blob: 124389a6bf481a62e7aeb2bfe3c4c2d109901e81 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0 OR MIT
/*
* Copyright 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <drm/drm_drv.h>
#include "amdgpu.h"
#include "amdgpu_trace.h"
#include "amdgpu_vm.h"
/*
* amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
*/
struct amdgpu_vm_pt_cursor {
uint64_t pfn;
struct amdgpu_vm_bo_base *parent;
struct amdgpu_vm_bo_base *entry;
unsigned int level;
};
/**
* amdgpu_vm_pt_level_shift - return the addr shift for each level
*
* @adev: amdgpu_device pointer
* @level: VMPT level
*
* Returns:
* The number of bits the pfn needs to be right shifted for a level.
*/
static unsigned int amdgpu_vm_pt_level_shift(struct amdgpu_device *adev,
unsigned int level)
{
switch (level) {
case AMDGPU_VM_PDB2:
case AMDGPU_VM_PDB1:
case AMDGPU_VM_PDB0:
return 9 * (AMDGPU_VM_PDB0 - level) +
adev->vm_manager.block_size;
case AMDGPU_VM_PTB:
return 0;
default:
return ~0;
}
}
/**
* amdgpu_vm_pt_num_entries - return the number of entries in a PD/PT
*
* @adev: amdgpu_device pointer
* @level: VMPT level
*
* Returns:
* The number of entries in a page directory or page table.
*/
static unsigned int amdgpu_vm_pt_num_entries(struct amdgpu_device *adev,
unsigned int level)
{
unsigned int shift;
shift = amdgpu_vm_pt_level_shift(adev, adev->vm_manager.root_level);
if (level == adev->vm_manager.root_level)
/* For the root directory */
return round_up(adev->vm_manager.max_pfn, 1ULL << shift)
>> shift;
else if (level != AMDGPU_VM_PTB)
/* Everything in between */
return 512;
/* For the page tables on the leaves */
return AMDGPU_VM_PTE_COUNT(adev);
}
/**
* amdgpu_vm_pt_entries_mask - the mask to get the entry number of a PD/PT
*
* @adev: amdgpu_device pointer
* @level: VMPT level
*
* Returns:
* The mask to extract the entry number of a PD/PT from an address.
*/
static uint32_t amdgpu_vm_pt_entries_mask(struct amdgpu_device *adev,
unsigned int level)
{
if (level <= adev->vm_manager.root_level)
return 0xffffffff;
else if (level != AMDGPU_VM_PTB)
return 0x1ff;
else
return AMDGPU_VM_PTE_COUNT(adev) - 1;
}
/**
* amdgpu_vm_pt_size - returns the size of the page table in bytes
*
* @adev: amdgpu_device pointer
* @level: VMPT level
*
* Returns:
* The size of the BO for a page directory or page table in bytes.
*/
static unsigned int amdgpu_vm_pt_size(struct amdgpu_device *adev,
unsigned int level)
{
return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_pt_num_entries(adev, level) * 8);
}
/**
* amdgpu_vm_pt_parent - get the parent page directory
*
* @pt: child page table
*
* Helper to get the parent entry for the child page table. NULL if we are at
* the root page directory.
*/
static struct amdgpu_vm_bo_base *
amdgpu_vm_pt_parent(struct amdgpu_vm_bo_base *pt)
{
struct amdgpu_bo *parent = pt->bo->parent;
if (!parent)
return NULL;
return parent->vm_bo;
}
/**
* amdgpu_vm_pt_start - start PD/PT walk
*
* @adev: amdgpu_device pointer
* @vm: amdgpu_vm structure
* @start: start address of the walk
* @cursor: state to initialize
*
* Initialize a amdgpu_vm_pt_cursor to start a walk.
*/
static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
struct amdgpu_vm *vm, uint64_t start,
struct amdgpu_vm_pt_cursor *cursor)
{
cursor->pfn = start;
cursor->parent = NULL;
cursor->entry = &vm->root;
cursor->level = adev->vm_manager.root_level;
}
/**
* amdgpu_vm_pt_descendant - go to child node
*
* @adev: amdgpu_device pointer
* @cursor: current state
*
* Walk to the child node of the current node.
* Returns:
* True if the walk was possible, false otherwise.
*/
static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
struct amdgpu_vm_pt_cursor *cursor)
{
unsigned int mask, shift, idx;
if ((cursor->level == AMDGPU_VM_PTB) || !cursor->entry ||
!cursor->entry->bo)
return false;
mask = amdgpu_vm_pt_entries_mask(adev, cursor->level);
shift = amdgpu_vm_pt_level_shift(adev, cursor->level);
++cursor->level;
idx = (cursor->pfn >> shift) & mask;
cursor->parent = cursor->entry;
cursor->entry = &to_amdgpu_bo_vm(cursor->entry->bo)->entries[idx];
return true;
}
/**
* amdgpu_vm_pt_sibling - go to sibling node
*
* @adev: amdgpu_device pointer
* @cursor: current state
*
* Walk to the sibling node of the current node.
* Returns:
* True if the walk was possible, false otherwise.
*/
static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
struct amdgpu_vm_pt_cursor *cursor)
{
unsigned int shift, num_entries;
struct amdgpu_bo_vm *parent;
/* Root doesn't have a sibling */
if (!cursor->parent)
return false;
/* Go to our parents and see if we got a sibling */
shift = amdgpu_vm_pt_level_shift(adev, cursor->level - 1);
num_entries = amdgpu_vm_pt_num_entries(adev, cursor->level - 1);
parent = to_amdgpu_bo_vm(cursor->parent->bo);
if (cursor->entry == &parent->entries[num_entries - 1])
return false;
cursor->pfn += 1ULL << shift;
cursor->pfn &= ~((1ULL << shift) - 1);
++cursor->entry;
return true;
}
/**
* amdgpu_vm_pt_ancestor - go to parent node
*
* @cursor: current state
*
* Walk to the parent node of the current node.
* Returns:
* True if the walk was possible, false otherwise.
*/
static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
{
if (!cursor->parent)
return false;
--cursor->level;
cursor->entry = cursor->parent;
cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
return true;
}
/**
* amdgpu_vm_pt_next - get next PD/PT in hieratchy
*
* @adev: amdgpu_device pointer
* @cursor: current state
*
* Walk the PD/PT tree to the next node.
*/
static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
struct amdgpu_vm_pt_cursor *cursor)
{
/* First try a newborn child */
if (amdgpu_vm_pt_descendant(adev, cursor))
return;
/* If that didn't worked try to find a sibling */
while (!amdgpu_vm_pt_sibling(adev, cursor)) {
/* No sibling, go to our parents and grandparents */
if (!amdgpu_vm_pt_ancestor(cursor)) {
cursor->pfn = ~0ll;
return;
}
}
}
/**
* amdgpu_vm_pt_first_dfs - start a deep first search
*
* @adev: amdgpu_device structure
* @vm: amdgpu_vm structure
* @start: optional cursor to start with
* @cursor: state to initialize
*
* Starts a deep first traversal of the PD/PT tree.
*/
static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
struct amdgpu_vm *vm,
struct amdgpu_vm_pt_cursor *start,
struct amdgpu_vm_pt_cursor *cursor)
{
if (start)
*cursor = *start;
else
amdgpu_vm_pt_start(adev, vm, 0, cursor);
while (amdgpu_vm_pt_descendant(adev, cursor))
;
}
/**
* amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
*
* @start: starting point for the search
* @entry: current entry
*
* Returns:
* True when the search should continue, false otherwise.
*/
static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
struct amdgpu_vm_bo_base *entry)
{
return entry && (!start || entry != start->entry);
}
/**
* amdgpu_vm_pt_next_dfs - get the next node for a deep first search
*
* @adev: amdgpu_device structure
* @cursor: current state
*
* Move the cursor to the next node in a deep first search.
*/
static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
struct amdgpu_vm_pt_cursor *cursor)
{
if (!cursor->entry)
return;
if (!cursor->parent)
cursor->entry = NULL;
else if (amdgpu_vm_pt_sibling(adev, cursor))
while (amdgpu_vm_pt_descendant(adev, cursor))
;
else
amdgpu_vm_pt_ancestor(cursor);
}
/*
* for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
*/
#define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) \
for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)), \
(entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
amdgpu_vm_pt_continue_dfs((start), (entry)); \
(entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
/**
* amdgpu_vm_pt_clear - initially clear the PDs/PTs
*
* @adev: amdgpu_device pointer
* @vm: VM to clear BO from
* @vmbo: BO to clear
* @immediate: use an immediate update
*
* Root PD needs to be reserved when calling this.
*
* Returns:
* 0 on success, errno otherwise.
*/
int amdgpu_vm_pt_clear(struct amdgpu_device *adev, struct amdgpu_vm *vm,
struct amdgpu_bo_vm *vmbo, bool immediate)
{
unsigned int level = adev->vm_manager.root_level;
struct ttm_operation_ctx ctx = { true, false };
struct amdgpu_vm_update_params params;
struct amdgpu_bo *ancestor = &vmbo->bo;
unsigned int entries;
struct amdgpu_bo *bo = &vmbo->bo;
uint64_t addr;
int r, idx;
/* Figure out our place in the hierarchy */
if (ancestor->parent) {
++level;
while (ancestor->parent->parent) {
++level;
ancestor = ancestor->parent;
}
}
entries = amdgpu_bo_size(bo) / 8;
r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
if (r)
return r;
if (vmbo->shadow) {
struct amdgpu_bo *shadow = vmbo->shadow;
r = ttm_bo_validate(&shadow->tbo, &shadow->placement, &ctx);
if (r)
return r;
}
if (!drm_dev_enter(adev_to_drm(adev), &idx))
return -ENODEV;
r = vm->update_funcs->map_table(vmbo);
if (r)
goto exit;
memset(&params, 0, sizeof(params));
params.adev = adev;
params.vm = vm;
params.immediate = immediate;
r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
if (r)
goto exit;
addr = 0;
uint64_t value = 0, flags = 0;
if (adev->asic_type >= CHIP_VEGA10) {
if (level != AMDGPU_VM_PTB) {
/* Handle leaf PDEs as PTEs */
flags |= AMDGPU_PDE_PTE;
amdgpu_gmc_get_vm_pde(adev, level,
&value, &flags);
} else {
/* Workaround for fault priority problem on GMC9 */
flags = AMDGPU_PTE_EXECUTABLE;
}
}
r = vm->update_funcs->update(&params, vmbo, addr, 0, entries,
value, flags);
if (r)
goto exit;
r = vm->update_funcs->commit(&params, NULL);
exit:
drm_dev_exit(idx);
return r;
}
/**
* amdgpu_vm_pt_create - create bo for PD/PT
*
* @adev: amdgpu_device pointer
* @vm: requesting vm
* @level: the page table level
* @immediate: use a immediate update
* @vmbo: pointer to the buffer object pointer
* @xcp_id: GPU partition id
*/
int amdgpu_vm_pt_create(struct amdgpu_device *adev, struct amdgpu_vm *vm,
int level, bool immediate, struct amdgpu_bo_vm **vmbo,
int32_t xcp_id)
{
struct amdgpu_bo_param bp;
struct amdgpu_bo *bo;
struct dma_resv *resv;
unsigned int num_entries;
int r;
memset(&bp, 0, sizeof(bp));
bp.size = amdgpu_vm_pt_size(adev, level);
bp.byte_align = AMDGPU_GPU_PAGE_SIZE;
if (!adev->gmc.is_app_apu)
bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
else
bp.domain = AMDGPU_GEM_DOMAIN_GTT;
bp.domain = amdgpu_bo_get_preferred_domain(adev, bp.domain);
bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
AMDGPU_GEM_CREATE_CPU_GTT_USWC;
if (level < AMDGPU_VM_PTB)
num_entries = amdgpu_vm_pt_num_entries(adev, level);
else
num_entries = 0;
bp.bo_ptr_size = struct_size((*vmbo), entries, num_entries);
if (vm->use_cpu_for_update)
bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
bp.type = ttm_bo_type_kernel;
bp.no_wait_gpu = immediate;
bp.xcp_id_plus1 = xcp_id + 1;
if (vm->root.bo)
bp.resv = vm->root.bo->tbo.base.resv;
r = amdgpu_bo_create_vm(adev, &bp, vmbo);
if (r)
return r;
bo = &(*vmbo)->bo;
if (vm->is_compute_context || (adev->flags & AMD_IS_APU)) {
(*vmbo)->shadow = NULL;
return 0;
}
if (!bp.resv)
WARN_ON(dma_resv_lock(bo->tbo.base.resv,
NULL));
resv = bp.resv;
memset(&bp, 0, sizeof(bp));
bp.size = amdgpu_vm_pt_size(adev, level);
bp.domain = AMDGPU_GEM_DOMAIN_GTT;
bp.flags = AMDGPU_GEM_CREATE_CPU_GTT_USWC;
bp.type = ttm_bo_type_kernel;
bp.resv = bo->tbo.base.resv;
bp.bo_ptr_size = sizeof(struct amdgpu_bo);
bp.xcp_id_plus1 = xcp_id + 1;
r = amdgpu_bo_create(adev, &bp, &(*vmbo)->shadow);
if (!resv)
dma_resv_unlock(bo->tbo.base.resv);
if (r) {
amdgpu_bo_unref(&bo);
return r;
}
amdgpu_bo_add_to_shadow_list(*vmbo);
return 0;
}
/**
* amdgpu_vm_pt_alloc - Allocate a specific page table
*
* @adev: amdgpu_device pointer
* @vm: VM to allocate page tables for
* @cursor: Which page table to allocate
* @immediate: use an immediate update
*
* Make sure a specific page table or directory is allocated.
*
* Returns:
* 1 if page table needed to be allocated, 0 if page table was already
* allocated, negative errno if an error occurred.
*/
static int amdgpu_vm_pt_alloc(struct amdgpu_device *adev,
struct amdgpu_vm *vm,
struct amdgpu_vm_pt_cursor *cursor,
bool immediate)
{
struct amdgpu_vm_bo_base *entry = cursor->entry;
struct amdgpu_bo *pt_bo;
struct amdgpu_bo_vm *pt;
int r;
if (entry->bo)
return 0;
amdgpu_vm_eviction_unlock(vm);
r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt,
vm->root.bo->xcp_id);
amdgpu_vm_eviction_lock(vm);
if (r)
return r;
/* Keep a reference to the root directory to avoid
* freeing them up in the wrong order.
*/
pt_bo = &pt->bo;
pt_bo->parent = amdgpu_bo_ref(cursor->parent->bo);
amdgpu_vm_bo_base_init(entry, vm, pt_bo);
r = amdgpu_vm_pt_clear(adev, vm, pt, immediate);
if (r)
goto error_free_pt;
return 0;
error_free_pt:
amdgpu_bo_unref(&pt->shadow);
amdgpu_bo_unref(&pt_bo);
return r;
}
/**
* amdgpu_vm_pt_free - free one PD/PT
*
* @entry: PDE to free
*/
static void amdgpu_vm_pt_free(struct amdgpu_vm_bo_base *entry)
{
struct amdgpu_bo *shadow;
if (!entry->bo)
return;
entry->bo->vm_bo = NULL;
shadow = amdgpu_bo_shadowed(entry->bo);
if (shadow) {
ttm_bo_set_bulk_move(&shadow->tbo, NULL);
amdgpu_bo_unref(&shadow);
}
ttm_bo_set_bulk_move(&entry->bo->tbo, NULL);
spin_lock(&entry->vm->status_lock);
list_del(&entry->vm_status);
spin_unlock(&entry->vm->status_lock);
amdgpu_bo_unref(&entry->bo);
}
void amdgpu_vm_pt_free_work(struct work_struct *work)
{
struct amdgpu_vm_bo_base *entry, *next;
struct amdgpu_vm *vm;
LIST_HEAD(pt_freed);
vm = container_of(work, struct amdgpu_vm, pt_free_work);
spin_lock(&vm->status_lock);
list_splice_init(&vm->pt_freed, &pt_freed);
spin_unlock(&vm->status_lock);
/* flush_work in amdgpu_vm_fini ensure vm->root.bo is valid. */
amdgpu_bo_reserve(vm->root.bo, true);
list_for_each_entry_safe(entry, next, &pt_freed, vm_status)
amdgpu_vm_pt_free(entry);
amdgpu_bo_unreserve(vm->root.bo);
}
/**
* amdgpu_vm_pt_free_dfs - free PD/PT levels
*
* @adev: amdgpu device structure
* @vm: amdgpu vm structure
* @start: optional cursor where to start freeing PDs/PTs
* @unlocked: vm resv unlock status
*
* Free the page directory or page table level and all sub levels.
*/
static void amdgpu_vm_pt_free_dfs(struct amdgpu_device *adev,
struct amdgpu_vm *vm,
struct amdgpu_vm_pt_cursor *start,
bool unlocked)
{
struct amdgpu_vm_pt_cursor cursor;
struct amdgpu_vm_bo_base *entry;
if (unlocked) {
spin_lock(&vm->status_lock);
for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
list_move(&entry->vm_status, &vm->pt_freed);
if (start)
list_move(&start->entry->vm_status, &vm->pt_freed);
spin_unlock(&vm->status_lock);
schedule_work(&vm->pt_free_work);
return;
}
for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
amdgpu_vm_pt_free(entry);
if (start)
amdgpu_vm_pt_free(start->entry);
}
/**
* amdgpu_vm_pt_free_root - free root PD
* @adev: amdgpu device structure
* @vm: amdgpu vm structure
*
* Free the root page directory and everything below it.
*/
void amdgpu_vm_pt_free_root(struct amdgpu_device *adev, struct amdgpu_vm *vm)
{
amdgpu_vm_pt_free_dfs(adev, vm, NULL, false);
}
/**
* amdgpu_vm_pde_update - update a single level in the hierarchy
*
* @params: parameters for the update
* @entry: entry to update
*
* Makes sure the requested entry in parent is up to date.
*/
int amdgpu_vm_pde_update(struct amdgpu_vm_update_params *params,
struct amdgpu_vm_bo_base *entry)
{
struct amdgpu_vm_bo_base *parent = amdgpu_vm_pt_parent(entry);
struct amdgpu_bo *bo = parent->bo, *pbo;
struct amdgpu_vm *vm = params->vm;
uint64_t pde, pt, flags;
unsigned int level;
for (level = 0, pbo = bo->parent; pbo; ++level)
pbo = pbo->parent;
level += params->adev->vm_manager.root_level;
amdgpu_gmc_get_pde_for_bo(entry->bo, level, &pt, &flags);
pde = (entry - to_amdgpu_bo_vm(parent->bo)->entries) * 8;
return vm->update_funcs->update(params, to_amdgpu_bo_vm(bo), pde, pt,
1, 0, flags);
}
/**
* amdgpu_vm_pte_update_noretry_flags - Update PTE no-retry flags
*
* @adev: amdgpu_device pointer
* @flags: pointer to PTE flags
*
* Update PTE no-retry flags when TF is enabled.
*/
static void amdgpu_vm_pte_update_noretry_flags(struct amdgpu_device *adev,
uint64_t *flags)
{
/*
* Update no-retry flags with the corresponding TF
* no-retry combination.
*/
if ((*flags & AMDGPU_VM_NORETRY_FLAGS) == AMDGPU_VM_NORETRY_FLAGS) {
*flags &= ~AMDGPU_VM_NORETRY_FLAGS;
*flags |= adev->gmc.noretry_flags;
}
}
/*
* amdgpu_vm_pte_update_flags - figure out flags for PTE updates
*
* Make sure to set the right flags for the PTEs at the desired level.
*/
static void amdgpu_vm_pte_update_flags(struct amdgpu_vm_update_params *params,
struct amdgpu_bo_vm *pt,
unsigned int level,
uint64_t pe, uint64_t addr,
unsigned int count, uint32_t incr,
uint64_t flags)
{
struct amdgpu_device *adev = params->adev;
if (level != AMDGPU_VM_PTB) {
flags |= AMDGPU_PDE_PTE;
amdgpu_gmc_get_vm_pde(adev, level, &addr, &flags);
} else if (adev->asic_type >= CHIP_VEGA10 &&
!(flags & AMDGPU_PTE_VALID) &&
!(flags & AMDGPU_PTE_PRT)) {
/* Workaround for fault priority problem on GMC9 */
flags |= AMDGPU_PTE_EXECUTABLE;
}
/*
* Update no-retry flags to use the no-retry flag combination
* with TF enabled. The AMDGPU_VM_NORETRY_FLAGS flag combination
* does not work when TF is enabled. So, replace them with
* AMDGPU_VM_NORETRY_FLAGS_TF flag combination which works for
* all cases.
*/
if (level == AMDGPU_VM_PTB)
amdgpu_vm_pte_update_noretry_flags(adev, &flags);
/* APUs mapping system memory may need different MTYPEs on different
* NUMA nodes. Only do this for contiguous ranges that can be assumed
* to be on the same NUMA node.
*/
if ((flags & AMDGPU_PTE_SYSTEM) && (adev->flags & AMD_IS_APU) &&
adev->gmc.gmc_funcs->override_vm_pte_flags &&
num_possible_nodes() > 1 && !params->pages_addr && params->allow_override)
amdgpu_gmc_override_vm_pte_flags(adev, params->vm, addr, &flags);
params->vm->update_funcs->update(params, pt, pe, addr, count, incr,
flags);
}
/**
* amdgpu_vm_pte_fragment - get fragment for PTEs
*
* @params: see amdgpu_vm_update_params definition
* @start: first PTE to handle
* @end: last PTE to handle
* @flags: hw mapping flags
* @frag: resulting fragment size
* @frag_end: end of this fragment
*
* Returns the first possible fragment for the start and end address.
*/
static void amdgpu_vm_pte_fragment(struct amdgpu_vm_update_params *params,
uint64_t start, uint64_t end, uint64_t flags,
unsigned int *frag, uint64_t *frag_end)
{
/**
* The MC L1 TLB supports variable sized pages, based on a fragment
* field in the PTE. When this field is set to a non-zero value, page
* granularity is increased from 4KB to (1 << (12 + frag)). The PTE
* flags are considered valid for all PTEs within the fragment range
* and corresponding mappings are assumed to be physically contiguous.
*
* The L1 TLB can store a single PTE for the whole fragment,
* significantly increasing the space available for translation
* caching. This leads to large improvements in throughput when the
* TLB is under pressure.
*
* The L2 TLB distributes small and large fragments into two
* asymmetric partitions. The large fragment cache is significantly
* larger. Thus, we try to use large fragments wherever possible.
* Userspace can support this by aligning virtual base address and
* allocation size to the fragment size.
*
* Starting with Vega10 the fragment size only controls the L1. The L2
* is now directly feed with small/huge/giant pages from the walker.
*/
unsigned int max_frag;
if (params->adev->asic_type < CHIP_VEGA10)
max_frag = params->adev->vm_manager.fragment_size;
else
max_frag = 31;
/* system pages are non continuously */
if (params->pages_addr) {
*frag = 0;
*frag_end = end;
return;
}
/* This intentionally wraps around if no bit is set */
*frag = min_t(unsigned int, ffs(start) - 1, fls64(end - start) - 1);
if (*frag >= max_frag) {
*frag = max_frag;
*frag_end = end & ~((1ULL << max_frag) - 1);
} else {
*frag_end = start + (1 << *frag);
}
}
/**
* amdgpu_vm_ptes_update - make sure that page tables are valid
*
* @params: see amdgpu_vm_update_params definition
* @start: start of GPU address range
* @end: end of GPU address range
* @dst: destination address to map to, the next dst inside the function
* @flags: mapping flags
*
* Update the page tables in the range @start - @end.
*
* Returns:
* 0 for success, -EINVAL for failure.
*/
int amdgpu_vm_ptes_update(struct amdgpu_vm_update_params *params,
uint64_t start, uint64_t end,
uint64_t dst, uint64_t flags)
{
struct amdgpu_device *adev = params->adev;
struct amdgpu_vm_pt_cursor cursor;
uint64_t frag_start = start, frag_end;
unsigned int frag;
int r;
/* figure out the initial fragment */
amdgpu_vm_pte_fragment(params, frag_start, end, flags, &frag,
&frag_end);
/* walk over the address space and update the PTs */
amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
while (cursor.pfn < end) {
unsigned int shift, parent_shift, mask;
uint64_t incr, entry_end, pe_start;
struct amdgpu_bo *pt;
if (!params->unlocked) {
/* make sure that the page tables covering the
* address range are actually allocated
*/
r = amdgpu_vm_pt_alloc(params->adev, params->vm,
&cursor, params->immediate);
if (r)
return r;
}
shift = amdgpu_vm_pt_level_shift(adev, cursor.level);
parent_shift = amdgpu_vm_pt_level_shift(adev, cursor.level - 1);
if (params->unlocked) {
/* Unlocked updates are only allowed on the leaves */
if (amdgpu_vm_pt_descendant(adev, &cursor))
continue;
} else if (adev->asic_type < CHIP_VEGA10 &&
(flags & AMDGPU_PTE_VALID)) {
/* No huge page support before GMC v9 */
if (cursor.level != AMDGPU_VM_PTB) {
if (!amdgpu_vm_pt_descendant(adev, &cursor))
return -ENOENT;
continue;
}
} else if (frag < shift) {
/* We can't use this level when the fragment size is
* smaller than the address shift. Go to the next
* child entry and try again.
*/
if (amdgpu_vm_pt_descendant(adev, &cursor))
continue;
} else if (frag >= parent_shift) {
/* If the fragment size is even larger than the parent
* shift we should go up one level and check it again.
*/
if (!amdgpu_vm_pt_ancestor(&cursor))
return -EINVAL;
continue;
}
pt = cursor.entry->bo;
if (!pt) {
/* We need all PDs and PTs for mapping something, */
if (flags & AMDGPU_PTE_VALID)
return -ENOENT;
/* but unmapping something can happen at a higher
* level.
*/
if (!amdgpu_vm_pt_ancestor(&cursor))
return -EINVAL;
pt = cursor.entry->bo;
shift = parent_shift;
frag_end = max(frag_end, ALIGN(frag_start + 1,
1ULL << shift));
}
/* Looks good so far, calculate parameters for the update */
incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
mask = amdgpu_vm_pt_entries_mask(adev, cursor.level);
pe_start = ((cursor.pfn >> shift) & mask) * 8;
entry_end = ((uint64_t)mask + 1) << shift;
entry_end += cursor.pfn & ~(entry_end - 1);
entry_end = min(entry_end, end);
do {
struct amdgpu_vm *vm = params->vm;
uint64_t upd_end = min(entry_end, frag_end);
unsigned int nptes = (upd_end - frag_start) >> shift;
uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag);
/* This can happen when we set higher level PDs to
* silent to stop fault floods.
*/
nptes = max(nptes, 1u);
trace_amdgpu_vm_update_ptes(params, frag_start, upd_end,
min(nptes, 32u), dst, incr,
upd_flags,
vm->task_info ? vm->task_info->tgid : 0,
vm->immediate.fence_context);
amdgpu_vm_pte_update_flags(params, to_amdgpu_bo_vm(pt),
cursor.level, pe_start, dst,
nptes, incr, upd_flags);
pe_start += nptes * 8;
dst += nptes * incr;
frag_start = upd_end;
if (frag_start >= frag_end) {
/* figure out the next fragment */
amdgpu_vm_pte_fragment(params, frag_start, end,
flags, &frag, &frag_end);
if (frag < shift)
break;
}
} while (frag_start < entry_end);
if (amdgpu_vm_pt_descendant(adev, &cursor)) {
/* Free all child entries.
* Update the tables with the flags and addresses and free up subsequent
* tables in the case of huge pages or freed up areas.
* This is the maximum you can free, because all other page tables are not
* completely covered by the range and so potentially still in use.
*/
while (cursor.pfn < frag_start) {
/* Make sure previous mapping is freed */
if (cursor.entry->bo) {
params->table_freed = true;
amdgpu_vm_pt_free_dfs(adev, params->vm,
&cursor,
params->unlocked);
}
amdgpu_vm_pt_next(adev, &cursor);
}
} else if (frag >= shift) {
/* or just move on to the next on the same level. */
amdgpu_vm_pt_next(adev, &cursor);
}
}
return 0;
}
/**
* amdgpu_vm_pt_map_tables - have bo of root PD cpu accessible
* @adev: amdgpu device structure
* @vm: amdgpu vm structure
*
* make root page directory and everything below it cpu accessible.
*/
int amdgpu_vm_pt_map_tables(struct amdgpu_device *adev, struct amdgpu_vm *vm)
{
struct amdgpu_vm_pt_cursor cursor;
struct amdgpu_vm_bo_base *entry;
for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry) {
struct amdgpu_bo_vm *bo;
int r;
if (entry->bo) {
bo = to_amdgpu_bo_vm(entry->bo);
r = vm->update_funcs->map_table(bo);
if (r)
return r;
}
}
return 0;
}