| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Resource Director Technology(RDT) |
| * - Monitoring code |
| * |
| * Copyright (C) 2017 Intel Corporation |
| * |
| * Author: |
| * Vikas Shivappa <vikas.shivappa@intel.com> |
| * |
| * This replaces the cqm.c based on perf but we reuse a lot of |
| * code and datastructures originally from Peter Zijlstra and Matt Fleming. |
| * |
| * More information about RDT be found in the Intel (R) x86 Architecture |
| * Software Developer Manual June 2016, volume 3, section 17.17. |
| */ |
| |
| #include <linux/cpu.h> |
| #include <linux/module.h> |
| #include <linux/sizes.h> |
| #include <linux/slab.h> |
| |
| #include <asm/cpu_device_id.h> |
| #include <asm/resctrl.h> |
| |
| #include "internal.h" |
| |
| /** |
| * struct rmid_entry - dirty tracking for all RMID. |
| * @closid: The CLOSID for this entry. |
| * @rmid: The RMID for this entry. |
| * @busy: The number of domains with cached data using this RMID. |
| * @list: Member of the rmid_free_lru list when busy == 0. |
| * |
| * Depending on the architecture the correct monitor is accessed using |
| * both @closid and @rmid, or @rmid only. |
| * |
| * Take the rdtgroup_mutex when accessing. |
| */ |
| struct rmid_entry { |
| u32 closid; |
| u32 rmid; |
| int busy; |
| struct list_head list; |
| }; |
| |
| /* |
| * @rmid_free_lru - A least recently used list of free RMIDs |
| * These RMIDs are guaranteed to have an occupancy less than the |
| * threshold occupancy |
| */ |
| static LIST_HEAD(rmid_free_lru); |
| |
| /* |
| * @closid_num_dirty_rmid The number of dirty RMID each CLOSID has. |
| * Only allocated when CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID is defined. |
| * Indexed by CLOSID. Protected by rdtgroup_mutex. |
| */ |
| static u32 *closid_num_dirty_rmid; |
| |
| /* |
| * @rmid_limbo_count - count of currently unused but (potentially) |
| * dirty RMIDs. |
| * This counts RMIDs that no one is currently using but that |
| * may have a occupancy value > resctrl_rmid_realloc_threshold. User can |
| * change the threshold occupancy value. |
| */ |
| static unsigned int rmid_limbo_count; |
| |
| /* |
| * @rmid_entry - The entry in the limbo and free lists. |
| */ |
| static struct rmid_entry *rmid_ptrs; |
| |
| /* |
| * Global boolean for rdt_monitor which is true if any |
| * resource monitoring is enabled. |
| */ |
| bool rdt_mon_capable; |
| |
| /* |
| * Global to indicate which monitoring events are enabled. |
| */ |
| unsigned int rdt_mon_features; |
| |
| /* |
| * This is the threshold cache occupancy in bytes at which we will consider an |
| * RMID available for re-allocation. |
| */ |
| unsigned int resctrl_rmid_realloc_threshold; |
| |
| /* |
| * This is the maximum value for the reallocation threshold, in bytes. |
| */ |
| unsigned int resctrl_rmid_realloc_limit; |
| |
| #define CF(cf) ((unsigned long)(1048576 * (cf) + 0.5)) |
| |
| /* |
| * The correction factor table is documented in Documentation/arch/x86/resctrl.rst. |
| * If rmid > rmid threshold, MBM total and local values should be multiplied |
| * by the correction factor. |
| * |
| * The original table is modified for better code: |
| * |
| * 1. The threshold 0 is changed to rmid count - 1 so don't do correction |
| * for the case. |
| * 2. MBM total and local correction table indexed by core counter which is |
| * equal to (x86_cache_max_rmid + 1) / 8 - 1 and is from 0 up to 27. |
| * 3. The correction factor is normalized to 2^20 (1048576) so it's faster |
| * to calculate corrected value by shifting: |
| * corrected_value = (original_value * correction_factor) >> 20 |
| */ |
| static const struct mbm_correction_factor_table { |
| u32 rmidthreshold; |
| u64 cf; |
| } mbm_cf_table[] __initconst = { |
| {7, CF(1.000000)}, |
| {15, CF(1.000000)}, |
| {15, CF(0.969650)}, |
| {31, CF(1.000000)}, |
| {31, CF(1.066667)}, |
| {31, CF(0.969650)}, |
| {47, CF(1.142857)}, |
| {63, CF(1.000000)}, |
| {63, CF(1.185115)}, |
| {63, CF(1.066553)}, |
| {79, CF(1.454545)}, |
| {95, CF(1.000000)}, |
| {95, CF(1.230769)}, |
| {95, CF(1.142857)}, |
| {95, CF(1.066667)}, |
| {127, CF(1.000000)}, |
| {127, CF(1.254863)}, |
| {127, CF(1.185255)}, |
| {151, CF(1.000000)}, |
| {127, CF(1.066667)}, |
| {167, CF(1.000000)}, |
| {159, CF(1.454334)}, |
| {183, CF(1.000000)}, |
| {127, CF(0.969744)}, |
| {191, CF(1.280246)}, |
| {191, CF(1.230921)}, |
| {215, CF(1.000000)}, |
| {191, CF(1.143118)}, |
| }; |
| |
| static u32 mbm_cf_rmidthreshold __read_mostly = UINT_MAX; |
| static u64 mbm_cf __read_mostly; |
| |
| static inline u64 get_corrected_mbm_count(u32 rmid, unsigned long val) |
| { |
| /* Correct MBM value. */ |
| if (rmid > mbm_cf_rmidthreshold) |
| val = (val * mbm_cf) >> 20; |
| |
| return val; |
| } |
| |
| /* |
| * x86 and arm64 differ in their handling of monitoring. |
| * x86's RMID are independent numbers, there is only one source of traffic |
| * with an RMID value of '1'. |
| * arm64's PMG extends the PARTID/CLOSID space, there are multiple sources of |
| * traffic with a PMG value of '1', one for each CLOSID, meaning the RMID |
| * value is no longer unique. |
| * To account for this, resctrl uses an index. On x86 this is just the RMID, |
| * on arm64 it encodes the CLOSID and RMID. This gives a unique number. |
| * |
| * The domain's rmid_busy_llc and rmid_ptrs[] are sized by index. The arch code |
| * must accept an attempt to read every index. |
| */ |
| static inline struct rmid_entry *__rmid_entry(u32 idx) |
| { |
| struct rmid_entry *entry; |
| u32 closid, rmid; |
| |
| entry = &rmid_ptrs[idx]; |
| resctrl_arch_rmid_idx_decode(idx, &closid, &rmid); |
| |
| WARN_ON_ONCE(entry->closid != closid); |
| WARN_ON_ONCE(entry->rmid != rmid); |
| |
| return entry; |
| } |
| |
| static int __rmid_read(u32 rmid, enum resctrl_event_id eventid, u64 *val) |
| { |
| u64 msr_val; |
| |
| /* |
| * As per the SDM, when IA32_QM_EVTSEL.EvtID (bits 7:0) is configured |
| * with a valid event code for supported resource type and the bits |
| * IA32_QM_EVTSEL.RMID (bits 41:32) are configured with valid RMID, |
| * IA32_QM_CTR.data (bits 61:0) reports the monitored data. |
| * IA32_QM_CTR.Error (bit 63) and IA32_QM_CTR.Unavailable (bit 62) |
| * are error bits. |
| */ |
| wrmsr(MSR_IA32_QM_EVTSEL, eventid, rmid); |
| rdmsrl(MSR_IA32_QM_CTR, msr_val); |
| |
| if (msr_val & RMID_VAL_ERROR) |
| return -EIO; |
| if (msr_val & RMID_VAL_UNAVAIL) |
| return -EINVAL; |
| |
| *val = msr_val; |
| return 0; |
| } |
| |
| static struct arch_mbm_state *get_arch_mbm_state(struct rdt_hw_domain *hw_dom, |
| u32 rmid, |
| enum resctrl_event_id eventid) |
| { |
| switch (eventid) { |
| case QOS_L3_OCCUP_EVENT_ID: |
| return NULL; |
| case QOS_L3_MBM_TOTAL_EVENT_ID: |
| return &hw_dom->arch_mbm_total[rmid]; |
| case QOS_L3_MBM_LOCAL_EVENT_ID: |
| return &hw_dom->arch_mbm_local[rmid]; |
| } |
| |
| /* Never expect to get here */ |
| WARN_ON_ONCE(1); |
| |
| return NULL; |
| } |
| |
| void resctrl_arch_reset_rmid(struct rdt_resource *r, struct rdt_domain *d, |
| u32 unused, u32 rmid, |
| enum resctrl_event_id eventid) |
| { |
| struct rdt_hw_domain *hw_dom = resctrl_to_arch_dom(d); |
| struct arch_mbm_state *am; |
| |
| am = get_arch_mbm_state(hw_dom, rmid, eventid); |
| if (am) { |
| memset(am, 0, sizeof(*am)); |
| |
| /* Record any initial, non-zero count value. */ |
| __rmid_read(rmid, eventid, &am->prev_msr); |
| } |
| } |
| |
| /* |
| * Assumes that hardware counters are also reset and thus that there is |
| * no need to record initial non-zero counts. |
| */ |
| void resctrl_arch_reset_rmid_all(struct rdt_resource *r, struct rdt_domain *d) |
| { |
| struct rdt_hw_domain *hw_dom = resctrl_to_arch_dom(d); |
| |
| if (is_mbm_total_enabled()) |
| memset(hw_dom->arch_mbm_total, 0, |
| sizeof(*hw_dom->arch_mbm_total) * r->num_rmid); |
| |
| if (is_mbm_local_enabled()) |
| memset(hw_dom->arch_mbm_local, 0, |
| sizeof(*hw_dom->arch_mbm_local) * r->num_rmid); |
| } |
| |
| static u64 mbm_overflow_count(u64 prev_msr, u64 cur_msr, unsigned int width) |
| { |
| u64 shift = 64 - width, chunks; |
| |
| chunks = (cur_msr << shift) - (prev_msr << shift); |
| return chunks >> shift; |
| } |
| |
| int resctrl_arch_rmid_read(struct rdt_resource *r, struct rdt_domain *d, |
| u32 unused, u32 rmid, enum resctrl_event_id eventid, |
| u64 *val, void *ignored) |
| { |
| struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r); |
| struct rdt_hw_domain *hw_dom = resctrl_to_arch_dom(d); |
| struct arch_mbm_state *am; |
| u64 msr_val, chunks; |
| int ret; |
| |
| resctrl_arch_rmid_read_context_check(); |
| |
| if (!cpumask_test_cpu(smp_processor_id(), &d->cpu_mask)) |
| return -EINVAL; |
| |
| ret = __rmid_read(rmid, eventid, &msr_val); |
| if (ret) |
| return ret; |
| |
| am = get_arch_mbm_state(hw_dom, rmid, eventid); |
| if (am) { |
| am->chunks += mbm_overflow_count(am->prev_msr, msr_val, |
| hw_res->mbm_width); |
| chunks = get_corrected_mbm_count(rmid, am->chunks); |
| am->prev_msr = msr_val; |
| } else { |
| chunks = msr_val; |
| } |
| |
| *val = chunks * hw_res->mon_scale; |
| |
| return 0; |
| } |
| |
| static void limbo_release_entry(struct rmid_entry *entry) |
| { |
| lockdep_assert_held(&rdtgroup_mutex); |
| |
| rmid_limbo_count--; |
| list_add_tail(&entry->list, &rmid_free_lru); |
| |
| if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) |
| closid_num_dirty_rmid[entry->closid]--; |
| } |
| |
| /* |
| * Check the RMIDs that are marked as busy for this domain. If the |
| * reported LLC occupancy is below the threshold clear the busy bit and |
| * decrement the count. If the busy count gets to zero on an RMID, we |
| * free the RMID |
| */ |
| void __check_limbo(struct rdt_domain *d, bool force_free) |
| { |
| struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; |
| u32 idx_limit = resctrl_arch_system_num_rmid_idx(); |
| struct rmid_entry *entry; |
| u32 idx, cur_idx = 1; |
| void *arch_mon_ctx; |
| bool rmid_dirty; |
| u64 val = 0; |
| |
| arch_mon_ctx = resctrl_arch_mon_ctx_alloc(r, QOS_L3_OCCUP_EVENT_ID); |
| if (IS_ERR(arch_mon_ctx)) { |
| pr_warn_ratelimited("Failed to allocate monitor context: %ld", |
| PTR_ERR(arch_mon_ctx)); |
| return; |
| } |
| |
| /* |
| * Skip RMID 0 and start from RMID 1 and check all the RMIDs that |
| * are marked as busy for occupancy < threshold. If the occupancy |
| * is less than the threshold decrement the busy counter of the |
| * RMID and move it to the free list when the counter reaches 0. |
| */ |
| for (;;) { |
| idx = find_next_bit(d->rmid_busy_llc, idx_limit, cur_idx); |
| if (idx >= idx_limit) |
| break; |
| |
| entry = __rmid_entry(idx); |
| if (resctrl_arch_rmid_read(r, d, entry->closid, entry->rmid, |
| QOS_L3_OCCUP_EVENT_ID, &val, |
| arch_mon_ctx)) { |
| rmid_dirty = true; |
| } else { |
| rmid_dirty = (val >= resctrl_rmid_realloc_threshold); |
| } |
| |
| if (force_free || !rmid_dirty) { |
| clear_bit(idx, d->rmid_busy_llc); |
| if (!--entry->busy) |
| limbo_release_entry(entry); |
| } |
| cur_idx = idx + 1; |
| } |
| |
| resctrl_arch_mon_ctx_free(r, QOS_L3_OCCUP_EVENT_ID, arch_mon_ctx); |
| } |
| |
| bool has_busy_rmid(struct rdt_domain *d) |
| { |
| u32 idx_limit = resctrl_arch_system_num_rmid_idx(); |
| |
| return find_first_bit(d->rmid_busy_llc, idx_limit) != idx_limit; |
| } |
| |
| static struct rmid_entry *resctrl_find_free_rmid(u32 closid) |
| { |
| struct rmid_entry *itr; |
| u32 itr_idx, cmp_idx; |
| |
| if (list_empty(&rmid_free_lru)) |
| return rmid_limbo_count ? ERR_PTR(-EBUSY) : ERR_PTR(-ENOSPC); |
| |
| list_for_each_entry(itr, &rmid_free_lru, list) { |
| /* |
| * Get the index of this free RMID, and the index it would need |
| * to be if it were used with this CLOSID. |
| * If the CLOSID is irrelevant on this architecture, the two |
| * index values are always the same on every entry and thus the |
| * very first entry will be returned. |
| */ |
| itr_idx = resctrl_arch_rmid_idx_encode(itr->closid, itr->rmid); |
| cmp_idx = resctrl_arch_rmid_idx_encode(closid, itr->rmid); |
| |
| if (itr_idx == cmp_idx) |
| return itr; |
| } |
| |
| return ERR_PTR(-ENOSPC); |
| } |
| |
| /** |
| * resctrl_find_cleanest_closid() - Find a CLOSID where all the associated |
| * RMID are clean, or the CLOSID that has |
| * the most clean RMID. |
| * |
| * MPAM's equivalent of RMID are per-CLOSID, meaning a freshly allocated CLOSID |
| * may not be able to allocate clean RMID. To avoid this the allocator will |
| * choose the CLOSID with the most clean RMID. |
| * |
| * When the CLOSID and RMID are independent numbers, the first free CLOSID will |
| * be returned. |
| */ |
| int resctrl_find_cleanest_closid(void) |
| { |
| u32 cleanest_closid = ~0; |
| int i = 0; |
| |
| lockdep_assert_held(&rdtgroup_mutex); |
| |
| if (!IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) |
| return -EIO; |
| |
| for (i = 0; i < closids_supported(); i++) { |
| int num_dirty; |
| |
| if (closid_allocated(i)) |
| continue; |
| |
| num_dirty = closid_num_dirty_rmid[i]; |
| if (num_dirty == 0) |
| return i; |
| |
| if (cleanest_closid == ~0) |
| cleanest_closid = i; |
| |
| if (num_dirty < closid_num_dirty_rmid[cleanest_closid]) |
| cleanest_closid = i; |
| } |
| |
| if (cleanest_closid == ~0) |
| return -ENOSPC; |
| |
| return cleanest_closid; |
| } |
| |
| /* |
| * For MPAM the RMID value is not unique, and has to be considered with |
| * the CLOSID. The (CLOSID, RMID) pair is allocated on all domains, which |
| * allows all domains to be managed by a single free list. |
| * Each domain also has a rmid_busy_llc to reduce the work of the limbo handler. |
| */ |
| int alloc_rmid(u32 closid) |
| { |
| struct rmid_entry *entry; |
| |
| lockdep_assert_held(&rdtgroup_mutex); |
| |
| entry = resctrl_find_free_rmid(closid); |
| if (IS_ERR(entry)) |
| return PTR_ERR(entry); |
| |
| list_del(&entry->list); |
| return entry->rmid; |
| } |
| |
| static void add_rmid_to_limbo(struct rmid_entry *entry) |
| { |
| struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; |
| struct rdt_domain *d; |
| u32 idx; |
| |
| lockdep_assert_held(&rdtgroup_mutex); |
| |
| /* Walking r->domains, ensure it can't race with cpuhp */ |
| lockdep_assert_cpus_held(); |
| |
| idx = resctrl_arch_rmid_idx_encode(entry->closid, entry->rmid); |
| |
| entry->busy = 0; |
| list_for_each_entry(d, &r->domains, list) { |
| /* |
| * For the first limbo RMID in the domain, |
| * setup up the limbo worker. |
| */ |
| if (!has_busy_rmid(d)) |
| cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL, |
| RESCTRL_PICK_ANY_CPU); |
| set_bit(idx, d->rmid_busy_llc); |
| entry->busy++; |
| } |
| |
| rmid_limbo_count++; |
| if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) |
| closid_num_dirty_rmid[entry->closid]++; |
| } |
| |
| void free_rmid(u32 closid, u32 rmid) |
| { |
| u32 idx = resctrl_arch_rmid_idx_encode(closid, rmid); |
| struct rmid_entry *entry; |
| |
| lockdep_assert_held(&rdtgroup_mutex); |
| |
| /* |
| * Do not allow the default rmid to be free'd. Comparing by index |
| * allows architectures that ignore the closid parameter to avoid an |
| * unnecessary check. |
| */ |
| if (idx == resctrl_arch_rmid_idx_encode(RESCTRL_RESERVED_CLOSID, |
| RESCTRL_RESERVED_RMID)) |
| return; |
| |
| entry = __rmid_entry(idx); |
| |
| if (is_llc_occupancy_enabled()) |
| add_rmid_to_limbo(entry); |
| else |
| list_add_tail(&entry->list, &rmid_free_lru); |
| } |
| |
| static struct mbm_state *get_mbm_state(struct rdt_domain *d, u32 closid, |
| u32 rmid, enum resctrl_event_id evtid) |
| { |
| u32 idx = resctrl_arch_rmid_idx_encode(closid, rmid); |
| |
| switch (evtid) { |
| case QOS_L3_MBM_TOTAL_EVENT_ID: |
| return &d->mbm_total[idx]; |
| case QOS_L3_MBM_LOCAL_EVENT_ID: |
| return &d->mbm_local[idx]; |
| default: |
| return NULL; |
| } |
| } |
| |
| static int __mon_event_count(u32 closid, u32 rmid, struct rmid_read *rr) |
| { |
| struct mbm_state *m; |
| u64 tval = 0; |
| |
| if (rr->first) { |
| resctrl_arch_reset_rmid(rr->r, rr->d, closid, rmid, rr->evtid); |
| m = get_mbm_state(rr->d, closid, rmid, rr->evtid); |
| if (m) |
| memset(m, 0, sizeof(struct mbm_state)); |
| return 0; |
| } |
| |
| rr->err = resctrl_arch_rmid_read(rr->r, rr->d, closid, rmid, rr->evtid, |
| &tval, rr->arch_mon_ctx); |
| if (rr->err) |
| return rr->err; |
| |
| rr->val += tval; |
| |
| return 0; |
| } |
| |
| /* |
| * mbm_bw_count() - Update bw count from values previously read by |
| * __mon_event_count(). |
| * @closid: The closid used to identify the cached mbm_state. |
| * @rmid: The rmid used to identify the cached mbm_state. |
| * @rr: The struct rmid_read populated by __mon_event_count(). |
| * |
| * Supporting function to calculate the memory bandwidth |
| * and delta bandwidth in MBps. The chunks value previously read by |
| * __mon_event_count() is compared with the chunks value from the previous |
| * invocation. This must be called once per second to maintain values in MBps. |
| */ |
| static void mbm_bw_count(u32 closid, u32 rmid, struct rmid_read *rr) |
| { |
| u32 idx = resctrl_arch_rmid_idx_encode(closid, rmid); |
| struct mbm_state *m = &rr->d->mbm_local[idx]; |
| u64 cur_bw, bytes, cur_bytes; |
| |
| cur_bytes = rr->val; |
| bytes = cur_bytes - m->prev_bw_bytes; |
| m->prev_bw_bytes = cur_bytes; |
| |
| cur_bw = bytes / SZ_1M; |
| |
| m->prev_bw = cur_bw; |
| } |
| |
| /* |
| * This is scheduled by mon_event_read() to read the CQM/MBM counters |
| * on a domain. |
| */ |
| void mon_event_count(void *info) |
| { |
| struct rdtgroup *rdtgrp, *entry; |
| struct rmid_read *rr = info; |
| struct list_head *head; |
| int ret; |
| |
| rdtgrp = rr->rgrp; |
| |
| ret = __mon_event_count(rdtgrp->closid, rdtgrp->mon.rmid, rr); |
| |
| /* |
| * For Ctrl groups read data from child monitor groups and |
| * add them together. Count events which are read successfully. |
| * Discard the rmid_read's reporting errors. |
| */ |
| head = &rdtgrp->mon.crdtgrp_list; |
| |
| if (rdtgrp->type == RDTCTRL_GROUP) { |
| list_for_each_entry(entry, head, mon.crdtgrp_list) { |
| if (__mon_event_count(entry->closid, entry->mon.rmid, |
| rr) == 0) |
| ret = 0; |
| } |
| } |
| |
| /* |
| * __mon_event_count() calls for newly created monitor groups may |
| * report -EINVAL/Unavailable if the monitor hasn't seen any traffic. |
| * Discard error if any of the monitor event reads succeeded. |
| */ |
| if (ret == 0) |
| rr->err = 0; |
| } |
| |
| /* |
| * Feedback loop for MBA software controller (mba_sc) |
| * |
| * mba_sc is a feedback loop where we periodically read MBM counters and |
| * adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so |
| * that: |
| * |
| * current bandwidth(cur_bw) < user specified bandwidth(user_bw) |
| * |
| * This uses the MBM counters to measure the bandwidth and MBA throttle |
| * MSRs to control the bandwidth for a particular rdtgrp. It builds on the |
| * fact that resctrl rdtgroups have both monitoring and control. |
| * |
| * The frequency of the checks is 1s and we just tag along the MBM overflow |
| * timer. Having 1s interval makes the calculation of bandwidth simpler. |
| * |
| * Although MBA's goal is to restrict the bandwidth to a maximum, there may |
| * be a need to increase the bandwidth to avoid unnecessarily restricting |
| * the L2 <-> L3 traffic. |
| * |
| * Since MBA controls the L2 external bandwidth where as MBM measures the |
| * L3 external bandwidth the following sequence could lead to such a |
| * situation. |
| * |
| * Consider an rdtgroup which had high L3 <-> memory traffic in initial |
| * phases -> mba_sc kicks in and reduced bandwidth percentage values -> but |
| * after some time rdtgroup has mostly L2 <-> L3 traffic. |
| * |
| * In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its |
| * throttle MSRs already have low percentage values. To avoid |
| * unnecessarily restricting such rdtgroups, we also increase the bandwidth. |
| */ |
| static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_domain *dom_mbm) |
| { |
| u32 closid, rmid, cur_msr_val, new_msr_val; |
| struct mbm_state *pmbm_data, *cmbm_data; |
| struct rdt_resource *r_mba; |
| struct rdt_domain *dom_mba; |
| u32 cur_bw, user_bw, idx; |
| struct list_head *head; |
| struct rdtgroup *entry; |
| |
| if (!is_mbm_local_enabled()) |
| return; |
| |
| r_mba = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl; |
| |
| closid = rgrp->closid; |
| rmid = rgrp->mon.rmid; |
| idx = resctrl_arch_rmid_idx_encode(closid, rmid); |
| pmbm_data = &dom_mbm->mbm_local[idx]; |
| |
| dom_mba = get_domain_from_cpu(smp_processor_id(), r_mba); |
| if (!dom_mba) { |
| pr_warn_once("Failure to get domain for MBA update\n"); |
| return; |
| } |
| |
| cur_bw = pmbm_data->prev_bw; |
| user_bw = dom_mba->mbps_val[closid]; |
| |
| /* MBA resource doesn't support CDP */ |
| cur_msr_val = resctrl_arch_get_config(r_mba, dom_mba, closid, CDP_NONE); |
| |
| /* |
| * For Ctrl groups read data from child monitor groups. |
| */ |
| head = &rgrp->mon.crdtgrp_list; |
| list_for_each_entry(entry, head, mon.crdtgrp_list) { |
| cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid]; |
| cur_bw += cmbm_data->prev_bw; |
| } |
| |
| /* |
| * Scale up/down the bandwidth linearly for the ctrl group. The |
| * bandwidth step is the bandwidth granularity specified by the |
| * hardware. |
| * Always increase throttling if current bandwidth is above the |
| * target set by user. |
| * But avoid thrashing up and down on every poll by checking |
| * whether a decrease in throttling is likely to push the group |
| * back over target. E.g. if currently throttling to 30% of bandwidth |
| * on a system with 10% granularity steps, check whether moving to |
| * 40% would go past the limit by multiplying current bandwidth by |
| * "(30 + 10) / 30". |
| */ |
| if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) { |
| new_msr_val = cur_msr_val - r_mba->membw.bw_gran; |
| } else if (cur_msr_val < MAX_MBA_BW && |
| (user_bw > (cur_bw * (cur_msr_val + r_mba->membw.min_bw) / cur_msr_val))) { |
| new_msr_val = cur_msr_val + r_mba->membw.bw_gran; |
| } else { |
| return; |
| } |
| |
| resctrl_arch_update_one(r_mba, dom_mba, closid, CDP_NONE, new_msr_val); |
| } |
| |
| static void mbm_update(struct rdt_resource *r, struct rdt_domain *d, |
| u32 closid, u32 rmid) |
| { |
| struct rmid_read rr; |
| |
| rr.first = false; |
| rr.r = r; |
| rr.d = d; |
| |
| /* |
| * This is protected from concurrent reads from user |
| * as both the user and we hold the global mutex. |
| */ |
| if (is_mbm_total_enabled()) { |
| rr.evtid = QOS_L3_MBM_TOTAL_EVENT_ID; |
| rr.val = 0; |
| rr.arch_mon_ctx = resctrl_arch_mon_ctx_alloc(rr.r, rr.evtid); |
| if (IS_ERR(rr.arch_mon_ctx)) { |
| pr_warn_ratelimited("Failed to allocate monitor context: %ld", |
| PTR_ERR(rr.arch_mon_ctx)); |
| return; |
| } |
| |
| __mon_event_count(closid, rmid, &rr); |
| |
| resctrl_arch_mon_ctx_free(rr.r, rr.evtid, rr.arch_mon_ctx); |
| } |
| if (is_mbm_local_enabled()) { |
| rr.evtid = QOS_L3_MBM_LOCAL_EVENT_ID; |
| rr.val = 0; |
| rr.arch_mon_ctx = resctrl_arch_mon_ctx_alloc(rr.r, rr.evtid); |
| if (IS_ERR(rr.arch_mon_ctx)) { |
| pr_warn_ratelimited("Failed to allocate monitor context: %ld", |
| PTR_ERR(rr.arch_mon_ctx)); |
| return; |
| } |
| |
| __mon_event_count(closid, rmid, &rr); |
| |
| /* |
| * Call the MBA software controller only for the |
| * control groups and when user has enabled |
| * the software controller explicitly. |
| */ |
| if (is_mba_sc(NULL)) |
| mbm_bw_count(closid, rmid, &rr); |
| |
| resctrl_arch_mon_ctx_free(rr.r, rr.evtid, rr.arch_mon_ctx); |
| } |
| } |
| |
| /* |
| * Handler to scan the limbo list and move the RMIDs |
| * to free list whose occupancy < threshold_occupancy. |
| */ |
| void cqm_handle_limbo(struct work_struct *work) |
| { |
| unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL); |
| struct rdt_domain *d; |
| |
| cpus_read_lock(); |
| mutex_lock(&rdtgroup_mutex); |
| |
| d = container_of(work, struct rdt_domain, cqm_limbo.work); |
| |
| __check_limbo(d, false); |
| |
| if (has_busy_rmid(d)) { |
| d->cqm_work_cpu = cpumask_any_housekeeping(&d->cpu_mask, |
| RESCTRL_PICK_ANY_CPU); |
| schedule_delayed_work_on(d->cqm_work_cpu, &d->cqm_limbo, |
| delay); |
| } |
| |
| mutex_unlock(&rdtgroup_mutex); |
| cpus_read_unlock(); |
| } |
| |
| /** |
| * cqm_setup_limbo_handler() - Schedule the limbo handler to run for this |
| * domain. |
| * @dom: The domain the limbo handler should run for. |
| * @delay_ms: How far in the future the handler should run. |
| * @exclude_cpu: Which CPU the handler should not run on, |
| * RESCTRL_PICK_ANY_CPU to pick any CPU. |
| */ |
| void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms, |
| int exclude_cpu) |
| { |
| unsigned long delay = msecs_to_jiffies(delay_ms); |
| int cpu; |
| |
| cpu = cpumask_any_housekeeping(&dom->cpu_mask, exclude_cpu); |
| dom->cqm_work_cpu = cpu; |
| |
| if (cpu < nr_cpu_ids) |
| schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay); |
| } |
| |
| void mbm_handle_overflow(struct work_struct *work) |
| { |
| unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL); |
| struct rdtgroup *prgrp, *crgrp; |
| struct list_head *head; |
| struct rdt_resource *r; |
| struct rdt_domain *d; |
| |
| cpus_read_lock(); |
| mutex_lock(&rdtgroup_mutex); |
| |
| /* |
| * If the filesystem has been unmounted this work no longer needs to |
| * run. |
| */ |
| if (!resctrl_mounted || !resctrl_arch_mon_capable()) |
| goto out_unlock; |
| |
| r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; |
| d = container_of(work, struct rdt_domain, mbm_over.work); |
| |
| list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { |
| mbm_update(r, d, prgrp->closid, prgrp->mon.rmid); |
| |
| head = &prgrp->mon.crdtgrp_list; |
| list_for_each_entry(crgrp, head, mon.crdtgrp_list) |
| mbm_update(r, d, crgrp->closid, crgrp->mon.rmid); |
| |
| if (is_mba_sc(NULL)) |
| update_mba_bw(prgrp, d); |
| } |
| |
| /* |
| * Re-check for housekeeping CPUs. This allows the overflow handler to |
| * move off a nohz_full CPU quickly. |
| */ |
| d->mbm_work_cpu = cpumask_any_housekeeping(&d->cpu_mask, |
| RESCTRL_PICK_ANY_CPU); |
| schedule_delayed_work_on(d->mbm_work_cpu, &d->mbm_over, delay); |
| |
| out_unlock: |
| mutex_unlock(&rdtgroup_mutex); |
| cpus_read_unlock(); |
| } |
| |
| /** |
| * mbm_setup_overflow_handler() - Schedule the overflow handler to run for this |
| * domain. |
| * @dom: The domain the overflow handler should run for. |
| * @delay_ms: How far in the future the handler should run. |
| * @exclude_cpu: Which CPU the handler should not run on, |
| * RESCTRL_PICK_ANY_CPU to pick any CPU. |
| */ |
| void mbm_setup_overflow_handler(struct rdt_domain *dom, unsigned long delay_ms, |
| int exclude_cpu) |
| { |
| unsigned long delay = msecs_to_jiffies(delay_ms); |
| int cpu; |
| |
| /* |
| * When a domain comes online there is no guarantee the filesystem is |
| * mounted. If not, there is no need to catch counter overflow. |
| */ |
| if (!resctrl_mounted || !resctrl_arch_mon_capable()) |
| return; |
| cpu = cpumask_any_housekeeping(&dom->cpu_mask, exclude_cpu); |
| dom->mbm_work_cpu = cpu; |
| |
| if (cpu < nr_cpu_ids) |
| schedule_delayed_work_on(cpu, &dom->mbm_over, delay); |
| } |
| |
| static int dom_data_init(struct rdt_resource *r) |
| { |
| u32 idx_limit = resctrl_arch_system_num_rmid_idx(); |
| u32 num_closid = resctrl_arch_get_num_closid(r); |
| struct rmid_entry *entry = NULL; |
| int err = 0, i; |
| u32 idx; |
| |
| mutex_lock(&rdtgroup_mutex); |
| if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) { |
| u32 *tmp; |
| |
| /* |
| * If the architecture hasn't provided a sanitised value here, |
| * this may result in larger arrays than necessary. Resctrl will |
| * use a smaller system wide value based on the resources in |
| * use. |
| */ |
| tmp = kcalloc(num_closid, sizeof(*tmp), GFP_KERNEL); |
| if (!tmp) { |
| err = -ENOMEM; |
| goto out_unlock; |
| } |
| |
| closid_num_dirty_rmid = tmp; |
| } |
| |
| rmid_ptrs = kcalloc(idx_limit, sizeof(struct rmid_entry), GFP_KERNEL); |
| if (!rmid_ptrs) { |
| if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) { |
| kfree(closid_num_dirty_rmid); |
| closid_num_dirty_rmid = NULL; |
| } |
| err = -ENOMEM; |
| goto out_unlock; |
| } |
| |
| for (i = 0; i < idx_limit; i++) { |
| entry = &rmid_ptrs[i]; |
| INIT_LIST_HEAD(&entry->list); |
| |
| resctrl_arch_rmid_idx_decode(i, &entry->closid, &entry->rmid); |
| list_add_tail(&entry->list, &rmid_free_lru); |
| } |
| |
| /* |
| * RESCTRL_RESERVED_CLOSID and RESCTRL_RESERVED_RMID are special and |
| * are always allocated. These are used for the rdtgroup_default |
| * control group, which will be setup later in rdtgroup_init(). |
| */ |
| idx = resctrl_arch_rmid_idx_encode(RESCTRL_RESERVED_CLOSID, |
| RESCTRL_RESERVED_RMID); |
| entry = __rmid_entry(idx); |
| list_del(&entry->list); |
| |
| out_unlock: |
| mutex_unlock(&rdtgroup_mutex); |
| |
| return err; |
| } |
| |
| static void __exit dom_data_exit(void) |
| { |
| mutex_lock(&rdtgroup_mutex); |
| |
| if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) { |
| kfree(closid_num_dirty_rmid); |
| closid_num_dirty_rmid = NULL; |
| } |
| |
| kfree(rmid_ptrs); |
| rmid_ptrs = NULL; |
| |
| mutex_unlock(&rdtgroup_mutex); |
| } |
| |
| static struct mon_evt llc_occupancy_event = { |
| .name = "llc_occupancy", |
| .evtid = QOS_L3_OCCUP_EVENT_ID, |
| }; |
| |
| static struct mon_evt mbm_total_event = { |
| .name = "mbm_total_bytes", |
| .evtid = QOS_L3_MBM_TOTAL_EVENT_ID, |
| }; |
| |
| static struct mon_evt mbm_local_event = { |
| .name = "mbm_local_bytes", |
| .evtid = QOS_L3_MBM_LOCAL_EVENT_ID, |
| }; |
| |
| /* |
| * Initialize the event list for the resource. |
| * |
| * Note that MBM events are also part of RDT_RESOURCE_L3 resource |
| * because as per the SDM the total and local memory bandwidth |
| * are enumerated as part of L3 monitoring. |
| */ |
| static void l3_mon_evt_init(struct rdt_resource *r) |
| { |
| INIT_LIST_HEAD(&r->evt_list); |
| |
| if (is_llc_occupancy_enabled()) |
| list_add_tail(&llc_occupancy_event.list, &r->evt_list); |
| if (is_mbm_total_enabled()) |
| list_add_tail(&mbm_total_event.list, &r->evt_list); |
| if (is_mbm_local_enabled()) |
| list_add_tail(&mbm_local_event.list, &r->evt_list); |
| } |
| |
| int __init rdt_get_mon_l3_config(struct rdt_resource *r) |
| { |
| unsigned int mbm_offset = boot_cpu_data.x86_cache_mbm_width_offset; |
| struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r); |
| unsigned int threshold; |
| int ret; |
| |
| resctrl_rmid_realloc_limit = boot_cpu_data.x86_cache_size * 1024; |
| hw_res->mon_scale = boot_cpu_data.x86_cache_occ_scale; |
| r->num_rmid = boot_cpu_data.x86_cache_max_rmid + 1; |
| hw_res->mbm_width = MBM_CNTR_WIDTH_BASE; |
| |
| if (mbm_offset > 0 && mbm_offset <= MBM_CNTR_WIDTH_OFFSET_MAX) |
| hw_res->mbm_width += mbm_offset; |
| else if (mbm_offset > MBM_CNTR_WIDTH_OFFSET_MAX) |
| pr_warn("Ignoring impossible MBM counter offset\n"); |
| |
| /* |
| * A reasonable upper limit on the max threshold is the number |
| * of lines tagged per RMID if all RMIDs have the same number of |
| * lines tagged in the LLC. |
| * |
| * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC. |
| */ |
| threshold = resctrl_rmid_realloc_limit / r->num_rmid; |
| |
| /* |
| * Because num_rmid may not be a power of two, round the value |
| * to the nearest multiple of hw_res->mon_scale so it matches a |
| * value the hardware will measure. mon_scale may not be a power of 2. |
| */ |
| resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(threshold); |
| |
| ret = dom_data_init(r); |
| if (ret) |
| return ret; |
| |
| if (rdt_cpu_has(X86_FEATURE_BMEC)) { |
| u32 eax, ebx, ecx, edx; |
| |
| /* Detect list of bandwidth sources that can be tracked */ |
| cpuid_count(0x80000020, 3, &eax, &ebx, &ecx, &edx); |
| hw_res->mbm_cfg_mask = ecx & MAX_EVT_CONFIG_BITS; |
| |
| if (rdt_cpu_has(X86_FEATURE_CQM_MBM_TOTAL)) { |
| mbm_total_event.configurable = true; |
| mbm_config_rftype_init("mbm_total_bytes_config"); |
| } |
| if (rdt_cpu_has(X86_FEATURE_CQM_MBM_LOCAL)) { |
| mbm_local_event.configurable = true; |
| mbm_config_rftype_init("mbm_local_bytes_config"); |
| } |
| } |
| |
| l3_mon_evt_init(r); |
| |
| r->mon_capable = true; |
| |
| return 0; |
| } |
| |
| void __exit rdt_put_mon_l3_config(void) |
| { |
| dom_data_exit(); |
| } |
| |
| void __init intel_rdt_mbm_apply_quirk(void) |
| { |
| int cf_index; |
| |
| cf_index = (boot_cpu_data.x86_cache_max_rmid + 1) / 8 - 1; |
| if (cf_index >= ARRAY_SIZE(mbm_cf_table)) { |
| pr_info("No MBM correction factor available\n"); |
| return; |
| } |
| |
| mbm_cf_rmidthreshold = mbm_cf_table[cf_index].rmidthreshold; |
| mbm_cf = mbm_cf_table[cf_index].cf; |
| } |