blob: f5f2945711be0c215d6a812d217c402616fc1cef [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include "amdgpu_amdkfd.h"
#include "amd_pcie.h"
#include "amd_shared.h"
#include "amdgpu.h"
#include "amdgpu_gfx.h"
#include "amdgpu_dma_buf.h"
#include <drm/ttm/ttm_tt.h>
#include <linux/module.h>
#include <linux/dma-buf.h>
#include "amdgpu_xgmi.h"
#include <uapi/linux/kfd_ioctl.h>
#include "amdgpu_ras.h"
#include "amdgpu_umc.h"
#include "amdgpu_reset.h"
/* Total memory size in system memory and all GPU VRAM. Used to
* estimate worst case amount of memory to reserve for page tables
*/
uint64_t amdgpu_amdkfd_total_mem_size;
static bool kfd_initialized;
int amdgpu_amdkfd_init(void)
{
struct sysinfo si;
int ret;
si_meminfo(&si);
amdgpu_amdkfd_total_mem_size = si.freeram - si.freehigh;
amdgpu_amdkfd_total_mem_size *= si.mem_unit;
ret = kgd2kfd_init();
kfd_initialized = !ret;
return ret;
}
void amdgpu_amdkfd_fini(void)
{
if (kfd_initialized) {
kgd2kfd_exit();
kfd_initialized = false;
}
}
void amdgpu_amdkfd_device_probe(struct amdgpu_device *adev)
{
bool vf = amdgpu_sriov_vf(adev);
if (!kfd_initialized)
return;
adev->kfd.dev = kgd2kfd_probe(adev, vf);
}
/**
* amdgpu_doorbell_get_kfd_info - Report doorbell configuration required to
* setup amdkfd
*
* @adev: amdgpu_device pointer
* @aperture_base: output returning doorbell aperture base physical address
* @aperture_size: output returning doorbell aperture size in bytes
* @start_offset: output returning # of doorbell bytes reserved for amdgpu.
*
* amdgpu and amdkfd share the doorbell aperture. amdgpu sets it up,
* takes doorbells required for its own rings and reports the setup to amdkfd.
* amdgpu reserved doorbells are at the start of the doorbell aperture.
*/
static void amdgpu_doorbell_get_kfd_info(struct amdgpu_device *adev,
phys_addr_t *aperture_base,
size_t *aperture_size,
size_t *start_offset)
{
/*
* The first num_kernel_doorbells are used by amdgpu.
* amdkfd takes whatever's left in the aperture.
*/
if (adev->enable_mes) {
/*
* With MES enabled, we only need to initialize
* the base address. The size and offset are
* not initialized as AMDGPU manages the whole
* doorbell space.
*/
*aperture_base = adev->doorbell.base;
*aperture_size = 0;
*start_offset = 0;
} else if (adev->doorbell.size > adev->doorbell.num_kernel_doorbells *
sizeof(u32)) {
*aperture_base = adev->doorbell.base;
*aperture_size = adev->doorbell.size;
*start_offset = adev->doorbell.num_kernel_doorbells * sizeof(u32);
} else {
*aperture_base = 0;
*aperture_size = 0;
*start_offset = 0;
}
}
static void amdgpu_amdkfd_reset_work(struct work_struct *work)
{
struct amdgpu_device *adev = container_of(work, struct amdgpu_device,
kfd.reset_work);
struct amdgpu_reset_context reset_context;
memset(&reset_context, 0, sizeof(reset_context));
reset_context.method = AMD_RESET_METHOD_NONE;
reset_context.reset_req_dev = adev;
clear_bit(AMDGPU_NEED_FULL_RESET, &reset_context.flags);
amdgpu_device_gpu_recover(adev, NULL, &reset_context);
}
static const struct drm_client_funcs kfd_client_funcs = {
.unregister = drm_client_release,
};
int amdgpu_amdkfd_drm_client_create(struct amdgpu_device *adev)
{
int ret;
if (!adev->kfd.init_complete)
return 0;
ret = drm_client_init(&adev->ddev, &adev->kfd.client, "kfd",
&kfd_client_funcs);
if (ret) {
dev_err(adev->dev, "Failed to init DRM client: %d\n",
ret);
return ret;
}
drm_client_register(&adev->kfd.client);
return 0;
}
void amdgpu_amdkfd_device_init(struct amdgpu_device *adev)
{
int i;
int last_valid_bit;
amdgpu_amdkfd_gpuvm_init_mem_limits();
if (adev->kfd.dev) {
struct kgd2kfd_shared_resources gpu_resources = {
.compute_vmid_bitmap =
((1 << AMDGPU_NUM_VMID) - 1) -
((1 << adev->vm_manager.first_kfd_vmid) - 1),
.num_pipe_per_mec = adev->gfx.mec.num_pipe_per_mec,
.num_queue_per_pipe = adev->gfx.mec.num_queue_per_pipe,
.gpuvm_size = min(adev->vm_manager.max_pfn
<< AMDGPU_GPU_PAGE_SHIFT,
AMDGPU_GMC_HOLE_START),
.drm_render_minor = adev_to_drm(adev)->render->index,
.sdma_doorbell_idx = adev->doorbell_index.sdma_engine,
.enable_mes = adev->enable_mes,
};
/* this is going to have a few of the MSBs set that we need to
* clear
*/
bitmap_complement(gpu_resources.cp_queue_bitmap,
adev->gfx.mec_bitmap[0].queue_bitmap,
AMDGPU_MAX_QUEUES);
/* According to linux/bitmap.h we shouldn't use bitmap_clear if
* nbits is not compile time constant
*/
last_valid_bit = 1 /* only first MEC can have compute queues */
* adev->gfx.mec.num_pipe_per_mec
* adev->gfx.mec.num_queue_per_pipe;
for (i = last_valid_bit; i < AMDGPU_MAX_QUEUES; ++i)
clear_bit(i, gpu_resources.cp_queue_bitmap);
amdgpu_doorbell_get_kfd_info(adev,
&gpu_resources.doorbell_physical_address,
&gpu_resources.doorbell_aperture_size,
&gpu_resources.doorbell_start_offset);
/* Since SOC15, BIF starts to statically use the
* lower 12 bits of doorbell addresses for routing
* based on settings in registers like
* SDMA0_DOORBELL_RANGE etc..
* In order to route a doorbell to CP engine, the lower
* 12 bits of its address has to be outside the range
* set for SDMA, VCN, and IH blocks.
*/
if (adev->asic_type >= CHIP_VEGA10) {
gpu_resources.non_cp_doorbells_start =
adev->doorbell_index.first_non_cp;
gpu_resources.non_cp_doorbells_end =
adev->doorbell_index.last_non_cp;
}
adev->kfd.init_complete = kgd2kfd_device_init(adev->kfd.dev,
&gpu_resources);
amdgpu_amdkfd_total_mem_size += adev->gmc.real_vram_size;
INIT_WORK(&adev->kfd.reset_work, amdgpu_amdkfd_reset_work);
}
}
void amdgpu_amdkfd_device_fini_sw(struct amdgpu_device *adev)
{
if (adev->kfd.dev) {
kgd2kfd_device_exit(adev->kfd.dev);
adev->kfd.dev = NULL;
amdgpu_amdkfd_total_mem_size -= adev->gmc.real_vram_size;
}
}
void amdgpu_amdkfd_interrupt(struct amdgpu_device *adev,
const void *ih_ring_entry)
{
if (adev->kfd.dev)
kgd2kfd_interrupt(adev->kfd.dev, ih_ring_entry);
}
void amdgpu_amdkfd_suspend(struct amdgpu_device *adev, bool run_pm)
{
if (adev->kfd.dev)
kgd2kfd_suspend(adev->kfd.dev, run_pm);
}
int amdgpu_amdkfd_resume(struct amdgpu_device *adev, bool run_pm)
{
int r = 0;
if (adev->kfd.dev)
r = kgd2kfd_resume(adev->kfd.dev, run_pm);
return r;
}
int amdgpu_amdkfd_pre_reset(struct amdgpu_device *adev)
{
int r = 0;
if (adev->kfd.dev)
r = kgd2kfd_pre_reset(adev->kfd.dev);
return r;
}
int amdgpu_amdkfd_post_reset(struct amdgpu_device *adev)
{
int r = 0;
if (adev->kfd.dev)
r = kgd2kfd_post_reset(adev->kfd.dev);
return r;
}
void amdgpu_amdkfd_gpu_reset(struct amdgpu_device *adev)
{
if (amdgpu_device_should_recover_gpu(adev))
amdgpu_reset_domain_schedule(adev->reset_domain,
&adev->kfd.reset_work);
}
int amdgpu_amdkfd_alloc_gtt_mem(struct amdgpu_device *adev, size_t size,
void **mem_obj, uint64_t *gpu_addr,
void **cpu_ptr, bool cp_mqd_gfx9)
{
struct amdgpu_bo *bo = NULL;
struct amdgpu_bo_param bp;
int r;
void *cpu_ptr_tmp = NULL;
memset(&bp, 0, sizeof(bp));
bp.size = size;
bp.byte_align = PAGE_SIZE;
bp.domain = AMDGPU_GEM_DOMAIN_GTT;
bp.flags = AMDGPU_GEM_CREATE_CPU_GTT_USWC;
bp.type = ttm_bo_type_kernel;
bp.resv = NULL;
bp.bo_ptr_size = sizeof(struct amdgpu_bo);
if (cp_mqd_gfx9)
bp.flags |= AMDGPU_GEM_CREATE_CP_MQD_GFX9;
r = amdgpu_bo_create(adev, &bp, &bo);
if (r) {
dev_err(adev->dev,
"failed to allocate BO for amdkfd (%d)\n", r);
return r;
}
/* map the buffer */
r = amdgpu_bo_reserve(bo, true);
if (r) {
dev_err(adev->dev, "(%d) failed to reserve bo for amdkfd\n", r);
goto allocate_mem_reserve_bo_failed;
}
r = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT);
if (r) {
dev_err(adev->dev, "(%d) failed to pin bo for amdkfd\n", r);
goto allocate_mem_pin_bo_failed;
}
r = amdgpu_ttm_alloc_gart(&bo->tbo);
if (r) {
dev_err(adev->dev, "%p bind failed\n", bo);
goto allocate_mem_kmap_bo_failed;
}
r = amdgpu_bo_kmap(bo, &cpu_ptr_tmp);
if (r) {
dev_err(adev->dev,
"(%d) failed to map bo to kernel for amdkfd\n", r);
goto allocate_mem_kmap_bo_failed;
}
*mem_obj = bo;
*gpu_addr = amdgpu_bo_gpu_offset(bo);
*cpu_ptr = cpu_ptr_tmp;
amdgpu_bo_unreserve(bo);
return 0;
allocate_mem_kmap_bo_failed:
amdgpu_bo_unpin(bo);
allocate_mem_pin_bo_failed:
amdgpu_bo_unreserve(bo);
allocate_mem_reserve_bo_failed:
amdgpu_bo_unref(&bo);
return r;
}
void amdgpu_amdkfd_free_gtt_mem(struct amdgpu_device *adev, void *mem_obj)
{
struct amdgpu_bo *bo = (struct amdgpu_bo *) mem_obj;
amdgpu_bo_reserve(bo, true);
amdgpu_bo_kunmap(bo);
amdgpu_bo_unpin(bo);
amdgpu_bo_unreserve(bo);
amdgpu_bo_unref(&(bo));
}
int amdgpu_amdkfd_alloc_gws(struct amdgpu_device *adev, size_t size,
void **mem_obj)
{
struct amdgpu_bo *bo = NULL;
struct amdgpu_bo_user *ubo;
struct amdgpu_bo_param bp;
int r;
memset(&bp, 0, sizeof(bp));
bp.size = size;
bp.byte_align = 1;
bp.domain = AMDGPU_GEM_DOMAIN_GWS;
bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS;
bp.type = ttm_bo_type_device;
bp.resv = NULL;
bp.bo_ptr_size = sizeof(struct amdgpu_bo);
r = amdgpu_bo_create_user(adev, &bp, &ubo);
if (r) {
dev_err(adev->dev,
"failed to allocate gws BO for amdkfd (%d)\n", r);
return r;
}
bo = &ubo->bo;
*mem_obj = bo;
return 0;
}
void amdgpu_amdkfd_free_gws(struct amdgpu_device *adev, void *mem_obj)
{
struct amdgpu_bo *bo = (struct amdgpu_bo *)mem_obj;
amdgpu_bo_unref(&bo);
}
uint32_t amdgpu_amdkfd_get_fw_version(struct amdgpu_device *adev,
enum kgd_engine_type type)
{
switch (type) {
case KGD_ENGINE_PFP:
return adev->gfx.pfp_fw_version;
case KGD_ENGINE_ME:
return adev->gfx.me_fw_version;
case KGD_ENGINE_CE:
return adev->gfx.ce_fw_version;
case KGD_ENGINE_MEC1:
return adev->gfx.mec_fw_version;
case KGD_ENGINE_MEC2:
return adev->gfx.mec2_fw_version;
case KGD_ENGINE_RLC:
return adev->gfx.rlc_fw_version;
case KGD_ENGINE_SDMA1:
return adev->sdma.instance[0].fw_version;
case KGD_ENGINE_SDMA2:
return adev->sdma.instance[1].fw_version;
default:
return 0;
}
return 0;
}
void amdgpu_amdkfd_get_local_mem_info(struct amdgpu_device *adev,
struct kfd_local_mem_info *mem_info,
struct amdgpu_xcp *xcp)
{
memset(mem_info, 0, sizeof(*mem_info));
if (xcp) {
if (adev->gmc.real_vram_size == adev->gmc.visible_vram_size)
mem_info->local_mem_size_public =
KFD_XCP_MEMORY_SIZE(adev, xcp->id);
else
mem_info->local_mem_size_private =
KFD_XCP_MEMORY_SIZE(adev, xcp->id);
} else {
mem_info->local_mem_size_public = adev->gmc.visible_vram_size;
mem_info->local_mem_size_private = adev->gmc.real_vram_size -
adev->gmc.visible_vram_size;
}
mem_info->vram_width = adev->gmc.vram_width;
pr_debug("Address base: %pap public 0x%llx private 0x%llx\n",
&adev->gmc.aper_base,
mem_info->local_mem_size_public,
mem_info->local_mem_size_private);
if (adev->pm.dpm_enabled) {
if (amdgpu_emu_mode == 1)
mem_info->mem_clk_max = 0;
else
mem_info->mem_clk_max = amdgpu_dpm_get_mclk(adev, false) / 100;
} else
mem_info->mem_clk_max = 100;
}
uint64_t amdgpu_amdkfd_get_gpu_clock_counter(struct amdgpu_device *adev)
{
if (adev->gfx.funcs->get_gpu_clock_counter)
return adev->gfx.funcs->get_gpu_clock_counter(adev);
return 0;
}
uint32_t amdgpu_amdkfd_get_max_engine_clock_in_mhz(struct amdgpu_device *adev)
{
/* the sclk is in quantas of 10kHz */
if (adev->pm.dpm_enabled)
return amdgpu_dpm_get_sclk(adev, false) / 100;
else
return 100;
}
int amdgpu_amdkfd_get_dmabuf_info(struct amdgpu_device *adev, int dma_buf_fd,
struct amdgpu_device **dmabuf_adev,
uint64_t *bo_size, void *metadata_buffer,
size_t buffer_size, uint32_t *metadata_size,
uint32_t *flags, int8_t *xcp_id)
{
struct dma_buf *dma_buf;
struct drm_gem_object *obj;
struct amdgpu_bo *bo;
uint64_t metadata_flags;
int r = -EINVAL;
dma_buf = dma_buf_get(dma_buf_fd);
if (IS_ERR(dma_buf))
return PTR_ERR(dma_buf);
if (dma_buf->ops != &amdgpu_dmabuf_ops)
/* Can't handle non-graphics buffers */
goto out_put;
obj = dma_buf->priv;
if (obj->dev->driver != adev_to_drm(adev)->driver)
/* Can't handle buffers from different drivers */
goto out_put;
adev = drm_to_adev(obj->dev);
bo = gem_to_amdgpu_bo(obj);
if (!(bo->preferred_domains & (AMDGPU_GEM_DOMAIN_VRAM |
AMDGPU_GEM_DOMAIN_GTT)))
/* Only VRAM and GTT BOs are supported */
goto out_put;
r = 0;
if (dmabuf_adev)
*dmabuf_adev = adev;
if (bo_size)
*bo_size = amdgpu_bo_size(bo);
if (metadata_buffer)
r = amdgpu_bo_get_metadata(bo, metadata_buffer, buffer_size,
metadata_size, &metadata_flags);
if (flags) {
*flags = (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) ?
KFD_IOC_ALLOC_MEM_FLAGS_VRAM
: KFD_IOC_ALLOC_MEM_FLAGS_GTT;
if (bo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED)
*flags |= KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC;
}
if (xcp_id)
*xcp_id = bo->xcp_id;
out_put:
dma_buf_put(dma_buf);
return r;
}
uint8_t amdgpu_amdkfd_get_xgmi_hops_count(struct amdgpu_device *dst,
struct amdgpu_device *src)
{
struct amdgpu_device *peer_adev = src;
struct amdgpu_device *adev = dst;
int ret = amdgpu_xgmi_get_hops_count(adev, peer_adev);
if (ret < 0) {
DRM_ERROR("amdgpu: failed to get xgmi hops count between node %d and %d. ret = %d\n",
adev->gmc.xgmi.physical_node_id,
peer_adev->gmc.xgmi.physical_node_id, ret);
ret = 0;
}
return (uint8_t)ret;
}
int amdgpu_amdkfd_get_xgmi_bandwidth_mbytes(struct amdgpu_device *dst,
struct amdgpu_device *src,
bool is_min)
{
struct amdgpu_device *adev = dst, *peer_adev;
int num_links;
if (amdgpu_ip_version(adev, GC_HWIP, 0) < IP_VERSION(9, 4, 2))
return 0;
if (src)
peer_adev = src;
/* num links returns 0 for indirect peers since indirect route is unknown. */
num_links = is_min ? 1 : amdgpu_xgmi_get_num_links(adev, peer_adev);
if (num_links < 0) {
DRM_ERROR("amdgpu: failed to get xgmi num links between node %d and %d. ret = %d\n",
adev->gmc.xgmi.physical_node_id,
peer_adev->gmc.xgmi.physical_node_id, num_links);
num_links = 0;
}
/* Aldebaran xGMI DPM is defeatured so assume x16 x 25Gbps for bandwidth. */
return (num_links * 16 * 25000)/BITS_PER_BYTE;
}
int amdgpu_amdkfd_get_pcie_bandwidth_mbytes(struct amdgpu_device *adev, bool is_min)
{
int num_lanes_shift = (is_min ? ffs(adev->pm.pcie_mlw_mask) :
fls(adev->pm.pcie_mlw_mask)) - 1;
int gen_speed_shift = (is_min ? ffs(adev->pm.pcie_gen_mask &
CAIL_PCIE_LINK_SPEED_SUPPORT_MASK) :
fls(adev->pm.pcie_gen_mask &
CAIL_PCIE_LINK_SPEED_SUPPORT_MASK)) - 1;
uint32_t num_lanes_mask = 1 << num_lanes_shift;
uint32_t gen_speed_mask = 1 << gen_speed_shift;
int num_lanes_factor = 0, gen_speed_mbits_factor = 0;
switch (num_lanes_mask) {
case CAIL_PCIE_LINK_WIDTH_SUPPORT_X1:
num_lanes_factor = 1;
break;
case CAIL_PCIE_LINK_WIDTH_SUPPORT_X2:
num_lanes_factor = 2;
break;
case CAIL_PCIE_LINK_WIDTH_SUPPORT_X4:
num_lanes_factor = 4;
break;
case CAIL_PCIE_LINK_WIDTH_SUPPORT_X8:
num_lanes_factor = 8;
break;
case CAIL_PCIE_LINK_WIDTH_SUPPORT_X12:
num_lanes_factor = 12;
break;
case CAIL_PCIE_LINK_WIDTH_SUPPORT_X16:
num_lanes_factor = 16;
break;
case CAIL_PCIE_LINK_WIDTH_SUPPORT_X32:
num_lanes_factor = 32;
break;
}
switch (gen_speed_mask) {
case CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1:
gen_speed_mbits_factor = 2500;
break;
case CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2:
gen_speed_mbits_factor = 5000;
break;
case CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3:
gen_speed_mbits_factor = 8000;
break;
case CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4:
gen_speed_mbits_factor = 16000;
break;
case CAIL_PCIE_LINK_SPEED_SUPPORT_GEN5:
gen_speed_mbits_factor = 32000;
break;
}
return (num_lanes_factor * gen_speed_mbits_factor)/BITS_PER_BYTE;
}
int amdgpu_amdkfd_submit_ib(struct amdgpu_device *adev,
enum kgd_engine_type engine,
uint32_t vmid, uint64_t gpu_addr,
uint32_t *ib_cmd, uint32_t ib_len)
{
struct amdgpu_job *job;
struct amdgpu_ib *ib;
struct amdgpu_ring *ring;
struct dma_fence *f = NULL;
int ret;
switch (engine) {
case KGD_ENGINE_MEC1:
ring = &adev->gfx.compute_ring[0];
break;
case KGD_ENGINE_SDMA1:
ring = &adev->sdma.instance[0].ring;
break;
case KGD_ENGINE_SDMA2:
ring = &adev->sdma.instance[1].ring;
break;
default:
pr_err("Invalid engine in IB submission: %d\n", engine);
ret = -EINVAL;
goto err;
}
ret = amdgpu_job_alloc(adev, NULL, NULL, NULL, 1, &job);
if (ret)
goto err;
ib = &job->ibs[0];
memset(ib, 0, sizeof(struct amdgpu_ib));
ib->gpu_addr = gpu_addr;
ib->ptr = ib_cmd;
ib->length_dw = ib_len;
/* This works for NO_HWS. TODO: need to handle without knowing VMID */
job->vmid = vmid;
job->num_ibs = 1;
ret = amdgpu_ib_schedule(ring, 1, ib, job, &f);
if (ret) {
DRM_ERROR("amdgpu: failed to schedule IB.\n");
goto err_ib_sched;
}
/* Drop the initial kref_init count (see drm_sched_main as example) */
dma_fence_put(f);
ret = dma_fence_wait(f, false);
err_ib_sched:
amdgpu_job_free(job);
err:
return ret;
}
void amdgpu_amdkfd_set_compute_idle(struct amdgpu_device *adev, bool idle)
{
enum amd_powergating_state state = idle ? AMD_PG_STATE_GATE : AMD_PG_STATE_UNGATE;
if (IP_VERSION_MAJ(amdgpu_ip_version(adev, GC_HWIP, 0)) == 11 &&
((adev->mes.kiq_version & AMDGPU_MES_VERSION_MASK) <= 64)) {
pr_debug("GFXOFF is %s\n", idle ? "enabled" : "disabled");
amdgpu_gfx_off_ctrl(adev, idle);
} else if ((IP_VERSION_MAJ(amdgpu_ip_version(adev, GC_HWIP, 0)) == 9) &&
(adev->flags & AMD_IS_APU)) {
/* Disable GFXOFF and PG. Temporary workaround
* to fix some compute applications issue on GFX9.
*/
adev->ip_blocks[AMD_IP_BLOCK_TYPE_GFX].version->funcs->set_powergating_state((void *)adev, state);
}
amdgpu_dpm_switch_power_profile(adev,
PP_SMC_POWER_PROFILE_COMPUTE,
!idle);
}
bool amdgpu_amdkfd_is_kfd_vmid(struct amdgpu_device *adev, u32 vmid)
{
if (adev->kfd.dev)
return vmid >= adev->vm_manager.first_kfd_vmid;
return false;
}
bool amdgpu_amdkfd_have_atomics_support(struct amdgpu_device *adev)
{
return adev->have_atomics_support;
}
void amdgpu_amdkfd_debug_mem_fence(struct amdgpu_device *adev)
{
amdgpu_device_flush_hdp(adev, NULL);
}
bool amdgpu_amdkfd_is_fed(struct amdgpu_device *adev)
{
return amdgpu_ras_get_fed_status(adev);
}
void amdgpu_amdkfd_ras_poison_consumption_handler(struct amdgpu_device *adev,
enum amdgpu_ras_block block, bool reset)
{
amdgpu_umc_poison_handler(adev, block, reset);
}
int amdgpu_amdkfd_send_close_event_drain_irq(struct amdgpu_device *adev,
uint32_t *payload)
{
int ret;
/* Device or IH ring is not ready so bail. */
ret = amdgpu_ih_wait_on_checkpoint_process_ts(adev, &adev->irq.ih);
if (ret)
return ret;
/* Send payload to fence KFD interrupts */
amdgpu_amdkfd_interrupt(adev, payload);
return 0;
}
bool amdgpu_amdkfd_ras_query_utcl2_poison_status(struct amdgpu_device *adev)
{
if (adev->gfx.ras && adev->gfx.ras->query_utcl2_poison_status)
return adev->gfx.ras->query_utcl2_poison_status(adev);
else
return false;
}
int amdgpu_amdkfd_check_and_lock_kfd(struct amdgpu_device *adev)
{
return kgd2kfd_check_and_lock_kfd();
}
void amdgpu_amdkfd_unlock_kfd(struct amdgpu_device *adev)
{
kgd2kfd_unlock_kfd();
}
u64 amdgpu_amdkfd_xcp_memory_size(struct amdgpu_device *adev, int xcp_id)
{
s8 mem_id = KFD_XCP_MEM_ID(adev, xcp_id);
u64 tmp;
if (adev->gmc.num_mem_partitions && xcp_id >= 0 && mem_id >= 0) {
if (adev->gmc.is_app_apu && adev->gmc.num_mem_partitions == 1) {
/* In NPS1 mode, we should restrict the vram reporting
* tied to the ttm_pages_limit which is 1/2 of the system
* memory. For other partition modes, the HBM is uniformly
* divided already per numa node reported. If user wants to
* go beyond the default ttm limit and maximize the ROCm
* allocations, they can go up to max ttm and sysmem limits.
*/
tmp = (ttm_tt_pages_limit() << PAGE_SHIFT) / num_online_nodes();
} else {
tmp = adev->gmc.mem_partitions[mem_id].size;
}
do_div(tmp, adev->xcp_mgr->num_xcp_per_mem_partition);
return ALIGN_DOWN(tmp, PAGE_SIZE);
} else {
return adev->gmc.real_vram_size;
}
}
int amdgpu_amdkfd_unmap_hiq(struct amdgpu_device *adev, u32 doorbell_off,
u32 inst)
{
struct amdgpu_kiq *kiq = &adev->gfx.kiq[inst];
struct amdgpu_ring *kiq_ring = &kiq->ring;
struct amdgpu_ring_funcs *ring_funcs;
struct amdgpu_ring *ring;
int r = 0;
if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
return -EINVAL;
ring_funcs = kzalloc(sizeof(*ring_funcs), GFP_KERNEL);
if (!ring_funcs)
return -ENOMEM;
ring = kzalloc(sizeof(*ring), GFP_KERNEL);
if (!ring) {
r = -ENOMEM;
goto free_ring_funcs;
}
ring_funcs->type = AMDGPU_RING_TYPE_COMPUTE;
ring->doorbell_index = doorbell_off;
ring->funcs = ring_funcs;
spin_lock(&kiq->ring_lock);
if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size)) {
spin_unlock(&kiq->ring_lock);
r = -ENOMEM;
goto free_ring;
}
kiq->pmf->kiq_unmap_queues(kiq_ring, ring, RESET_QUEUES, 0, 0);
if (kiq_ring->sched.ready && !adev->job_hang)
r = amdgpu_ring_test_helper(kiq_ring);
spin_unlock(&kiq->ring_lock);
free_ring:
kfree(ring);
free_ring_funcs:
kfree(ring_funcs);
return r;
}