blob: 3dfc28840a7d343b865dd3f6fb93947c15cd5e7d [file] [log] [blame]
/*
* Copyright 2007-8 Advanced Micro Devices, Inc.
* Copyright 2008 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Dave Airlie
* Alex Deucher
*/
#include <drm/amdgpu_drm.h>
#include <drm/drm_fixed.h>
#include "amdgpu.h"
#include "atom.h"
#include "atom-bits.h"
#include "atombios_encoders.h"
#include "atombios_crtc.h"
#include "amdgpu_atombios.h"
#include "amdgpu_pll.h"
#include "amdgpu_connectors.h"
void amdgpu_atombios_crtc_overscan_setup(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct drm_device *dev = crtc->dev;
struct amdgpu_device *adev = drm_to_adev(dev);
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
SET_CRTC_OVERSCAN_PS_ALLOCATION args;
int index = GetIndexIntoMasterTable(COMMAND, SetCRTC_OverScan);
int a1, a2;
memset(&args, 0, sizeof(args));
args.ucCRTC = amdgpu_crtc->crtc_id;
switch (amdgpu_crtc->rmx_type) {
case RMX_CENTER:
args.usOverscanTop = cpu_to_le16((adjusted_mode->crtc_vdisplay - mode->crtc_vdisplay) / 2);
args.usOverscanBottom = cpu_to_le16((adjusted_mode->crtc_vdisplay - mode->crtc_vdisplay) / 2);
args.usOverscanLeft = cpu_to_le16((adjusted_mode->crtc_hdisplay - mode->crtc_hdisplay) / 2);
args.usOverscanRight = cpu_to_le16((adjusted_mode->crtc_hdisplay - mode->crtc_hdisplay) / 2);
break;
case RMX_ASPECT:
a1 = mode->crtc_vdisplay * adjusted_mode->crtc_hdisplay;
a2 = adjusted_mode->crtc_vdisplay * mode->crtc_hdisplay;
if (a1 > a2) {
args.usOverscanLeft = cpu_to_le16((adjusted_mode->crtc_hdisplay - (a2 / mode->crtc_vdisplay)) / 2);
args.usOverscanRight = cpu_to_le16((adjusted_mode->crtc_hdisplay - (a2 / mode->crtc_vdisplay)) / 2);
} else if (a2 > a1) {
args.usOverscanTop = cpu_to_le16((adjusted_mode->crtc_vdisplay - (a1 / mode->crtc_hdisplay)) / 2);
args.usOverscanBottom = cpu_to_le16((adjusted_mode->crtc_vdisplay - (a1 / mode->crtc_hdisplay)) / 2);
}
break;
case RMX_FULL:
default:
args.usOverscanRight = cpu_to_le16(amdgpu_crtc->h_border);
args.usOverscanLeft = cpu_to_le16(amdgpu_crtc->h_border);
args.usOverscanBottom = cpu_to_le16(amdgpu_crtc->v_border);
args.usOverscanTop = cpu_to_le16(amdgpu_crtc->v_border);
break;
}
amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args, sizeof(args));
}
void amdgpu_atombios_crtc_scaler_setup(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct amdgpu_device *adev = drm_to_adev(dev);
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
ENABLE_SCALER_PS_ALLOCATION args;
int index = GetIndexIntoMasterTable(COMMAND, EnableScaler);
memset(&args, 0, sizeof(args));
args.ucScaler = amdgpu_crtc->crtc_id;
switch (amdgpu_crtc->rmx_type) {
case RMX_FULL:
args.ucEnable = ATOM_SCALER_EXPANSION;
break;
case RMX_CENTER:
args.ucEnable = ATOM_SCALER_CENTER;
break;
case RMX_ASPECT:
args.ucEnable = ATOM_SCALER_EXPANSION;
break;
default:
args.ucEnable = ATOM_SCALER_DISABLE;
break;
}
amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args, sizeof(args));
}
void amdgpu_atombios_crtc_lock(struct drm_crtc *crtc, int lock)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct amdgpu_device *adev = drm_to_adev(dev);
int index =
GetIndexIntoMasterTable(COMMAND, UpdateCRTC_DoubleBufferRegisters);
ENABLE_CRTC_PS_ALLOCATION args;
memset(&args, 0, sizeof(args));
args.ucCRTC = amdgpu_crtc->crtc_id;
args.ucEnable = lock;
amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args, sizeof(args));
}
void amdgpu_atombios_crtc_enable(struct drm_crtc *crtc, int state)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct amdgpu_device *adev = drm_to_adev(dev);
int index = GetIndexIntoMasterTable(COMMAND, EnableCRTC);
ENABLE_CRTC_PS_ALLOCATION args;
memset(&args, 0, sizeof(args));
args.ucCRTC = amdgpu_crtc->crtc_id;
args.ucEnable = state;
amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args, sizeof(args));
}
void amdgpu_atombios_crtc_blank(struct drm_crtc *crtc, int state)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct amdgpu_device *adev = drm_to_adev(dev);
int index = GetIndexIntoMasterTable(COMMAND, BlankCRTC);
BLANK_CRTC_PS_ALLOCATION args;
memset(&args, 0, sizeof(args));
args.ucCRTC = amdgpu_crtc->crtc_id;
args.ucBlanking = state;
amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args, sizeof(args));
}
void amdgpu_atombios_crtc_powergate(struct drm_crtc *crtc, int state)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct amdgpu_device *adev = drm_to_adev(dev);
int index = GetIndexIntoMasterTable(COMMAND, EnableDispPowerGating);
ENABLE_DISP_POWER_GATING_PS_ALLOCATION args;
memset(&args, 0, sizeof(args));
args.ucDispPipeId = amdgpu_crtc->crtc_id;
args.ucEnable = state;
amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args, sizeof(args));
}
void amdgpu_atombios_crtc_powergate_init(struct amdgpu_device *adev)
{
int index = GetIndexIntoMasterTable(COMMAND, EnableDispPowerGating);
ENABLE_DISP_POWER_GATING_PS_ALLOCATION args;
memset(&args, 0, sizeof(args));
args.ucEnable = ATOM_INIT;
amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args, sizeof(args));
}
void amdgpu_atombios_crtc_set_dtd_timing(struct drm_crtc *crtc,
struct drm_display_mode *mode)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct amdgpu_device *adev = drm_to_adev(dev);
SET_CRTC_USING_DTD_TIMING_PARAMETERS args;
int index = GetIndexIntoMasterTable(COMMAND, SetCRTC_UsingDTDTiming);
u16 misc = 0;
memset(&args, 0, sizeof(args));
args.usH_Size = cpu_to_le16(mode->crtc_hdisplay - (amdgpu_crtc->h_border * 2));
args.usH_Blanking_Time =
cpu_to_le16(mode->crtc_hblank_end - mode->crtc_hdisplay + (amdgpu_crtc->h_border * 2));
args.usV_Size = cpu_to_le16(mode->crtc_vdisplay - (amdgpu_crtc->v_border * 2));
args.usV_Blanking_Time =
cpu_to_le16(mode->crtc_vblank_end - mode->crtc_vdisplay + (amdgpu_crtc->v_border * 2));
args.usH_SyncOffset =
cpu_to_le16(mode->crtc_hsync_start - mode->crtc_hdisplay + amdgpu_crtc->h_border);
args.usH_SyncWidth =
cpu_to_le16(mode->crtc_hsync_end - mode->crtc_hsync_start);
args.usV_SyncOffset =
cpu_to_le16(mode->crtc_vsync_start - mode->crtc_vdisplay + amdgpu_crtc->v_border);
args.usV_SyncWidth =
cpu_to_le16(mode->crtc_vsync_end - mode->crtc_vsync_start);
args.ucH_Border = amdgpu_crtc->h_border;
args.ucV_Border = amdgpu_crtc->v_border;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
misc |= ATOM_VSYNC_POLARITY;
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
misc |= ATOM_HSYNC_POLARITY;
if (mode->flags & DRM_MODE_FLAG_CSYNC)
misc |= ATOM_COMPOSITESYNC;
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
misc |= ATOM_INTERLACE;
if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
misc |= ATOM_DOUBLE_CLOCK_MODE;
args.susModeMiscInfo.usAccess = cpu_to_le16(misc);
args.ucCRTC = amdgpu_crtc->crtc_id;
amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args, sizeof(args));
}
union atom_enable_ss {
ENABLE_SPREAD_SPECTRUM_ON_PPLL_PS_ALLOCATION v1;
ENABLE_SPREAD_SPECTRUM_ON_PPLL_V2 v2;
ENABLE_SPREAD_SPECTRUM_ON_PPLL_V3 v3;
};
static void amdgpu_atombios_crtc_program_ss(struct amdgpu_device *adev,
int enable,
int pll_id,
int crtc_id,
struct amdgpu_atom_ss *ss)
{
unsigned i;
int index = GetIndexIntoMasterTable(COMMAND, EnableSpreadSpectrumOnPPLL);
union atom_enable_ss args;
if (enable) {
/* Don't mess with SS if percentage is 0 or external ss.
* SS is already disabled previously, and disabling it
* again can cause display problems if the pll is already
* programmed.
*/
if (ss->percentage == 0)
return;
if (ss->type & ATOM_EXTERNAL_SS_MASK)
return;
} else {
for (i = 0; i < adev->mode_info.num_crtc; i++) {
if (adev->mode_info.crtcs[i] &&
adev->mode_info.crtcs[i]->enabled &&
i != crtc_id &&
pll_id == adev->mode_info.crtcs[i]->pll_id) {
/* one other crtc is using this pll don't turn
* off spread spectrum as it might turn off
* display on active crtc
*/
return;
}
}
}
memset(&args, 0, sizeof(args));
args.v3.usSpreadSpectrumAmountFrac = cpu_to_le16(0);
args.v3.ucSpreadSpectrumType = ss->type & ATOM_SS_CENTRE_SPREAD_MODE_MASK;
switch (pll_id) {
case ATOM_PPLL1:
args.v3.ucSpreadSpectrumType |= ATOM_PPLL_SS_TYPE_V3_P1PLL;
break;
case ATOM_PPLL2:
args.v3.ucSpreadSpectrumType |= ATOM_PPLL_SS_TYPE_V3_P2PLL;
break;
case ATOM_DCPLL:
args.v3.ucSpreadSpectrumType |= ATOM_PPLL_SS_TYPE_V3_DCPLL;
break;
case ATOM_PPLL_INVALID:
return;
}
args.v3.usSpreadSpectrumAmount = cpu_to_le16(ss->amount);
args.v3.usSpreadSpectrumStep = cpu_to_le16(ss->step);
args.v3.ucEnable = enable;
amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args, sizeof(args));
}
union adjust_pixel_clock {
ADJUST_DISPLAY_PLL_PS_ALLOCATION v1;
ADJUST_DISPLAY_PLL_PS_ALLOCATION_V3 v3;
};
static u32 amdgpu_atombios_crtc_adjust_pll(struct drm_crtc *crtc,
struct drm_display_mode *mode)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct amdgpu_device *adev = drm_to_adev(dev);
struct drm_encoder *encoder = amdgpu_crtc->encoder;
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
struct drm_connector *connector = amdgpu_get_connector_for_encoder(encoder);
u32 adjusted_clock = mode->clock;
int encoder_mode = amdgpu_atombios_encoder_get_encoder_mode(encoder);
u32 dp_clock = mode->clock;
u32 clock = mode->clock;
int bpc = amdgpu_crtc->bpc;
bool is_duallink = amdgpu_dig_monitor_is_duallink(encoder, mode->clock);
union adjust_pixel_clock args;
u8 frev, crev;
int index;
amdgpu_crtc->pll_flags = AMDGPU_PLL_USE_FRAC_FB_DIV;
if ((amdgpu_encoder->devices & (ATOM_DEVICE_LCD_SUPPORT | ATOM_DEVICE_DFP_SUPPORT)) ||
(amdgpu_encoder_get_dp_bridge_encoder_id(encoder) != ENCODER_OBJECT_ID_NONE)) {
if (connector) {
struct amdgpu_connector *amdgpu_connector = to_amdgpu_connector(connector);
struct amdgpu_connector_atom_dig *dig_connector =
amdgpu_connector->con_priv;
dp_clock = dig_connector->dp_clock;
}
}
/* use recommended ref_div for ss */
if (amdgpu_encoder->devices & (ATOM_DEVICE_LCD_SUPPORT)) {
if (amdgpu_crtc->ss_enabled) {
if (amdgpu_crtc->ss.refdiv) {
amdgpu_crtc->pll_flags |= AMDGPU_PLL_USE_REF_DIV;
amdgpu_crtc->pll_reference_div = amdgpu_crtc->ss.refdiv;
amdgpu_crtc->pll_flags |= AMDGPU_PLL_USE_FRAC_FB_DIV;
}
}
}
/* DVO wants 2x pixel clock if the DVO chip is in 12 bit mode */
if (amdgpu_encoder->encoder_id == ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DVO1)
adjusted_clock = mode->clock * 2;
if (amdgpu_encoder->active_device & (ATOM_DEVICE_TV_SUPPORT))
amdgpu_crtc->pll_flags |= AMDGPU_PLL_PREFER_CLOSEST_LOWER;
if (amdgpu_encoder->devices & (ATOM_DEVICE_LCD_SUPPORT))
amdgpu_crtc->pll_flags |= AMDGPU_PLL_IS_LCD;
/* adjust pll for deep color modes */
if (encoder_mode == ATOM_ENCODER_MODE_HDMI) {
switch (bpc) {
case 8:
default:
break;
case 10:
clock = (clock * 5) / 4;
break;
case 12:
clock = (clock * 3) / 2;
break;
case 16:
clock = clock * 2;
break;
}
}
/* DCE3+ has an AdjustDisplayPll that will adjust the pixel clock
* accordingly based on the encoder/transmitter to work around
* special hw requirements.
*/
index = GetIndexIntoMasterTable(COMMAND, AdjustDisplayPll);
if (!amdgpu_atom_parse_cmd_header(adev->mode_info.atom_context, index, &frev,
&crev))
return adjusted_clock;
memset(&args, 0, sizeof(args));
switch (frev) {
case 1:
switch (crev) {
case 1:
case 2:
args.v1.usPixelClock = cpu_to_le16(clock / 10);
args.v1.ucTransmitterID = amdgpu_encoder->encoder_id;
args.v1.ucEncodeMode = encoder_mode;
if (amdgpu_crtc->ss_enabled && amdgpu_crtc->ss.percentage)
args.v1.ucConfig |=
ADJUST_DISPLAY_CONFIG_SS_ENABLE;
amdgpu_atom_execute_table(adev->mode_info.atom_context,
index, (uint32_t *)&args, sizeof(args));
adjusted_clock = le16_to_cpu(args.v1.usPixelClock) * 10;
break;
case 3:
args.v3.sInput.usPixelClock = cpu_to_le16(clock / 10);
args.v3.sInput.ucTransmitterID = amdgpu_encoder->encoder_id;
args.v3.sInput.ucEncodeMode = encoder_mode;
args.v3.sInput.ucDispPllConfig = 0;
if (amdgpu_crtc->ss_enabled && amdgpu_crtc->ss.percentage)
args.v3.sInput.ucDispPllConfig |=
DISPPLL_CONFIG_SS_ENABLE;
if (ENCODER_MODE_IS_DP(encoder_mode)) {
args.v3.sInput.ucDispPllConfig |=
DISPPLL_CONFIG_COHERENT_MODE;
/* 16200 or 27000 */
args.v3.sInput.usPixelClock = cpu_to_le16(dp_clock / 10);
} else if (amdgpu_encoder->devices & (ATOM_DEVICE_DFP_SUPPORT)) {
struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv;
if (dig->coherent_mode)
args.v3.sInput.ucDispPllConfig |=
DISPPLL_CONFIG_COHERENT_MODE;
if (is_duallink)
args.v3.sInput.ucDispPllConfig |=
DISPPLL_CONFIG_DUAL_LINK;
}
if (amdgpu_encoder_get_dp_bridge_encoder_id(encoder) !=
ENCODER_OBJECT_ID_NONE)
args.v3.sInput.ucExtTransmitterID =
amdgpu_encoder_get_dp_bridge_encoder_id(encoder);
else
args.v3.sInput.ucExtTransmitterID = 0;
amdgpu_atom_execute_table(adev->mode_info.atom_context,
index, (uint32_t *)&args, sizeof(args));
adjusted_clock = le32_to_cpu(args.v3.sOutput.ulDispPllFreq) * 10;
if (args.v3.sOutput.ucRefDiv) {
amdgpu_crtc->pll_flags |= AMDGPU_PLL_USE_FRAC_FB_DIV;
amdgpu_crtc->pll_flags |= AMDGPU_PLL_USE_REF_DIV;
amdgpu_crtc->pll_reference_div = args.v3.sOutput.ucRefDiv;
}
if (args.v3.sOutput.ucPostDiv) {
amdgpu_crtc->pll_flags |= AMDGPU_PLL_USE_FRAC_FB_DIV;
amdgpu_crtc->pll_flags |= AMDGPU_PLL_USE_POST_DIV;
amdgpu_crtc->pll_post_div = args.v3.sOutput.ucPostDiv;
}
break;
default:
DRM_ERROR("Unknown table version %d %d\n", frev, crev);
return adjusted_clock;
}
break;
default:
DRM_ERROR("Unknown table version %d %d\n", frev, crev);
return adjusted_clock;
}
return adjusted_clock;
}
union set_pixel_clock {
SET_PIXEL_CLOCK_PS_ALLOCATION base;
PIXEL_CLOCK_PARAMETERS v1;
PIXEL_CLOCK_PARAMETERS_V2 v2;
PIXEL_CLOCK_PARAMETERS_V3 v3;
PIXEL_CLOCK_PARAMETERS_V5 v5;
PIXEL_CLOCK_PARAMETERS_V6 v6;
PIXEL_CLOCK_PARAMETERS_V7 v7;
};
/* on DCE5, make sure the voltage is high enough to support the
* required disp clk.
*/
void amdgpu_atombios_crtc_set_disp_eng_pll(struct amdgpu_device *adev,
u32 dispclk)
{
u8 frev, crev;
int index;
union set_pixel_clock args;
memset(&args, 0, sizeof(args));
index = GetIndexIntoMasterTable(COMMAND, SetPixelClock);
if (!amdgpu_atom_parse_cmd_header(adev->mode_info.atom_context, index, &frev,
&crev))
return;
switch (frev) {
case 1:
switch (crev) {
case 5:
/* if the default dcpll clock is specified,
* SetPixelClock provides the dividers
*/
args.v5.ucCRTC = ATOM_CRTC_INVALID;
args.v5.usPixelClock = cpu_to_le16(dispclk);
args.v5.ucPpll = ATOM_DCPLL;
break;
case 6:
/* if the default dcpll clock is specified,
* SetPixelClock provides the dividers
*/
args.v6.ulDispEngClkFreq = cpu_to_le32(dispclk);
if (adev->asic_type == CHIP_TAHITI ||
adev->asic_type == CHIP_PITCAIRN ||
adev->asic_type == CHIP_VERDE ||
adev->asic_type == CHIP_OLAND)
args.v6.ucPpll = ATOM_PPLL0;
else
args.v6.ucPpll = ATOM_EXT_PLL1;
break;
default:
DRM_ERROR("Unknown table version %d %d\n", frev, crev);
return;
}
break;
default:
DRM_ERROR("Unknown table version %d %d\n", frev, crev);
return;
}
amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args, sizeof(args));
}
union set_dce_clock {
SET_DCE_CLOCK_PS_ALLOCATION_V1_1 v1_1;
SET_DCE_CLOCK_PS_ALLOCATION_V2_1 v2_1;
};
u32 amdgpu_atombios_crtc_set_dce_clock(struct amdgpu_device *adev,
u32 freq, u8 clk_type, u8 clk_src)
{
u8 frev, crev;
int index;
union set_dce_clock args;
u32 ret_freq = 0;
memset(&args, 0, sizeof(args));
index = GetIndexIntoMasterTable(COMMAND, SetDCEClock);
if (!amdgpu_atom_parse_cmd_header(adev->mode_info.atom_context, index, &frev,
&crev))
return 0;
switch (frev) {
case 2:
switch (crev) {
case 1:
args.v2_1.asParam.ulDCEClkFreq = cpu_to_le32(freq); /* 10kHz units */
args.v2_1.asParam.ucDCEClkType = clk_type;
args.v2_1.asParam.ucDCEClkSrc = clk_src;
amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args, sizeof(args));
ret_freq = le32_to_cpu(args.v2_1.asParam.ulDCEClkFreq) * 10;
break;
default:
DRM_ERROR("Unknown table version %d %d\n", frev, crev);
return 0;
}
break;
default:
DRM_ERROR("Unknown table version %d %d\n", frev, crev);
return 0;
}
return ret_freq;
}
static bool is_pixel_clock_source_from_pll(u32 encoder_mode, int pll_id)
{
if (ENCODER_MODE_IS_DP(encoder_mode)) {
if (pll_id < ATOM_EXT_PLL1)
return true;
else
return false;
} else {
return true;
}
}
void amdgpu_atombios_crtc_program_pll(struct drm_crtc *crtc,
u32 crtc_id,
int pll_id,
u32 encoder_mode,
u32 encoder_id,
u32 clock,
u32 ref_div,
u32 fb_div,
u32 frac_fb_div,
u32 post_div,
int bpc,
bool ss_enabled,
struct amdgpu_atom_ss *ss)
{
struct drm_device *dev = crtc->dev;
struct amdgpu_device *adev = drm_to_adev(dev);
u8 frev, crev;
int index = GetIndexIntoMasterTable(COMMAND, SetPixelClock);
union set_pixel_clock args;
memset(&args, 0, sizeof(args));
if (!amdgpu_atom_parse_cmd_header(adev->mode_info.atom_context, index, &frev,
&crev))
return;
switch (frev) {
case 1:
switch (crev) {
case 1:
if (clock == ATOM_DISABLE)
return;
args.v1.usPixelClock = cpu_to_le16(clock / 10);
args.v1.usRefDiv = cpu_to_le16(ref_div);
args.v1.usFbDiv = cpu_to_le16(fb_div);
args.v1.ucFracFbDiv = frac_fb_div;
args.v1.ucPostDiv = post_div;
args.v1.ucPpll = pll_id;
args.v1.ucCRTC = crtc_id;
args.v1.ucRefDivSrc = 1;
break;
case 2:
args.v2.usPixelClock = cpu_to_le16(clock / 10);
args.v2.usRefDiv = cpu_to_le16(ref_div);
args.v2.usFbDiv = cpu_to_le16(fb_div);
args.v2.ucFracFbDiv = frac_fb_div;
args.v2.ucPostDiv = post_div;
args.v2.ucPpll = pll_id;
args.v2.ucCRTC = crtc_id;
args.v2.ucRefDivSrc = 1;
break;
case 3:
args.v3.usPixelClock = cpu_to_le16(clock / 10);
args.v3.usRefDiv = cpu_to_le16(ref_div);
args.v3.usFbDiv = cpu_to_le16(fb_div);
args.v3.ucFracFbDiv = frac_fb_div;
args.v3.ucPostDiv = post_div;
args.v3.ucPpll = pll_id;
if (crtc_id == ATOM_CRTC2)
args.v3.ucMiscInfo = PIXEL_CLOCK_MISC_CRTC_SEL_CRTC2;
else
args.v3.ucMiscInfo = PIXEL_CLOCK_MISC_CRTC_SEL_CRTC1;
if (ss_enabled && (ss->type & ATOM_EXTERNAL_SS_MASK))
args.v3.ucMiscInfo |= PIXEL_CLOCK_MISC_REF_DIV_SRC;
args.v3.ucTransmitterId = encoder_id;
args.v3.ucEncoderMode = encoder_mode;
break;
case 5:
args.v5.ucCRTC = crtc_id;
args.v5.usPixelClock = cpu_to_le16(clock / 10);
args.v5.ucRefDiv = ref_div;
args.v5.usFbDiv = cpu_to_le16(fb_div);
args.v5.ulFbDivDecFrac = cpu_to_le32(frac_fb_div * 100000);
args.v5.ucPostDiv = post_div;
args.v5.ucMiscInfo = 0; /* HDMI depth, etc. */
if ((ss_enabled && (ss->type & ATOM_EXTERNAL_SS_MASK)) &&
(pll_id < ATOM_EXT_PLL1))
args.v5.ucMiscInfo |= PIXEL_CLOCK_V5_MISC_REF_DIV_SRC;
if (encoder_mode == ATOM_ENCODER_MODE_HDMI) {
switch (bpc) {
case 8:
default:
args.v5.ucMiscInfo |= PIXEL_CLOCK_V5_MISC_HDMI_24BPP;
break;
case 10:
/* yes this is correct, the atom define is wrong */
args.v5.ucMiscInfo |= PIXEL_CLOCK_V5_MISC_HDMI_32BPP;
break;
case 12:
/* yes this is correct, the atom define is wrong */
args.v5.ucMiscInfo |= PIXEL_CLOCK_V5_MISC_HDMI_30BPP;
break;
}
}
args.v5.ucTransmitterID = encoder_id;
args.v5.ucEncoderMode = encoder_mode;
args.v5.ucPpll = pll_id;
break;
case 6:
args.v6.ulDispEngClkFreq = cpu_to_le32(crtc_id << 24 | clock / 10);
args.v6.ucRefDiv = ref_div;
args.v6.usFbDiv = cpu_to_le16(fb_div);
args.v6.ulFbDivDecFrac = cpu_to_le32(frac_fb_div * 100000);
args.v6.ucPostDiv = post_div;
args.v6.ucMiscInfo = 0; /* HDMI depth, etc. */
if ((ss_enabled && (ss->type & ATOM_EXTERNAL_SS_MASK)) &&
(pll_id < ATOM_EXT_PLL1) &&
!is_pixel_clock_source_from_pll(encoder_mode, pll_id))
args.v6.ucMiscInfo |= PIXEL_CLOCK_V6_MISC_REF_DIV_SRC;
if (encoder_mode == ATOM_ENCODER_MODE_HDMI) {
switch (bpc) {
case 8:
default:
args.v6.ucMiscInfo |= PIXEL_CLOCK_V6_MISC_HDMI_24BPP;
break;
case 10:
args.v6.ucMiscInfo |= PIXEL_CLOCK_V6_MISC_HDMI_30BPP_V6;
break;
case 12:
args.v6.ucMiscInfo |= PIXEL_CLOCK_V6_MISC_HDMI_36BPP_V6;
break;
case 16:
args.v6.ucMiscInfo |= PIXEL_CLOCK_V6_MISC_HDMI_48BPP;
break;
}
}
args.v6.ucTransmitterID = encoder_id;
args.v6.ucEncoderMode = encoder_mode;
args.v6.ucPpll = pll_id;
break;
case 7:
args.v7.ulPixelClock = cpu_to_le32(clock * 10); /* 100 hz units */
args.v7.ucMiscInfo = 0;
if ((encoder_mode == ATOM_ENCODER_MODE_DVI) &&
(clock > 165000))
args.v7.ucMiscInfo |= PIXEL_CLOCK_V7_MISC_DVI_DUALLINK_EN;
args.v7.ucCRTC = crtc_id;
if (encoder_mode == ATOM_ENCODER_MODE_HDMI) {
switch (bpc) {
case 8:
default:
args.v7.ucDeepColorRatio = PIXEL_CLOCK_V7_DEEPCOLOR_RATIO_DIS;
break;
case 10:
args.v7.ucDeepColorRatio = PIXEL_CLOCK_V7_DEEPCOLOR_RATIO_5_4;
break;
case 12:
args.v7.ucDeepColorRatio = PIXEL_CLOCK_V7_DEEPCOLOR_RATIO_3_2;
break;
case 16:
args.v7.ucDeepColorRatio = PIXEL_CLOCK_V7_DEEPCOLOR_RATIO_2_1;
break;
}
}
args.v7.ucTransmitterID = encoder_id;
args.v7.ucEncoderMode = encoder_mode;
args.v7.ucPpll = pll_id;
break;
default:
DRM_ERROR("Unknown table version %d %d\n", frev, crev);
return;
}
break;
default:
DRM_ERROR("Unknown table version %d %d\n", frev, crev);
return;
}
amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args, sizeof(args));
}
int amdgpu_atombios_crtc_prepare_pll(struct drm_crtc *crtc,
struct drm_display_mode *mode)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct amdgpu_device *adev = drm_to_adev(dev);
struct amdgpu_encoder *amdgpu_encoder =
to_amdgpu_encoder(amdgpu_crtc->encoder);
int encoder_mode = amdgpu_atombios_encoder_get_encoder_mode(amdgpu_crtc->encoder);
amdgpu_crtc->bpc = 8;
amdgpu_crtc->ss_enabled = false;
if ((amdgpu_encoder->active_device & (ATOM_DEVICE_LCD_SUPPORT | ATOM_DEVICE_DFP_SUPPORT)) ||
(amdgpu_encoder_get_dp_bridge_encoder_id(amdgpu_crtc->encoder) != ENCODER_OBJECT_ID_NONE)) {
struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv;
struct drm_connector *connector =
amdgpu_get_connector_for_encoder(amdgpu_crtc->encoder);
struct amdgpu_connector *amdgpu_connector =
to_amdgpu_connector(connector);
struct amdgpu_connector_atom_dig *dig_connector =
amdgpu_connector->con_priv;
int dp_clock;
/* Assign mode clock for hdmi deep color max clock limit check */
amdgpu_connector->pixelclock_for_modeset = mode->clock;
amdgpu_crtc->bpc = amdgpu_connector_get_monitor_bpc(connector);
switch (encoder_mode) {
case ATOM_ENCODER_MODE_DP_MST:
case ATOM_ENCODER_MODE_DP:
/* DP/eDP */
dp_clock = dig_connector->dp_clock / 10;
amdgpu_crtc->ss_enabled =
amdgpu_atombios_get_asic_ss_info(adev, &amdgpu_crtc->ss,
ASIC_INTERNAL_SS_ON_DP,
dp_clock);
break;
case ATOM_ENCODER_MODE_LVDS:
amdgpu_crtc->ss_enabled =
amdgpu_atombios_get_asic_ss_info(adev,
&amdgpu_crtc->ss,
dig->lcd_ss_id,
mode->clock / 10);
break;
case ATOM_ENCODER_MODE_DVI:
amdgpu_crtc->ss_enabled =
amdgpu_atombios_get_asic_ss_info(adev,
&amdgpu_crtc->ss,
ASIC_INTERNAL_SS_ON_TMDS,
mode->clock / 10);
break;
case ATOM_ENCODER_MODE_HDMI:
amdgpu_crtc->ss_enabled =
amdgpu_atombios_get_asic_ss_info(adev,
&amdgpu_crtc->ss,
ASIC_INTERNAL_SS_ON_HDMI,
mode->clock / 10);
break;
default:
break;
}
}
/* adjust pixel clock as needed */
amdgpu_crtc->adjusted_clock = amdgpu_atombios_crtc_adjust_pll(crtc, mode);
return 0;
}
void amdgpu_atombios_crtc_set_pll(struct drm_crtc *crtc, struct drm_display_mode *mode)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct amdgpu_device *adev = drm_to_adev(dev);
struct amdgpu_encoder *amdgpu_encoder =
to_amdgpu_encoder(amdgpu_crtc->encoder);
u32 pll_clock = mode->clock;
u32 clock = mode->clock;
u32 ref_div = 0, fb_div = 0, frac_fb_div = 0, post_div = 0;
struct amdgpu_pll *pll;
int encoder_mode = amdgpu_atombios_encoder_get_encoder_mode(amdgpu_crtc->encoder);
/* pass the actual clock to amdgpu_atombios_crtc_program_pll for HDMI */
if ((encoder_mode == ATOM_ENCODER_MODE_HDMI) &&
(amdgpu_crtc->bpc > 8))
clock = amdgpu_crtc->adjusted_clock;
switch (amdgpu_crtc->pll_id) {
case ATOM_PPLL1:
pll = &adev->clock.ppll[0];
break;
case ATOM_PPLL2:
pll = &adev->clock.ppll[1];
break;
case ATOM_PPLL0:
case ATOM_PPLL_INVALID:
default:
pll = &adev->clock.ppll[2];
break;
}
/* update pll params */
pll->flags = amdgpu_crtc->pll_flags;
pll->reference_div = amdgpu_crtc->pll_reference_div;
pll->post_div = amdgpu_crtc->pll_post_div;
amdgpu_pll_compute(adev, pll, amdgpu_crtc->adjusted_clock, &pll_clock,
&fb_div, &frac_fb_div, &ref_div, &post_div);
amdgpu_atombios_crtc_program_ss(adev, ATOM_DISABLE, amdgpu_crtc->pll_id,
amdgpu_crtc->crtc_id, &amdgpu_crtc->ss);
amdgpu_atombios_crtc_program_pll(crtc, amdgpu_crtc->crtc_id, amdgpu_crtc->pll_id,
encoder_mode, amdgpu_encoder->encoder_id, clock,
ref_div, fb_div, frac_fb_div, post_div,
amdgpu_crtc->bpc, amdgpu_crtc->ss_enabled, &amdgpu_crtc->ss);
if (amdgpu_crtc->ss_enabled) {
/* calculate ss amount and step size */
u32 step_size;
u32 amount = (((fb_div * 10) + frac_fb_div) *
(u32)amdgpu_crtc->ss.percentage) /
(100 * (u32)amdgpu_crtc->ss.percentage_divider);
amdgpu_crtc->ss.amount = (amount / 10) & ATOM_PPLL_SS_AMOUNT_V2_FBDIV_MASK;
amdgpu_crtc->ss.amount |= ((amount - (amount / 10)) << ATOM_PPLL_SS_AMOUNT_V2_NFRAC_SHIFT) &
ATOM_PPLL_SS_AMOUNT_V2_NFRAC_MASK;
if (amdgpu_crtc->ss.type & ATOM_PPLL_SS_TYPE_V2_CENTRE_SPREAD)
step_size = (4 * amount * ref_div * ((u32)amdgpu_crtc->ss.rate * 2048)) /
(125 * 25 * pll->reference_freq / 100);
else
step_size = (2 * amount * ref_div * ((u32)amdgpu_crtc->ss.rate * 2048)) /
(125 * 25 * pll->reference_freq / 100);
amdgpu_crtc->ss.step = step_size;
amdgpu_atombios_crtc_program_ss(adev, ATOM_ENABLE, amdgpu_crtc->pll_id,
amdgpu_crtc->crtc_id, &amdgpu_crtc->ss);
}
}