache_map[i].start, cache_map[i].end - 1, |
| mtrr_attrib_to_str(cache_map[i].type)); |
| } |
| } |
| } |
| |
| /* Copy the cache_map from __initdata memory to dynamically allocated one. */ |
| void __init mtrr_copy_map(void) |
| { |
| unsigned int new_size = get_cache_map_size(); |
| |
| if (!mtrr_state.enabled || !new_size) { |
| cache_map = NULL; |
| return; |
| } |
| |
| mutex_lock(&mtrr_mutex); |
| |
| cache_map = kcalloc(new_size, sizeof(*cache_map), GFP_KERNEL); |
| if (cache_map) { |
| memmove(cache_map, init_cache_map, |
| cache_map_n * sizeof(*cache_map)); |
| cache_map_size = new_size; |
| } else { |
| mtrr_state.enabled = 0; |
| pr_err("MTRRs disabled due to allocation failure for lookup map.\n"); |
| } |
| |
| mutex_unlock(&mtrr_mutex); |
| } |
| |
| /** |
| * mtrr_overwrite_state - set static MTRR state |
| * |
| * Used to set MTRR state via different means (e.g. with data obtained from |
| * a hypervisor). |
| * Is allowed only for special cases when running virtualized. Must be called |
| * from the x86_init.hyper.init_platform() hook. It can be called only once. |
| * The MTRR state can't be changed afterwards. To ensure that, X86_FEATURE_MTRR |
| * is cleared. |
| * |
| * @var: MTRR variable range array to use |
| * @num_var: length of the @var array |
| * @def_type: default caching type |
| */ |
| void mtrr_overwrite_state(struct mtrr_var_range *var, unsigned int num_var, |
| mtrr_type def_type) |
| { |
| unsigned int i; |
| |
| /* Only allowed to be called once before mtrr_bp_init(). */ |
| if (WARN_ON_ONCE(mtrr_state_set)) |
| return; |
| |
| /* Only allowed when running virtualized. */ |
| if (!cpu_feature_enabled(X86_FEATURE_HYPERVISOR)) |
| return; |
| |
| /* |
| * Only allowed for special virtualization cases: |
| * - when running as Hyper-V, SEV-SNP guest using vTOM |
| * - when running as Xen PV guest |
| * - when running as SEV-SNP or TDX guest to avoid unnecessary |
| * VMM communication/Virtualization exceptions (#VC, #VE) |
| */ |
| if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP) && |
| !hv_is_isolation_supported() && |
| !cpu_feature_enabled(X86_FEATURE_XENPV) && |
| !cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) |
| return; |
| |
| /* Disable MTRR in order to disable MTRR modifications. */ |
| setup_clear_cpu_cap(X86_FEATURE_MTRR); |
| |
| if (var) { |
| if (num_var > MTRR_MAX_VAR_RANGES) { |
| pr_warn("Trying to overwrite MTRR state with %u variable entries\n", |
| num_var); |
| num_var = MTRR_MAX_VAR_RANGES; |
| } |
| for (i = 0; i < num_var; i++) |
| mtrr_state.var_ranges[i] = var[i]; |
| num_var_ranges = num_var; |
| } |
| |
| mtrr_state.def_type = def_type; |
| mtrr_state.enabled |= MTRR_STATE_MTRR_ENABLED; |
| |
| mtrr_state_set = 1; |
| } |
| |
| static u8 type_merge(u8 type, u8 new_type, u8 *uniform) |
| { |
| u8 effective_type; |
| |
| if (type == MTRR_TYPE_INVALID) |
| return new_type; |
| |
| effective_type = get_effective_type(type, new_type); |
| if (type != effective_type) |
| *uniform = 0; |
| |
| return effective_type; |
| } |
| |
| /** |
| * mtrr_type_lookup - look up memory type in MTRR |
| * |
| * @start: Begin of the physical address range |
| * @end: End of the physical address range |
| * @uniform: output argument: |
| * - 1: the returned MTRR type is valid for the whole region |
| * - 0: otherwise |
| * |
| * Return Values: |
| * MTRR_TYPE_(type) - The effective MTRR type for the region |
| * MTRR_TYPE_INVALID - MTRR is disabled |
| */ |
| u8 mtrr_type_lookup(u64 start, u64 end, u8 *uniform) |
| { |
| u8 type = MTRR_TYPE_INVALID; |
| unsigned int i; |
| |
| if (!mtrr_state_set) { |
| /* Uniformity is unknown. */ |
| *uniform = 0; |
| return MTRR_TYPE_UNCACHABLE; |
| } |
| |
| *uniform = 1; |
| |
| if (!(mtrr_state.enabled & MTRR_STATE_MTRR_ENABLED)) |
| return MTRR_TYPE_UNCACHABLE; |
| |
| for (i = 0; i < cache_map_n && start < end; i++) { |
| /* Region after current map entry? -> continue with next one. */ |
| if (start >= cache_map[i].end) |
| continue; |
| |
| /* Start of region not covered by current map entry? */ |
| if (start < cache_map[i].start) { |
| /* At least some part of region has default type. */ |
| type = type_merge(type, mtrr_state.def_type, uniform); |
| /* End of region not covered, too? -> lookup done. */ |
| if (end <= cache_map[i].start) |
| return type; |
| } |
| |
| /* At least part of region covered by map entry. */ |
| type = type_merge(type, cache_map[i].type, uniform); |
| |
| start = cache_map[i].end; |
| } |
| |
| /* End of region past last entry in map? -> use default type. */ |
| if (start < end) |
| type = type_merge(type, mtrr_state.def_type, uniform); |
| |
| return type; |
| } |
| |
| /* Get the MSR pair relating to a var range */ |
| static void |
| get_mtrr_var_range(unsigned int index, struct mtrr_var_range *vr) |
| { |
| rdmsr(MTRRphysBase_MSR(index), vr->base_lo, vr->base_hi); |
| rdmsr(MTRRphysMask_MSR(index), vr->mask_lo, vr->mask_hi); |
| } |
| |
| /* Fill the MSR pair relating to a var range */ |
| void fill_mtrr_var_range(unsigned int index, |
| u32 base_lo, u32 base_hi, u32 mask_lo, u32 mask_hi) |
| { |
| struct mtrr_var_range *vr; |
| |
| vr = mtrr_state.var_ranges; |
| |
| vr[index].base_lo = base_lo; |
| vr[index].base_hi = base_hi; |
| vr[index].mask_lo = mask_lo; |
| vr[index].mask_hi = mask_hi; |
| } |
| |
| static void get_fixed_ranges(mtrr_type *frs) |
| { |
| unsigned int *p = (unsigned int *)frs; |
| int i; |
| |
| k8_check_syscfg_dram_mod_en(); |
| |
| rdmsr(MSR_MTRRfix64K_00000, p[0], p[1]); |
| |
| for (i = 0; i < 2; i++) |
| rdmsr(MSR_MTRRfix16K_80000 + i, p[2 + i * 2], p[3 + i * 2]); |
| for (i = 0; i < 8; i++) |
| rdmsr(MSR_MTRRfix4K_C0000 + i, p[6 + i * 2], p[7 + i * 2]); |
| } |
| |
| void mtrr_save_fixed_ranges(void *info) |
| { |
| if (boot_cpu_has(X86_FEATURE_MTRR)) |
| get_fixed_ranges(mtrr_state.fixed_ranges); |
| } |
| |
| static unsigned __initdata last_fixed_start; |
| static unsigned __initdata last_fixed_end; |
| static mtrr_type __initdata last_fixed_type; |
| |
| static void __init print_fixed_last(void) |
| { |
| if (!last_fixed_end) |
| return; |
| |
| pr_info(" %05X-%05X %s\n", last_fixed_start, |
| last_fixed_end - 1, mtrr_attrib_to_str(last_fixed_type)); |
| |
| last_fixed_end = 0; |
| } |
| |
| static void __init update_fixed_last(unsigned base, unsigned end, |
| mtrr_type type) |
| { |
| last_fixed_start = base; |
| last_fixed_end = end; |
| last_fixed_type = type; |
| } |
| |
| static void __init |
| print_fixed(unsigned base, unsigned step, const mtrr_type *types) |
| { |
| unsigned i; |
| |
| for (i = 0; i < 8; ++i, ++types, base += step) { |
| if (last_fixed_end == 0) { |
| update_fixed_last(base, base + step, *types); |
| continue; |
| } |
| if (last_fixed_end == base && last_fixed_type == *types) { |
| last_fixed_end = base + step; |
| continue; |
| } |
| /* new segments: gap or different type */ |
| print_fixed_last(); |
| update_fixed_last(base, base + step, *types); |
| } |
| } |
| |
| static void __init print_mtrr_state(void) |
| { |
| unsigned int i; |
| int high_width; |
| |
| pr_info("MTRR default type: %s\n", |
| mtrr_attrib_to_str(mtrr_state.def_type)); |
| if (mtrr_state.have_fixed) { |
| pr_info("MTRR fixed ranges %sabled:\n", |
| ((mtrr_state.enabled & MTRR_STATE_MTRR_ENABLED) && |
| (mtrr_state.enabled & MTRR_STATE_MTRR_FIXED_ENABLED)) ? |
| "en" : "dis"); |
| print_fixed(0x00000, 0x10000, mtrr_state.fixed_ranges + 0); |
| for (i = 0; i < 2; ++i) |
| print_fixed(0x80000 + i * 0x20000, 0x04000, |
| mtrr_state.fixed_ranges + (i + 1) * 8); |
| for (i = 0; i < 8; ++i) |
| print_fixed(0xC0000 + i * 0x08000, 0x01000, |
| mtrr_state.fixed_ranges + (i + 3) * 8); |
| |
| /* tail */ |
| print_fixed_last(); |
| } |
| pr_info("MTRR variable ranges %sabled:\n", |
| mtrr_state.enabled & MTRR_STATE_MTRR_ENABLED ? "en" : "dis"); |
| high_width = (boot_cpu_data.x86_phys_bits - (32 - PAGE_SHIFT) + 3) / 4; |
| |
| for (i = 0; i < num_var_ranges; ++i) { |
| if (mtrr_state.var_ranges[i].mask_lo & MTRR_PHYSMASK_V) |
| pr_info(" %u base %0*X%05X000 mask %0*X%05X000 %s\n", |
| i, |
| high_width, |
| mtrr_state.var_ranges[i].base_hi, |
| mtrr_state.var_ranges[i].base_lo >> 12, |
| high_width, |
| mtrr_state.var_ranges[i].mask_hi, |
| mtrr_state.var_ranges[i].mask_lo >> 12, |
| mtrr_attrib_to_str(mtrr_state.var_ranges[i].base_lo & |
| MTRR_PHYSBASE_TYPE)); |
| else |
| pr_info(" %u disabled\n", i); |
| } |
| if (mtrr_tom2) |
| pr_info("TOM2: %016llx aka %lldM\n", mtrr_tom2, mtrr_tom2>>20); |
| } |
| |
| /* Grab all of the MTRR state for this CPU into *state */ |
| bool __init get_mtrr_state(void) |
| { |
| struct mtrr_var_range *vrs; |
| unsigned lo, dummy; |
| unsigned int i; |
| |
| vrs = mtrr_state.var_ranges; |
| |
| rdmsr(MSR_MTRRcap, lo, dummy); |
| mtrr_state.have_fixed = lo & MTRR_CAP_FIX; |
| |
| for (i = 0; i < num_var_ranges; i++) |
| get_mtrr_var_range(i, &vrs[i]); |
| if (mtrr_state.have_fixed) |
| get_fixed_ranges(mtrr_state.fixed_ranges); |
| |
| rdmsr(MSR_MTRRdefType, lo, dummy); |
| mtrr_state.def_type = lo & MTRR_DEF_TYPE_TYPE; |
| mtrr_state.enabled = (lo & MTRR_DEF_TYPE_ENABLE) >> MTRR_STATE_SHIFT; |
| |
| if (amd_special_default_mtrr()) { |
| unsigned low, high; |
| |
| /* TOP_MEM2 */ |
| rdmsr(MSR_K8_TOP_MEM2, low, high); |
| mtrr_tom2 = high; |
| mtrr_tom2 <<= 32; |
| mtrr_tom2 |= low; |
| mtrr_tom2 &= 0xffffff800000ULL; |
| } |
| |
| if (mtrr_debug) |
| print_mtrr_state(); |
| |
| mtrr_state_set = 1; |
| |
| return !!(mtrr_state.enabled & MTRR_STATE_MTRR_ENABLED); |
| } |
| |
| /* Some BIOS's are messed up and don't set all MTRRs the same! */ |
| void __init mtrr_state_warn(void) |
| { |
| unsigned long mask = smp_changes_mask; |
| |
| if (!mask) |
| return; |
| if (mask & MTRR_CHANGE_MASK_FIXED) |
| pr_warn("mtrr: your CPUs had inconsistent fixed MTRR settings\n"); |
| if (mask & MTRR_CHANGE_MASK_VARIABLE) |
| pr_warn("mtrr: your CPUs had inconsistent variable MTRR settings\n"); |
| if (mask & MTRR_CHANGE_MASK_DEFTYPE) |
| pr_warn("mtrr: your CPUs had inconsistent MTRRdefType settings\n"); |
| |
| pr_info("mtrr: probably your BIOS does not setup all CPUs.\n"); |
| pr_info("mtrr: corrected configuration.\n"); |
| } |
| |
| /* |
| * Doesn't attempt to pass an error out to MTRR users |
| * because it's quite complicated in some cases and probably not |
| * worth it because the best error handling is to ignore it. |
| */ |
| void mtrr_wrmsr(unsigned msr, unsigned a, unsigned b) |
| { |
| if (wrmsr_safe(msr, a, b) < 0) { |
| pr_err("MTRR: CPU %u: Writing MSR %x to %x:%x failed\n", |
| smp_processor_id(), msr, a, b); |
| } |
| } |
| |
| /** |
| * set_fixed_range - checks & updates a fixed-range MTRR if it |
| * differs from the value it should have |
| * @msr: MSR address of the MTTR which should be checked and updated |
| * @changed: pointer which indicates whether the MTRR needed to be changed |
| * @msrwords: pointer to the MSR values which the MSR should have |
| */ |
| static void set_fixed_range(int msr, bool *changed, unsigned int *msrwords) |
| { |
| unsigned lo, hi; |
| |
| rdmsr(msr, lo, hi); |
| |
| if (lo != msrwords[0] || hi != msrwords[1]) { |
| mtrr_wrmsr(msr, msrwords[0], msrwords[1]); |
| *changed = true; |
| } |
| } |
| |
| /** |
| * generic_get_free_region - Get a free MTRR. |
| * @base: The starting (base) address of the region. |
| * @size: The size (in bytes) of the region. |
| * @replace_reg: mtrr index to be replaced; set to invalid value if none. |
| * |
| * Returns: The index of the region on success, else negative on error. |
| */ |
| int |
| generic_get_free_region(unsigned long base, unsigned long size, int replace_reg) |
| { |
| unsigned long lbase, lsize; |
| mtrr_type ltype; |
| int i, max; |
| |
| max = num_var_ranges; |
| if (replace_reg >= 0 && replace_reg < max) |
| return replace_reg; |
| |
| for (i = 0; i < max; ++i) { |
| mtrr_if->get(i, &lbase, &lsize, <ype); |
| if (lsize == 0) |
| return i; |
| } |
| |
| return -ENOSPC; |
| } |
| |
| static void generic_get_mtrr(unsigned int reg, unsigned long *base, |
| unsigned long *size, mtrr_type *type) |
| { |
| u32 mask_lo, mask_hi, base_lo, base_hi; |
| unsigned int hi; |
| u64 tmp, mask; |
| |
| /* |
| * get_mtrr doesn't need to update mtrr_state, also it could be called |
| * from any cpu, so try to print it out directly. |
| */ |
| get_cpu(); |
| |
| rdmsr(MTRRphysMask_MSR(reg), mask_lo, mask_hi); |
| |
| if (!(mask_lo & MTRR_PHYSMASK_V)) { |
| /* Invalid (i.e. free) range */ |
| *base = 0; |
| *size = 0; |
| *type = 0; |
| goto out_put_cpu; |
| } |
| |
| rdmsr(MTRRphysBase_MSR(reg), base_lo, base_hi); |
| |
| /* Work out the shifted address mask: */ |
| tmp = (u64)mask_hi << 32 | (mask_lo & PAGE_MASK); |
| mask = (u64)phys_hi_rsvd << 32 | tmp; |
| |
| /* Expand tmp with high bits to all 1s: */ |
| hi = fls64(tmp); |
| if (hi > 0) { |
| tmp |= ~((1ULL<<(hi - 1)) - 1); |
| |
| if (tmp != mask) { |
| pr_warn("mtrr: your BIOS has configured an incorrect mask, fixing it.\n"); |
| add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); |
| mask = tmp; |
| } |
| } |
| |
| /* |
| * This works correctly if size is a power of two, i.e. a |
| * contiguous range: |
| */ |
| *size = -mask >> PAGE_SHIFT; |
| *base = (u64)base_hi << (32 - PAGE_SHIFT) | base_lo >> PAGE_SHIFT; |
| *type = base_lo & MTRR_PHYSBASE_TYPE; |
| |
| out_put_cpu: |
| put_cpu(); |
| } |
| |
| /** |
| * set_fixed_ranges - checks & updates the fixed-range MTRRs if they |
| * differ from the saved set |
| * @frs: pointer to fixed-range MTRR values, saved by get_fixed_ranges() |
| */ |
| static int set_fixed_ranges(mtrr_type *frs) |
| { |
| unsigned long long *saved = (unsigned long long *)frs; |
| bool changed = false; |
| int block = -1, range; |
| |
| k8_check_syscfg_dram_mod_en(); |
| |
| while (fixed_range_blocks[++block].ranges) { |
| for (range = 0; range < fixed_range_blocks[block].ranges; range++) |
| set_fixed_range(fixed_range_blocks[block].base_msr + range, |
| &changed, (unsigned int *)saved++); |
| } |
| |
| return changed; |
| } |
| |
| /* |
| * Set the MSR pair relating to a var range. |
| * Returns true if changes are made. |
| */ |
| static bool set_mtrr_var_ranges(unsigned int index, struct mtrr_var_range *vr) |
| { |
| unsigned int lo, hi; |
| bool changed = false; |
| |
| rdmsr(MTRRphysBase_MSR(index), lo, hi); |
| if ((vr->base_lo & ~MTRR_PHYSBASE_RSVD) != (lo & ~MTRR_PHYSBASE_RSVD) |
| || (vr->base_hi & ~phys_hi_rsvd) != (hi & ~phys_hi_rsvd)) { |
| |
| mtrr_wrmsr(MTRRphysBase_MSR(index), vr->base_lo, vr->base_hi); |
| changed = true; |
| } |
| |
| rdmsr(MTRRphysMask_MSR(index), lo, hi); |
| |
| if ((vr->mask_lo & ~MTRR_PHYSMASK_RSVD) != (lo & ~MTRR_PHYSMASK_RSVD) |
| || (vr->mask_hi & ~phys_hi_rsvd) != (hi & ~phys_hi_rsvd)) { |
| mtrr_wrmsr(MTRRphysMask_MSR(index), vr->mask_lo, vr->mask_hi); |
| changed = true; |
| } |
| return changed; |
| } |
| |
| static u32 deftype_lo, deftype_hi; |
| |
| /** |
| * set_mtrr_state - Set the MTRR state for this CPU. |
| * |
| * NOTE: The CPU must already be in a safe state for MTRR changes, including |
| * measures that only a single CPU can be active in set_mtrr_state() in |
| * order to not be subject to races for usage of deftype_lo. This is |
| * accomplished by taking cache_disable_lock. |
| * RETURNS: 0 if no changes made, else a mask indicating what was changed. |
| */ |
| static unsigned long set_mtrr_state(void) |
| { |
| unsigned long change_mask = 0; |
| unsigned int i; |
| |
| for (i = 0; i < num_var_ranges; i++) { |
| if (set_mtrr_var_ranges(i, &mtrr_state.var_ranges[i])) |
| change_mask |= MTRR_CHANGE_MASK_VARIABLE; |
| } |
| |
| if (mtrr_state.have_fixed && set_fixed_ranges(mtrr_state.fixed_ranges)) |
| change_mask |= MTRR_CHANGE_MASK_FIXED; |
| |
| /* |
| * Set_mtrr_restore restores the old value of MTRRdefType, |
| * so to set it we fiddle with the saved value: |
| */ |
| if ((deftype_lo & MTRR_DEF_TYPE_TYPE) != mtrr_state.def_type || |
| ((deftype_lo & MTRR_DEF_TYPE_ENABLE) >> MTRR_STATE_SHIFT) != mtrr_state.enabled) { |
| |
| deftype_lo = (deftype_lo & MTRR_DEF_TYPE_DISABLE) | |
| mtrr_state.def_type | |
| (mtrr_state.enabled << MTRR_STATE_SHIFT); |
| change_mask |= MTRR_CHANGE_MASK_DEFTYPE; |
| } |
| |
| return change_mask; |
| } |
| |
| void mtrr_disable(void) |
| { |
| /* Save MTRR state */ |
| rdmsr(MSR_MTRRdefType, deftype_lo, deftype_hi); |
| |
| /* Disable MTRRs, and set the default type to uncached */ |
| mtrr_wrmsr(MSR_MTRRdefType, deftype_lo & MTRR_DEF_TYPE_DISABLE, deftype_hi); |
| } |
| |
| void mtrr_enable(void) |
| { |
| /* Intel (P6) standard MTRRs */ |
| mtrr_wrmsr(MSR_MTRRdefType, deftype_lo, deftype_hi); |
| } |
| |
| void mtrr_generic_set_state(void) |
| { |
| unsigned long mask, count; |
| |
| /* Actually set the state */ |
| mask = set_mtrr_state(); |
| |
| /* Use the atomic bitops to update the global mask */ |
| for (count = 0; count < sizeof(mask) * 8; ++count) { |
| if (mask & 0x01) |
| set_bit(count, &smp_changes_mask); |
| mask >>= 1; |
| } |
| } |
| |
| /** |
| * generic_set_mtrr - set variable MTRR register on the local CPU. |
| * |
| * @reg: The register to set. |
| * @base: The base address of the region. |
| * @size: The size of the region. If this is 0 the region is disabled. |
| * @type: The type of the region. |
| * |
| * Returns nothing. |
| */ |
| static void generic_set_mtrr(unsigned int reg, unsigned long base, |
| unsigned long size, mtrr_type type) |
| { |
| unsigned long flags; |
| struct mtrr_var_range *vr; |
| |
| vr = &mtrr_state.var_ranges[reg]; |
| |
| local_irq_save(flags); |
| cache_disable(); |
| |
| if (size == 0) { |
| /* |
| * The invalid bit is kept in the mask, so we simply |
| * clear the relevant mask register to disable a range. |
| */ |
| mtrr_wrmsr(MTRRphysMask_MSR(reg), 0, 0); |
| memset(vr, 0, sizeof(struct mtrr_var_range)); |
| } else { |
| vr->base_lo = base << PAGE_SHIFT | type; |
| vr->base_hi = (base >> (32 - PAGE_SHIFT)) & ~phys_hi_rsvd; |
| vr->mask_lo = -size << PAGE_SHIFT | MTRR_PHYSMASK_V; |
| vr->mask_hi = (-size >> (32 - PAGE_SHIFT)) & ~phys_hi_rsvd; |
| |
| mtrr_wrmsr(MTRRphysBase_MSR(reg), vr->base_lo, vr->base_hi); |
| mtrr_wrmsr(MTRRphysMask_MSR(reg), vr->mask_lo, vr->mask_hi); |
| } |
| |
| cache_enable(); |
| local_irq_restore(flags); |
| } |
| |
| int generic_validate_add_page(unsigned long base, unsigned long size, |
| unsigned int type) |
| { |
| unsigned long lbase, last; |
| |
| /* |
| * For Intel PPro stepping <= 7 |
| * must be 4 MiB aligned and not touch 0x70000000 -> 0x7003FFFF |
| */ |
| if (mtrr_if == &generic_mtrr_ops && boot_cpu_data.x86 == 6 && |
| boot_cpu_data.x86_model == 1 && |
| boot_cpu_data.x86_stepping <= 7) { |
| if (base & ((1 << (22 - PAGE_SHIFT)) - 1)) { |
| pr_warn("mtrr: base(0x%lx000) is not 4 MiB aligned\n", base); |
| return -EINVAL; |
| } |
| if (!(base + size < 0x70000 || base > 0x7003F) && |
| (type == MTRR_TYPE_WRCOMB |
| || type == MTRR_TYPE_WRBACK)) { |
| pr_warn("mtrr: writable mtrr between 0x70000000 and 0x7003FFFF may hang the CPU.\n"); |
| return -EINVAL; |
| } |
| } |
| |
| /* |
| * Check upper bits of base and last are equal and lower bits are 0 |
| * for base and 1 for last |
| */ |
| last = base + size - 1; |
| for (lbase = base; !(lbase & 1) && (last & 1); |
| lbase = lbase >> 1, last = last >> 1) |
| ; |
| if (lbase != last) { |
| pr_warn("mtrr: base(0x%lx000) is not aligned on a size(0x%lx000) boundary\n", base, size); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static int generic_have_wrcomb(void) |
| { |
| unsigned long config, dummy; |
| rdmsr(MSR_MTRRcap, config, dummy); |
| return config & MTRR_CAP_WC; |
| } |
| |
| int positive_have_wrcomb(void) |
| { |
| return 1; |
| } |
| |
| /* |
| * Generic structure... |
| */ |
| const struct mtrr_ops generic_mtrr_ops = { |
| .get = generic_get_mtrr, |
| .get_free_region = generic_get_free_region, |
| .set = generic_set_mtrr, |
| .validate_add_page = generic_validate_add_page, |
| .have_wrcomb = generic_have_wrcomb, |
| }; |