| /* |
| * Copyright 2020 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| */ |
| |
| #include <linux/delay.h> |
| #include <linux/firmware.h> |
| #include <linux/module.h> |
| #include <linux/pci.h> |
| |
| #include "amdgpu.h" |
| #include "amdgpu_ucode.h" |
| #include "amdgpu_trace.h" |
| |
| #include "gc/gc_11_0_0_offset.h" |
| #include "gc/gc_11_0_0_sh_mask.h" |
| #include "gc/gc_11_0_0_default.h" |
| #include "hdp/hdp_6_0_0_offset.h" |
| #include "ivsrcid/gfx/irqsrcs_gfx_11_0_0.h" |
| |
| #include "soc15_common.h" |
| #include "soc15.h" |
| #include "sdma_v6_0_0_pkt_open.h" |
| #include "nbio_v4_3.h" |
| #include "sdma_common.h" |
| #include "sdma_v6_0.h" |
| #include "v11_structs.h" |
| |
| MODULE_FIRMWARE("amdgpu/sdma_6_0_0.bin"); |
| MODULE_FIRMWARE("amdgpu/sdma_6_0_1.bin"); |
| MODULE_FIRMWARE("amdgpu/sdma_6_0_2.bin"); |
| MODULE_FIRMWARE("amdgpu/sdma_6_0_3.bin"); |
| MODULE_FIRMWARE("amdgpu/sdma_6_1_0.bin"); |
| MODULE_FIRMWARE("amdgpu/sdma_6_1_1.bin"); |
| |
| #define SDMA1_REG_OFFSET 0x600 |
| #define SDMA0_HYP_DEC_REG_START 0x5880 |
| #define SDMA0_HYP_DEC_REG_END 0x589a |
| #define SDMA1_HYP_DEC_REG_OFFSET 0x20 |
| |
| static void sdma_v6_0_set_ring_funcs(struct amdgpu_device *adev); |
| static void sdma_v6_0_set_buffer_funcs(struct amdgpu_device *adev); |
| static void sdma_v6_0_set_vm_pte_funcs(struct amdgpu_device *adev); |
| static void sdma_v6_0_set_irq_funcs(struct amdgpu_device *adev); |
| static int sdma_v6_0_start(struct amdgpu_device *adev); |
| |
| static u32 sdma_v6_0_get_reg_offset(struct amdgpu_device *adev, u32 instance, u32 internal_offset) |
| { |
| u32 base; |
| |
| if (internal_offset >= SDMA0_HYP_DEC_REG_START && |
| internal_offset <= SDMA0_HYP_DEC_REG_END) { |
| base = adev->reg_offset[GC_HWIP][0][1]; |
| if (instance != 0) |
| internal_offset += SDMA1_HYP_DEC_REG_OFFSET * instance; |
| } else { |
| base = adev->reg_offset[GC_HWIP][0][0]; |
| if (instance == 1) |
| internal_offset += SDMA1_REG_OFFSET; |
| } |
| |
| return base + internal_offset; |
| } |
| |
| static unsigned sdma_v6_0_ring_init_cond_exec(struct amdgpu_ring *ring, |
| uint64_t addr) |
| { |
| unsigned ret; |
| |
| amdgpu_ring_write(ring, SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_COND_EXE)); |
| amdgpu_ring_write(ring, lower_32_bits(addr)); |
| amdgpu_ring_write(ring, upper_32_bits(addr)); |
| amdgpu_ring_write(ring, 1); |
| /* this is the offset we need patch later */ |
| ret = ring->wptr & ring->buf_mask; |
| /* insert dummy here and patch it later */ |
| amdgpu_ring_write(ring, 0); |
| |
| return ret; |
| } |
| |
| /** |
| * sdma_v6_0_ring_get_rptr - get the current read pointer |
| * |
| * @ring: amdgpu ring pointer |
| * |
| * Get the current rptr from the hardware. |
| */ |
| static uint64_t sdma_v6_0_ring_get_rptr(struct amdgpu_ring *ring) |
| { |
| u64 *rptr; |
| |
| /* XXX check if swapping is necessary on BE */ |
| rptr = (u64 *)ring->rptr_cpu_addr; |
| |
| DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr); |
| return ((*rptr) >> 2); |
| } |
| |
| /** |
| * sdma_v6_0_ring_get_wptr - get the current write pointer |
| * |
| * @ring: amdgpu ring pointer |
| * |
| * Get the current wptr from the hardware. |
| */ |
| static uint64_t sdma_v6_0_ring_get_wptr(struct amdgpu_ring *ring) |
| { |
| u64 wptr = 0; |
| |
| if (ring->use_doorbell) { |
| /* XXX check if swapping is necessary on BE */ |
| wptr = READ_ONCE(*((u64 *)ring->wptr_cpu_addr)); |
| DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr); |
| } |
| |
| return wptr >> 2; |
| } |
| |
| /** |
| * sdma_v6_0_ring_set_wptr - commit the write pointer |
| * |
| * @ring: amdgpu ring pointer |
| * |
| * Write the wptr back to the hardware. |
| */ |
| static void sdma_v6_0_ring_set_wptr(struct amdgpu_ring *ring) |
| { |
| struct amdgpu_device *adev = ring->adev; |
| |
| if (ring->use_doorbell) { |
| DRM_DEBUG("Using doorbell -- " |
| "wptr_offs == 0x%08x " |
| "lower_32_bits(ring->wptr) << 2 == 0x%08x " |
| "upper_32_bits(ring->wptr) << 2 == 0x%08x\n", |
| ring->wptr_offs, |
| lower_32_bits(ring->wptr << 2), |
| upper_32_bits(ring->wptr << 2)); |
| /* XXX check if swapping is necessary on BE */ |
| atomic64_set((atomic64_t *)ring->wptr_cpu_addr, |
| ring->wptr << 2); |
| DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n", |
| ring->doorbell_index, ring->wptr << 2); |
| WDOORBELL64(ring->doorbell_index, ring->wptr << 2); |
| } else { |
| DRM_DEBUG("Not using doorbell -- " |
| "regSDMA%i_GFX_RB_WPTR == 0x%08x " |
| "regSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n", |
| ring->me, |
| lower_32_bits(ring->wptr << 2), |
| ring->me, |
| upper_32_bits(ring->wptr << 2)); |
| WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, |
| ring->me, regSDMA0_QUEUE0_RB_WPTR), |
| lower_32_bits(ring->wptr << 2)); |
| WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, |
| ring->me, regSDMA0_QUEUE0_RB_WPTR_HI), |
| upper_32_bits(ring->wptr << 2)); |
| } |
| } |
| |
| static void sdma_v6_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count) |
| { |
| struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); |
| int i; |
| |
| for (i = 0; i < count; i++) |
| if (sdma && sdma->burst_nop && (i == 0)) |
| amdgpu_ring_write(ring, ring->funcs->nop | |
| SDMA_PKT_NOP_HEADER_COUNT(count - 1)); |
| else |
| amdgpu_ring_write(ring, ring->funcs->nop); |
| } |
| |
| /* |
| * sdma_v6_0_ring_emit_ib - Schedule an IB on the DMA engine |
| * |
| * @ring: amdgpu ring pointer |
| * @ib: IB object to schedule |
| * @flags: unused |
| * @job: job to retrieve vmid from |
| * |
| * Schedule an IB in the DMA ring. |
| */ |
| static void sdma_v6_0_ring_emit_ib(struct amdgpu_ring *ring, |
| struct amdgpu_job *job, |
| struct amdgpu_ib *ib, |
| uint32_t flags) |
| { |
| unsigned vmid = AMDGPU_JOB_GET_VMID(job); |
| uint64_t csa_mc_addr = amdgpu_sdma_get_csa_mc_addr(ring, vmid); |
| |
| /* An IB packet must end on a 8 DW boundary--the next dword |
| * must be on a 8-dword boundary. Our IB packet below is 6 |
| * dwords long, thus add x number of NOPs, such that, in |
| * modular arithmetic, |
| * wptr + 6 + x = 8k, k >= 0, which in C is, |
| * (wptr + 6 + x) % 8 = 0. |
| * The expression below, is a solution of x. |
| */ |
| sdma_v6_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7); |
| |
| amdgpu_ring_write(ring, SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_INDIRECT) | |
| SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf)); |
| /* base must be 32 byte aligned */ |
| amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0); |
| amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr)); |
| amdgpu_ring_write(ring, ib->length_dw); |
| amdgpu_ring_write(ring, lower_32_bits(csa_mc_addr)); |
| amdgpu_ring_write(ring, upper_32_bits(csa_mc_addr)); |
| } |
| |
| /** |
| * sdma_v6_0_ring_emit_mem_sync - flush the IB by graphics cache rinse |
| * |
| * @ring: amdgpu ring pointer |
| * |
| * flush the IB by graphics cache rinse. |
| */ |
| static void sdma_v6_0_ring_emit_mem_sync(struct amdgpu_ring *ring) |
| { |
| uint32_t gcr_cntl = SDMA_GCR_GL2_INV | SDMA_GCR_GL2_WB | SDMA_GCR_GLM_INV | |
| SDMA_GCR_GL1_INV | SDMA_GCR_GLV_INV | SDMA_GCR_GLK_INV | |
| SDMA_GCR_GLI_INV(1); |
| |
| /* flush entire cache L0/L1/L2, this can be optimized by performance requirement */ |
| amdgpu_ring_write(ring, SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_GCR_REQ)); |
| amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD1_BASE_VA_31_7(0)); |
| amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD2_GCR_CONTROL_15_0(gcr_cntl) | |
| SDMA_PKT_GCR_REQ_PAYLOAD2_BASE_VA_47_32(0)); |
| amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD3_LIMIT_VA_31_7(0) | |
| SDMA_PKT_GCR_REQ_PAYLOAD3_GCR_CONTROL_18_16(gcr_cntl >> 16)); |
| amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD4_LIMIT_VA_47_32(0) | |
| SDMA_PKT_GCR_REQ_PAYLOAD4_VMID(0)); |
| } |
| |
| |
| /** |
| * sdma_v6_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring |
| * |
| * @ring: amdgpu ring pointer |
| * |
| * Emit an hdp flush packet on the requested DMA ring. |
| */ |
| static void sdma_v6_0_ring_emit_hdp_flush(struct amdgpu_ring *ring) |
| { |
| struct amdgpu_device *adev = ring->adev; |
| u32 ref_and_mask = 0; |
| const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg; |
| |
| ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me; |
| |
| amdgpu_ring_write(ring, SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_POLL_REGMEM) | |
| SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) | |
| SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */ |
| amdgpu_ring_write(ring, (adev->nbio.funcs->get_hdp_flush_done_offset(adev)) << 2); |
| amdgpu_ring_write(ring, (adev->nbio.funcs->get_hdp_flush_req_offset(adev)) << 2); |
| amdgpu_ring_write(ring, ref_and_mask); /* reference */ |
| amdgpu_ring_write(ring, ref_and_mask); /* mask */ |
| amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | |
| SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */ |
| } |
| |
| /** |
| * sdma_v6_0_ring_emit_fence - emit a fence on the DMA ring |
| * |
| * @ring: amdgpu ring pointer |
| * @addr: address |
| * @seq: fence seq number |
| * @flags: fence flags |
| * |
| * Add a DMA fence packet to the ring to write |
| * the fence seq number and DMA trap packet to generate |
| * an interrupt if needed. |
| */ |
| static void sdma_v6_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq, |
| unsigned flags) |
| { |
| bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT; |
| /* write the fence */ |
| amdgpu_ring_write(ring, SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_FENCE) | |
| SDMA_PKT_FENCE_HEADER_MTYPE(0x3)); /* Ucached(UC) */ |
| /* zero in first two bits */ |
| BUG_ON(addr & 0x3); |
| amdgpu_ring_write(ring, lower_32_bits(addr)); |
| amdgpu_ring_write(ring, upper_32_bits(addr)); |
| amdgpu_ring_write(ring, lower_32_bits(seq)); |
| |
| /* optionally write high bits as well */ |
| if (write64bit) { |
| addr += 4; |
| amdgpu_ring_write(ring, SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_FENCE) | |
| SDMA_PKT_FENCE_HEADER_MTYPE(0x3)); |
| /* zero in first two bits */ |
| BUG_ON(addr & 0x3); |
| amdgpu_ring_write(ring, lower_32_bits(addr)); |
| amdgpu_ring_write(ring, upper_32_bits(addr)); |
| amdgpu_ring_write(ring, upper_32_bits(seq)); |
| } |
| |
| if (flags & AMDGPU_FENCE_FLAG_INT) { |
| uint32_t ctx = ring->is_mes_queue ? |
| (ring->hw_queue_id | AMDGPU_FENCE_MES_QUEUE_FLAG) : 0; |
| /* generate an interrupt */ |
| amdgpu_ring_write(ring, SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_TRAP)); |
| amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(ctx)); |
| } |
| } |
| |
| /** |
| * sdma_v6_0_gfx_stop - stop the gfx async dma engines |
| * |
| * @adev: amdgpu_device pointer |
| * |
| * Stop the gfx async dma ring buffers. |
| */ |
| static void sdma_v6_0_gfx_stop(struct amdgpu_device *adev) |
| { |
| u32 rb_cntl, ib_cntl; |
| int i; |
| |
| for (i = 0; i < adev->sdma.num_instances; i++) { |
| rb_cntl = RREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_CNTL)); |
| rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_QUEUE0_RB_CNTL, RB_ENABLE, 0); |
| WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_CNTL), rb_cntl); |
| ib_cntl = RREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_IB_CNTL)); |
| ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_QUEUE0_IB_CNTL, IB_ENABLE, 0); |
| WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_IB_CNTL), ib_cntl); |
| } |
| } |
| |
| /** |
| * sdma_v6_0_rlc_stop - stop the compute async dma engines |
| * |
| * @adev: amdgpu_device pointer |
| * |
| * Stop the compute async dma queues. |
| */ |
| static void sdma_v6_0_rlc_stop(struct amdgpu_device *adev) |
| { |
| /* XXX todo */ |
| } |
| |
| /** |
| * sdma_v6_0_ctxempty_int_enable - enable or disable context empty interrupts |
| * |
| * @adev: amdgpu_device pointer |
| * @enable: enable/disable context switching due to queue empty conditions |
| * |
| * Enable or disable the async dma engines queue empty context switch. |
| */ |
| static void sdma_v6_0_ctxempty_int_enable(struct amdgpu_device *adev, bool enable) |
| { |
| u32 f32_cntl; |
| int i; |
| |
| if (!amdgpu_sriov_vf(adev)) { |
| for (i = 0; i < adev->sdma.num_instances; i++) { |
| f32_cntl = RREG32(sdma_v6_0_get_reg_offset(adev, i, regSDMA0_CNTL)); |
| f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL, |
| CTXEMPTY_INT_ENABLE, enable ? 1 : 0); |
| WREG32(sdma_v6_0_get_reg_offset(adev, i, regSDMA0_CNTL), f32_cntl); |
| } |
| } |
| } |
| |
| /** |
| * sdma_v6_0_enable - stop the async dma engines |
| * |
| * @adev: amdgpu_device pointer |
| * @enable: enable/disable the DMA MEs. |
| * |
| * Halt or unhalt the async dma engines. |
| */ |
| static void sdma_v6_0_enable(struct amdgpu_device *adev, bool enable) |
| { |
| u32 f32_cntl; |
| int i; |
| |
| if (!enable) { |
| sdma_v6_0_gfx_stop(adev); |
| sdma_v6_0_rlc_stop(adev); |
| } |
| |
| if (amdgpu_sriov_vf(adev)) |
| return; |
| |
| for (i = 0; i < adev->sdma.num_instances; i++) { |
| f32_cntl = RREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_F32_CNTL)); |
| f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1); |
| WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_F32_CNTL), f32_cntl); |
| } |
| } |
| |
| /** |
| * sdma_v6_0_gfx_resume - setup and start the async dma engines |
| * |
| * @adev: amdgpu_device pointer |
| * |
| * Set up the gfx DMA ring buffers and enable them. |
| * Returns 0 for success, error for failure. |
| */ |
| static int sdma_v6_0_gfx_resume(struct amdgpu_device *adev) |
| { |
| struct amdgpu_ring *ring; |
| u32 rb_cntl, ib_cntl; |
| u32 rb_bufsz; |
| u32 doorbell; |
| u32 doorbell_offset; |
| u32 temp; |
| u64 wptr_gpu_addr; |
| int i, r; |
| |
| for (i = 0; i < adev->sdma.num_instances; i++) { |
| ring = &adev->sdma.instance[i].ring; |
| |
| if (!amdgpu_sriov_vf(adev)) |
| WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_SEM_WAIT_FAIL_TIMER_CNTL), 0); |
| |
| /* Set ring buffer size in dwords */ |
| rb_bufsz = order_base_2(ring->ring_size / 4); |
| rb_cntl = RREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_CNTL)); |
| rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_QUEUE0_RB_CNTL, RB_SIZE, rb_bufsz); |
| #ifdef __BIG_ENDIAN |
| rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_QUEUE0_RB_CNTL, RB_SWAP_ENABLE, 1); |
| rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_QUEUE0_RB_CNTL, |
| RPTR_WRITEBACK_SWAP_ENABLE, 1); |
| #endif |
| rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_QUEUE0_RB_CNTL, RB_PRIV, 1); |
| WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_CNTL), rb_cntl); |
| |
| /* Initialize the ring buffer's read and write pointers */ |
| WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_RPTR), 0); |
| WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_RPTR_HI), 0); |
| WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_WPTR), 0); |
| WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_WPTR_HI), 0); |
| |
| /* setup the wptr shadow polling */ |
| wptr_gpu_addr = ring->wptr_gpu_addr; |
| WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_WPTR_POLL_ADDR_LO), |
| lower_32_bits(wptr_gpu_addr)); |
| WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_WPTR_POLL_ADDR_HI), |
| upper_32_bits(wptr_gpu_addr)); |
| |
| /* set the wb address whether it's enabled or not */ |
| WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_RPTR_ADDR_HI), |
| upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF); |
| WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_RPTR_ADDR_LO), |
| lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC); |
| |
| rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_QUEUE0_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1); |
| rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_QUEUE0_RB_CNTL, WPTR_POLL_ENABLE, 0); |
| rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_QUEUE0_RB_CNTL, F32_WPTR_POLL_ENABLE, 1); |
| |
| WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_BASE), ring->gpu_addr >> 8); |
| WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_BASE_HI), ring->gpu_addr >> 40); |
| |
| ring->wptr = 0; |
| |
| /* before programing wptr to a less value, need set minor_ptr_update first */ |
| WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_MINOR_PTR_UPDATE), 1); |
| |
| if (!amdgpu_sriov_vf(adev)) { /* only bare-metal use register write for wptr */ |
| WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_WPTR), lower_32_bits(ring->wptr) << 2); |
| WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_WPTR_HI), upper_32_bits(ring->wptr) << 2); |
| } |
| |
| doorbell = RREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_DOORBELL)); |
| doorbell_offset = RREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_DOORBELL_OFFSET)); |
| |
| if (ring->use_doorbell) { |
| doorbell = REG_SET_FIELD(doorbell, SDMA0_QUEUE0_DOORBELL, ENABLE, 1); |
| doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_QUEUE0_DOORBELL_OFFSET, |
| OFFSET, ring->doorbell_index); |
| } else { |
| doorbell = REG_SET_FIELD(doorbell, SDMA0_QUEUE0_DOORBELL, ENABLE, 0); |
| } |
| WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_DOORBELL), doorbell); |
| WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_DOORBELL_OFFSET), doorbell_offset); |
| |
| if (i == 0) |
| adev->nbio.funcs->sdma_doorbell_range(adev, i, ring->use_doorbell, |
| ring->doorbell_index, |
| adev->doorbell_index.sdma_doorbell_range * adev->sdma.num_instances); |
| |
| if (amdgpu_sriov_vf(adev)) |
| sdma_v6_0_ring_set_wptr(ring); |
| |
| /* set minor_ptr_update to 0 after wptr programed */ |
| WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_MINOR_PTR_UPDATE), 0); |
| |
| /* Set up RESP_MODE to non-copy addresses */ |
| temp = RREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_UTCL1_CNTL)); |
| temp = REG_SET_FIELD(temp, SDMA0_UTCL1_CNTL, RESP_MODE, 3); |
| temp = REG_SET_FIELD(temp, SDMA0_UTCL1_CNTL, REDO_DELAY, 9); |
| WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_UTCL1_CNTL), temp); |
| |
| /* program default cache read and write policy */ |
| temp = RREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_UTCL1_PAGE)); |
| /* clean read policy and write policy bits */ |
| temp &= 0xFF0FFF; |
| temp |= ((CACHE_READ_POLICY_L2__DEFAULT << 12) | |
| (CACHE_WRITE_POLICY_L2__DEFAULT << 14) | |
| SDMA0_UTCL1_PAGE__LLC_NOALLOC_MASK); |
| WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_UTCL1_PAGE), temp); |
| |
| if (!amdgpu_sriov_vf(adev)) { |
| /* unhalt engine */ |
| temp = RREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_F32_CNTL)); |
| temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0); |
| temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, TH1_RESET, 0); |
| WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_F32_CNTL), temp); |
| } |
| |
| /* enable DMA RB */ |
| rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_QUEUE0_RB_CNTL, RB_ENABLE, 1); |
| WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_CNTL), rb_cntl); |
| |
| ib_cntl = RREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_IB_CNTL)); |
| ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_QUEUE0_IB_CNTL, IB_ENABLE, 1); |
| #ifdef __BIG_ENDIAN |
| ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_QUEUE0_IB_CNTL, IB_SWAP_ENABLE, 1); |
| #endif |
| /* enable DMA IBs */ |
| WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_IB_CNTL), ib_cntl); |
| |
| if (amdgpu_sriov_vf(adev)) |
| sdma_v6_0_enable(adev, true); |
| |
| r = amdgpu_ring_test_helper(ring); |
| if (r) |
| return r; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * sdma_v6_0_rlc_resume - setup and start the async dma engines |
| * |
| * @adev: amdgpu_device pointer |
| * |
| * Set up the compute DMA queues and enable them. |
| * Returns 0 for success, error for failure. |
| */ |
| static int sdma_v6_0_rlc_resume(struct amdgpu_device *adev) |
| { |
| return 0; |
| } |
| |
| /** |
| * sdma_v6_0_load_microcode - load the sDMA ME ucode |
| * |
| * @adev: amdgpu_device pointer |
| * |
| * Loads the sDMA0/1 ucode. |
| * Returns 0 for success, -EINVAL if the ucode is not available. |
| */ |
| static int sdma_v6_0_load_microcode(struct amdgpu_device *adev) |
| { |
| const struct sdma_firmware_header_v2_0 *hdr; |
| const __le32 *fw_data; |
| u32 fw_size; |
| int i, j; |
| bool use_broadcast; |
| |
| /* halt the MEs */ |
| sdma_v6_0_enable(adev, false); |
| |
| if (!adev->sdma.instance[0].fw) |
| return -EINVAL; |
| |
| /* use broadcast mode to load SDMA microcode by default */ |
| use_broadcast = true; |
| |
| if (use_broadcast) { |
| dev_info(adev->dev, "Use broadcast method to load SDMA firmware\n"); |
| /* load Control Thread microcode */ |
| hdr = (const struct sdma_firmware_header_v2_0 *)adev->sdma.instance[0].fw->data; |
| amdgpu_ucode_print_sdma_hdr(&hdr->header); |
| fw_size = le32_to_cpu(hdr->ctx_jt_offset + hdr->ctx_jt_size) / 4; |
| |
| fw_data = (const __le32 *) |
| (adev->sdma.instance[0].fw->data + |
| le32_to_cpu(hdr->header.ucode_array_offset_bytes)); |
| |
| WREG32(sdma_v6_0_get_reg_offset(adev, 0, regSDMA0_BROADCAST_UCODE_ADDR), 0); |
| |
| for (j = 0; j < fw_size; j++) { |
| if (amdgpu_emu_mode == 1 && j % 500 == 0) |
| msleep(1); |
| WREG32(sdma_v6_0_get_reg_offset(adev, 0, regSDMA0_BROADCAST_UCODE_DATA), le32_to_cpup(fw_data++)); |
| } |
| |
| /* load Context Switch microcode */ |
| fw_size = le32_to_cpu(hdr->ctl_jt_offset + hdr->ctl_jt_size) / 4; |
| |
| fw_data = (const __le32 *) |
| (adev->sdma.instance[0].fw->data + |
| le32_to_cpu(hdr->ctl_ucode_offset)); |
| |
| WREG32(sdma_v6_0_get_reg_offset(adev, 0, regSDMA0_BROADCAST_UCODE_ADDR), 0x8000); |
| |
| for (j = 0; j < fw_size; j++) { |
| if (amdgpu_emu_mode == 1 && j % 500 == 0) |
| msleep(1); |
| WREG32(sdma_v6_0_get_reg_offset(adev, 0, regSDMA0_BROADCAST_UCODE_DATA), le32_to_cpup(fw_data++)); |
| } |
| } else { |
| dev_info(adev->dev, "Use legacy method to load SDMA firmware\n"); |
| for (i = 0; i < adev->sdma.num_instances; i++) { |
| /* load Control Thread microcode */ |
| hdr = (const struct sdma_firmware_header_v2_0 *)adev->sdma.instance[0].fw->data; |
| amdgpu_ucode_print_sdma_hdr(&hdr->header); |
| fw_size = le32_to_cpu(hdr->ctx_jt_offset + hdr->ctx_jt_size) / 4; |
| |
| fw_data = (const __le32 *) |
| (adev->sdma.instance[0].fw->data + |
| le32_to_cpu(hdr->header.ucode_array_offset_bytes)); |
| |
| WREG32(sdma_v6_0_get_reg_offset(adev, i, regSDMA0_UCODE_ADDR), 0); |
| |
| for (j = 0; j < fw_size; j++) { |
| if (amdgpu_emu_mode == 1 && j % 500 == 0) |
| msleep(1); |
| WREG32(sdma_v6_0_get_reg_offset(adev, i, regSDMA0_UCODE_DATA), le32_to_cpup(fw_data++)); |
| } |
| |
| WREG32(sdma_v6_0_get_reg_offset(adev, i, regSDMA0_UCODE_ADDR), adev->sdma.instance[0].fw_version); |
| |
| /* load Context Switch microcode */ |
| fw_size = le32_to_cpu(hdr->ctl_jt_offset + hdr->ctl_jt_size) / 4; |
| |
| fw_data = (const __le32 *) |
| (adev->sdma.instance[0].fw->data + |
| le32_to_cpu(hdr->ctl_ucode_offset)); |
| |
| WREG32(sdma_v6_0_get_reg_offset(adev, i, regSDMA0_UCODE_ADDR), 0x8000); |
| |
| for (j = 0; j < fw_size; j++) { |
| if (amdgpu_emu_mode == 1 && j % 500 == 0) |
| msleep(1); |
| WREG32(sdma_v6_0_get_reg_offset(adev, i, regSDMA0_UCODE_DATA), le32_to_cpup(fw_data++)); |
| } |
| |
| WREG32(sdma_v6_0_get_reg_offset(adev, i, regSDMA0_UCODE_ADDR), adev->sdma.instance[0].fw_version); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int sdma_v6_0_soft_reset(void *handle) |
| { |
| struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
| u32 tmp; |
| int i; |
| |
| sdma_v6_0_gfx_stop(adev); |
| |
| for (i = 0; i < adev->sdma.num_instances; i++) { |
| tmp = RREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_FREEZE)); |
| tmp |= SDMA0_FREEZE__FREEZE_MASK; |
| WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_FREEZE), tmp); |
| tmp = RREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_F32_CNTL)); |
| tmp |= SDMA0_F32_CNTL__HALT_MASK; |
| tmp |= SDMA0_F32_CNTL__TH1_RESET_MASK; |
| WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_F32_CNTL), tmp); |
| |
| WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_PREEMPT), 0); |
| |
| udelay(100); |
| |
| tmp = GRBM_SOFT_RESET__SOFT_RESET_SDMA0_MASK << i; |
| WREG32_SOC15(GC, 0, regGRBM_SOFT_RESET, tmp); |
| tmp = RREG32_SOC15(GC, 0, regGRBM_SOFT_RESET); |
| |
| udelay(100); |
| |
| WREG32_SOC15(GC, 0, regGRBM_SOFT_RESET, 0); |
| tmp = RREG32_SOC15(GC, 0, regGRBM_SOFT_RESET); |
| |
| udelay(100); |
| } |
| |
| return sdma_v6_0_start(adev); |
| } |
| |
| static bool sdma_v6_0_check_soft_reset(void *handle) |
| { |
| struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
| struct amdgpu_ring *ring; |
| int i, r; |
| long tmo = msecs_to_jiffies(1000); |
| |
| for (i = 0; i < adev->sdma.num_instances; i++) { |
| ring = &adev->sdma.instance[i].ring; |
| r = amdgpu_ring_test_ib(ring, tmo); |
| if (r) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /** |
| * sdma_v6_0_start - setup and start the async dma engines |
| * |
| * @adev: amdgpu_device pointer |
| * |
| * Set up the DMA engines and enable them. |
| * Returns 0 for success, error for failure. |
| */ |
| static int sdma_v6_0_start(struct amdgpu_device *adev) |
| { |
| int r = 0; |
| |
| if (amdgpu_sriov_vf(adev)) { |
| sdma_v6_0_enable(adev, false); |
| |
| /* set RB registers */ |
| r = sdma_v6_0_gfx_resume(adev); |
| return r; |
| } |
| |
| if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) { |
| r = sdma_v6_0_load_microcode(adev); |
| if (r) |
| return r; |
| |
| /* The value of regSDMA_F32_CNTL is invalid the moment after loading fw */ |
| if (amdgpu_emu_mode == 1) |
| msleep(1000); |
| } |
| |
| /* unhalt the MEs */ |
| sdma_v6_0_enable(adev, true); |
| /* enable sdma ring preemption */ |
| sdma_v6_0_ctxempty_int_enable(adev, true); |
| |
| /* start the gfx rings and rlc compute queues */ |
| r = sdma_v6_0_gfx_resume(adev); |
| if (r) |
| return r; |
| r = sdma_v6_0_rlc_resume(adev); |
| |
| return r; |
| } |
| |
| static int sdma_v6_0_mqd_init(struct amdgpu_device *adev, void *mqd, |
| struct amdgpu_mqd_prop *prop) |
| { |
| struct v11_sdma_mqd *m = mqd; |
| uint64_t wb_gpu_addr; |
| |
| m->sdmax_rlcx_rb_cntl = |
| order_base_2(prop->queue_size / 4) << SDMA0_QUEUE0_RB_CNTL__RB_SIZE__SHIFT | |
| 1 << SDMA0_QUEUE0_RB_CNTL__RPTR_WRITEBACK_ENABLE__SHIFT | |
| 4 << SDMA0_QUEUE0_RB_CNTL__RPTR_WRITEBACK_TIMER__SHIFT | |
| 1 << SDMA0_QUEUE0_RB_CNTL__F32_WPTR_POLL_ENABLE__SHIFT; |
| |
| m->sdmax_rlcx_rb_base = lower_32_bits(prop->hqd_base_gpu_addr >> 8); |
| m->sdmax_rlcx_rb_base_hi = upper_32_bits(prop->hqd_base_gpu_addr >> 8); |
| |
| wb_gpu_addr = prop->wptr_gpu_addr; |
| m->sdmax_rlcx_rb_wptr_poll_addr_lo = lower_32_bits(wb_gpu_addr); |
| m->sdmax_rlcx_rb_wptr_poll_addr_hi = upper_32_bits(wb_gpu_addr); |
| |
| wb_gpu_addr = prop->rptr_gpu_addr; |
| m->sdmax_rlcx_rb_rptr_addr_lo = lower_32_bits(wb_gpu_addr); |
| m->sdmax_rlcx_rb_rptr_addr_hi = upper_32_bits(wb_gpu_addr); |
| |
| m->sdmax_rlcx_ib_cntl = RREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, 0, |
| regSDMA0_QUEUE0_IB_CNTL)); |
| |
| m->sdmax_rlcx_doorbell_offset = |
| prop->doorbell_index << SDMA0_QUEUE0_DOORBELL_OFFSET__OFFSET__SHIFT; |
| |
| m->sdmax_rlcx_doorbell = REG_SET_FIELD(0, SDMA0_QUEUE0_DOORBELL, ENABLE, 1); |
| |
| m->sdmax_rlcx_skip_cntl = 0; |
| m->sdmax_rlcx_context_status = 0; |
| m->sdmax_rlcx_doorbell_log = 0; |
| |
| m->sdmax_rlcx_rb_aql_cntl = regSDMA0_QUEUE0_RB_AQL_CNTL_DEFAULT; |
| m->sdmax_rlcx_dummy_reg = regSDMA0_QUEUE0_DUMMY_REG_DEFAULT; |
| |
| return 0; |
| } |
| |
| static void sdma_v6_0_set_mqd_funcs(struct amdgpu_device *adev) |
| { |
| adev->mqds[AMDGPU_HW_IP_DMA].mqd_size = sizeof(struct v11_sdma_mqd); |
| adev->mqds[AMDGPU_HW_IP_DMA].init_mqd = sdma_v6_0_mqd_init; |
| } |
| |
| /** |
| * sdma_v6_0_ring_test_ring - simple async dma engine test |
| * |
| * @ring: amdgpu_ring structure holding ring information |
| * |
| * Test the DMA engine by writing using it to write an |
| * value to memory. |
| * Returns 0 for success, error for failure. |
| */ |
| static int sdma_v6_0_ring_test_ring(struct amdgpu_ring *ring) |
| { |
| struct amdgpu_device *adev = ring->adev; |
| unsigned i; |
| unsigned index; |
| int r; |
| u32 tmp; |
| u64 gpu_addr; |
| volatile uint32_t *cpu_ptr = NULL; |
| |
| tmp = 0xCAFEDEAD; |
| |
| if (ring->is_mes_queue) { |
| uint32_t offset = 0; |
| offset = amdgpu_mes_ctx_get_offs(ring, |
| AMDGPU_MES_CTX_PADDING_OFFS); |
| gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset); |
| cpu_ptr = amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset); |
| *cpu_ptr = tmp; |
| } else { |
| r = amdgpu_device_wb_get(adev, &index); |
| if (r) { |
| dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r); |
| return r; |
| } |
| |
| gpu_addr = adev->wb.gpu_addr + (index * 4); |
| adev->wb.wb[index] = cpu_to_le32(tmp); |
| } |
| |
| r = amdgpu_ring_alloc(ring, 5); |
| if (r) { |
| DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r); |
| amdgpu_device_wb_free(adev, index); |
| return r; |
| } |
| |
| amdgpu_ring_write(ring, SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_WRITE) | |
| SDMA_PKT_COPY_LINEAR_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR)); |
| amdgpu_ring_write(ring, lower_32_bits(gpu_addr)); |
| amdgpu_ring_write(ring, upper_32_bits(gpu_addr)); |
| amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0)); |
| amdgpu_ring_write(ring, 0xDEADBEEF); |
| amdgpu_ring_commit(ring); |
| |
| for (i = 0; i < adev->usec_timeout; i++) { |
| if (ring->is_mes_queue) |
| tmp = le32_to_cpu(*cpu_ptr); |
| else |
| tmp = le32_to_cpu(adev->wb.wb[index]); |
| if (tmp == 0xDEADBEEF) |
| break; |
| if (amdgpu_emu_mode == 1) |
| msleep(1); |
| else |
| udelay(1); |
| } |
| |
| if (i >= adev->usec_timeout) |
| r = -ETIMEDOUT; |
| |
| if (!ring->is_mes_queue) |
| amdgpu_device_wb_free(adev, index); |
| |
| return r; |
| } |
| |
| /* |
| * sdma_v6_0_ring_test_ib - test an IB on the DMA engine |
| * |
| * @ring: amdgpu_ring structure holding ring information |
| * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT |
| * |
| * Test a simple IB in the DMA ring. |
| * Returns 0 on success, error on failure. |
| */ |
| static int sdma_v6_0_ring_test_ib(struct amdgpu_ring *ring, long timeout) |
| { |
| struct amdgpu_device *adev = ring->adev; |
| struct amdgpu_ib ib; |
| struct dma_fence *f = NULL; |
| unsigned index; |
| long r; |
| u32 tmp = 0; |
| u64 gpu_addr; |
| volatile uint32_t *cpu_ptr = NULL; |
| |
| tmp = 0xCAFEDEAD; |
| memset(&ib, 0, sizeof(ib)); |
| |
| if (ring->is_mes_queue) { |
| uint32_t offset = 0; |
| offset = amdgpu_mes_ctx_get_offs(ring, AMDGPU_MES_CTX_IB_OFFS); |
| ib.gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset); |
| ib.ptr = (void *)amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset); |
| |
| offset = amdgpu_mes_ctx_get_offs(ring, |
| AMDGPU_MES_CTX_PADDING_OFFS); |
| gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset); |
| cpu_ptr = amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset); |
| *cpu_ptr = tmp; |
| } else { |
| r = amdgpu_device_wb_get(adev, &index); |
| if (r) { |
| dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r); |
| return r; |
| } |
| |
| gpu_addr = adev->wb.gpu_addr + (index * 4); |
| adev->wb.wb[index] = cpu_to_le32(tmp); |
| |
| r = amdgpu_ib_get(adev, NULL, 256, AMDGPU_IB_POOL_DIRECT, &ib); |
| if (r) { |
| DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r); |
| goto err0; |
| } |
| } |
| |
| ib.ptr[0] = SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_WRITE) | |
| SDMA_PKT_COPY_LINEAR_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); |
| ib.ptr[1] = lower_32_bits(gpu_addr); |
| ib.ptr[2] = upper_32_bits(gpu_addr); |
| ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0); |
| ib.ptr[4] = 0xDEADBEEF; |
| ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); |
| ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); |
| ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); |
| ib.length_dw = 8; |
| |
| r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f); |
| if (r) |
| goto err1; |
| |
| r = dma_fence_wait_timeout(f, false, timeout); |
| if (r == 0) { |
| DRM_ERROR("amdgpu: IB test timed out\n"); |
| r = -ETIMEDOUT; |
| goto err1; |
| } else if (r < 0) { |
| DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r); |
| goto err1; |
| } |
| |
| if (ring->is_mes_queue) |
| tmp = le32_to_cpu(*cpu_ptr); |
| else |
| tmp = le32_to_cpu(adev->wb.wb[index]); |
| |
| if (tmp == 0xDEADBEEF) |
| r = 0; |
| else |
| r = -EINVAL; |
| |
| err1: |
| amdgpu_ib_free(adev, &ib, NULL); |
| dma_fence_put(f); |
| err0: |
| if (!ring->is_mes_queue) |
| amdgpu_device_wb_free(adev, index); |
| return r; |
| } |
| |
| |
| /** |
| * sdma_v6_0_vm_copy_pte - update PTEs by copying them from the GART |
| * |
| * @ib: indirect buffer to fill with commands |
| * @pe: addr of the page entry |
| * @src: src addr to copy from |
| * @count: number of page entries to update |
| * |
| * Update PTEs by copying them from the GART using sDMA. |
| */ |
| static void sdma_v6_0_vm_copy_pte(struct amdgpu_ib *ib, |
| uint64_t pe, uint64_t src, |
| unsigned count) |
| { |
| unsigned bytes = count * 8; |
| |
| ib->ptr[ib->length_dw++] = SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_COPY) | |
| SDMA_PKT_COPY_LINEAR_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); |
| ib->ptr[ib->length_dw++] = bytes - 1; |
| ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ |
| ib->ptr[ib->length_dw++] = lower_32_bits(src); |
| ib->ptr[ib->length_dw++] = upper_32_bits(src); |
| ib->ptr[ib->length_dw++] = lower_32_bits(pe); |
| ib->ptr[ib->length_dw++] = upper_32_bits(pe); |
| |
| } |
| |
| /** |
| * sdma_v6_0_vm_write_pte - update PTEs by writing them manually |
| * |
| * @ib: indirect buffer to fill with commands |
| * @pe: addr of the page entry |
| * @value: dst addr to write into pe |
| * @count: number of page entries to update |
| * @incr: increase next addr by incr bytes |
| * |
| * Update PTEs by writing them manually using sDMA. |
| */ |
| static void sdma_v6_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe, |
| uint64_t value, unsigned count, |
| uint32_t incr) |
| { |
| unsigned ndw = count * 2; |
| |
| ib->ptr[ib->length_dw++] = SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_WRITE) | |
| SDMA_PKT_COPY_LINEAR_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); |
| ib->ptr[ib->length_dw++] = lower_32_bits(pe); |
| ib->ptr[ib->length_dw++] = upper_32_bits(pe); |
| ib->ptr[ib->length_dw++] = ndw - 1; |
| for (; ndw > 0; ndw -= 2) { |
| ib->ptr[ib->length_dw++] = lower_32_bits(value); |
| ib->ptr[ib->length_dw++] = upper_32_bits(value); |
| value += incr; |
| } |
| } |
| |
| /** |
| * sdma_v6_0_vm_set_pte_pde - update the page tables using sDMA |
| * |
| * @ib: indirect buffer to fill with commands |
| * @pe: addr of the page entry |
| * @addr: dst addr to write into pe |
| * @count: number of page entries to update |
| * @incr: increase next addr by incr bytes |
| * @flags: access flags |
| * |
| * Update the page tables using sDMA. |
| */ |
| static void sdma_v6_0_vm_set_pte_pde(struct amdgpu_ib *ib, |
| uint64_t pe, |
| uint64_t addr, unsigned count, |
| uint32_t incr, uint64_t flags) |
| { |
| /* for physically contiguous pages (vram) */ |
| ib->ptr[ib->length_dw++] = SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_PTEPDE); |
| ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */ |
| ib->ptr[ib->length_dw++] = upper_32_bits(pe); |
| ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */ |
| ib->ptr[ib->length_dw++] = upper_32_bits(flags); |
| ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */ |
| ib->ptr[ib->length_dw++] = upper_32_bits(addr); |
| ib->ptr[ib->length_dw++] = incr; /* increment size */ |
| ib->ptr[ib->length_dw++] = 0; |
| ib->ptr[ib->length_dw++] = count - 1; /* number of entries */ |
| } |
| |
| /* |
| * sdma_v6_0_ring_pad_ib - pad the IB |
| * @ib: indirect buffer to fill with padding |
| * @ring: amdgpu ring pointer |
| * |
| * Pad the IB with NOPs to a boundary multiple of 8. |
| */ |
| static void sdma_v6_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib) |
| { |
| struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); |
| u32 pad_count; |
| int i; |
| |
| pad_count = (-ib->length_dw) & 0x7; |
| for (i = 0; i < pad_count; i++) |
| if (sdma && sdma->burst_nop && (i == 0)) |
| ib->ptr[ib->length_dw++] = |
| SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_NOP) | |
| SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1); |
| else |
| ib->ptr[ib->length_dw++] = |
| SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_NOP); |
| } |
| |
| /** |
| * sdma_v6_0_ring_emit_pipeline_sync - sync the pipeline |
| * |
| * @ring: amdgpu_ring pointer |
| * |
| * Make sure all previous operations are completed (CIK). |
| */ |
| static void sdma_v6_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring) |
| { |
| uint32_t seq = ring->fence_drv.sync_seq; |
| uint64_t addr = ring->fence_drv.gpu_addr; |
| |
| /* wait for idle */ |
| amdgpu_ring_write(ring, SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_POLL_REGMEM) | |
| SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) | |
| SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */ |
| SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1)); |
| amdgpu_ring_write(ring, addr & 0xfffffffc); |
| amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff); |
| amdgpu_ring_write(ring, seq); /* reference */ |
| amdgpu_ring_write(ring, 0xffffffff); /* mask */ |
| amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | |
| SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */ |
| } |
| |
| /* |
| * sdma_v6_0_ring_emit_vm_flush - vm flush using sDMA |
| * |
| * @ring: amdgpu_ring pointer |
| * @vmid: vmid number to use |
| * @pd_addr: address |
| * |
| * Update the page table base and flush the VM TLB |
| * using sDMA. |
| */ |
| static void sdma_v6_0_ring_emit_vm_flush(struct amdgpu_ring *ring, |
| unsigned vmid, uint64_t pd_addr) |
| { |
| struct amdgpu_vmhub *hub = &ring->adev->vmhub[ring->vm_hub]; |
| uint32_t req = hub->vmhub_funcs->get_invalidate_req(vmid, 0); |
| |
| /* Update the PD address for this VMID. */ |
| amdgpu_ring_emit_wreg(ring, hub->ctx0_ptb_addr_lo32 + |
| (hub->ctx_addr_distance * vmid), |
| lower_32_bits(pd_addr)); |
| amdgpu_ring_emit_wreg(ring, hub->ctx0_ptb_addr_hi32 + |
| (hub->ctx_addr_distance * vmid), |
| upper_32_bits(pd_addr)); |
| |
| /* Trigger invalidation. */ |
| amdgpu_ring_write(ring, |
| SDMA_PKT_VM_INVALIDATION_HEADER_OP(SDMA_OP_POLL_REGMEM) | |
| SDMA_PKT_VM_INVALIDATION_HEADER_SUB_OP(SDMA_SUBOP_VM_INVALIDATION) | |
| SDMA_PKT_VM_INVALIDATION_HEADER_GFX_ENG_ID(ring->vm_inv_eng) | |
| SDMA_PKT_VM_INVALIDATION_HEADER_MM_ENG_ID(0x1f)); |
| amdgpu_ring_write(ring, req); |
| amdgpu_ring_write(ring, 0xFFFFFFFF); |
| amdgpu_ring_write(ring, |
| SDMA_PKT_VM_INVALIDATION_ADDRESSRANGEHI_INVALIDATEACK(1 << vmid) | |
| SDMA_PKT_VM_INVALIDATION_ADDRESSRANGEHI_ADDRESSRANGEHI(0x1F)); |
| } |
| |
| static void sdma_v6_0_ring_emit_wreg(struct amdgpu_ring *ring, |
| uint32_t reg, uint32_t val) |
| { |
| amdgpu_ring_write(ring, SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_SRBM_WRITE) | |
| SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf)); |
| amdgpu_ring_write(ring, reg); |
| amdgpu_ring_write(ring, val); |
| } |
| |
| static void sdma_v6_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg, |
| uint32_t val, uint32_t mask) |
| { |
| amdgpu_ring_write(ring, SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_POLL_REGMEM) | |
| SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) | |
| SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* equal */ |
| amdgpu_ring_write(ring, reg << 2); |
| amdgpu_ring_write(ring, 0); |
| amdgpu_ring_write(ring, val); /* reference */ |
| amdgpu_ring_write(ring, mask); /* mask */ |
| amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | |
| SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); |
| } |
| |
| static void sdma_v6_0_ring_emit_reg_write_reg_wait(struct amdgpu_ring *ring, |
| uint32_t reg0, uint32_t reg1, |
| uint32_t ref, uint32_t mask) |
| { |
| amdgpu_ring_emit_wreg(ring, reg0, ref); |
| /* wait for a cycle to reset vm_inv_eng*_ack */ |
| amdgpu_ring_emit_reg_wait(ring, reg0, 0, 0); |
| amdgpu_ring_emit_reg_wait(ring, reg1, mask, mask); |
| } |
| |
| static struct amdgpu_sdma_ras sdma_v6_0_3_ras = { |
| .ras_block = { |
| .ras_late_init = amdgpu_ras_block_late_init, |
| }, |
| }; |
| |
| static void sdma_v6_0_set_ras_funcs(struct amdgpu_device *adev) |
| { |
| switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) { |
| case IP_VERSION(6, 0, 3): |
| adev->sdma.ras = &sdma_v6_0_3_ras; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static int sdma_v6_0_early_init(void *handle) |
| { |
| struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
| int r; |
| |
| r = amdgpu_sdma_init_microcode(adev, 0, true); |
| if (r) |
| return r; |
| |
| sdma_v6_0_set_ring_funcs(adev); |
| sdma_v6_0_set_buffer_funcs(adev); |
| sdma_v6_0_set_vm_pte_funcs(adev); |
| sdma_v6_0_set_irq_funcs(adev); |
| sdma_v6_0_set_mqd_funcs(adev); |
| sdma_v6_0_set_ras_funcs(adev); |
| |
| return 0; |
| } |
| |
| static int sdma_v6_0_sw_init(void *handle) |
| { |
| struct amdgpu_ring *ring; |
| int r, i; |
| struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
| |
| /* SDMA trap event */ |
| r = amdgpu_irq_add_id(adev, SOC21_IH_CLIENTID_GFX, |
| GFX_11_0_0__SRCID__SDMA_TRAP, |
| &adev->sdma.trap_irq); |
| if (r) |
| return r; |
| |
| for (i = 0; i < adev->sdma.num_instances; i++) { |
| ring = &adev->sdma.instance[i].ring; |
| ring->ring_obj = NULL; |
| ring->use_doorbell = true; |
| ring->me = i; |
| |
| DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i, |
| ring->use_doorbell?"true":"false"); |
| |
| ring->doorbell_index = |
| (adev->doorbell_index.sdma_engine[i] << 1); // get DWORD offset |
| |
| ring->vm_hub = AMDGPU_GFXHUB(0); |
| sprintf(ring->name, "sdma%d", i); |
| r = amdgpu_ring_init(adev, ring, 1024, |
| &adev->sdma.trap_irq, |
| AMDGPU_SDMA_IRQ_INSTANCE0 + i, |
| AMDGPU_RING_PRIO_DEFAULT, NULL); |
| if (r) |
| return r; |
| } |
| |
| if (amdgpu_sdma_ras_sw_init(adev)) { |
| dev_err(adev->dev, "Failed to initialize sdma ras block!\n"); |
| return -EINVAL; |
| } |
| |
| return r; |
| } |
| |
| static int sdma_v6_0_sw_fini(void *handle) |
| { |
| struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
| int i; |
| |
| for (i = 0; i < adev->sdma.num_instances; i++) |
| amdgpu_ring_fini(&adev->sdma.instance[i].ring); |
| |
| amdgpu_sdma_destroy_inst_ctx(adev, true); |
| |
| return 0; |
| } |
| |
| static int sdma_v6_0_hw_init(void *handle) |
| { |
| struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
| |
| return sdma_v6_0_start(adev); |
| } |
| |
| static int sdma_v6_0_hw_fini(void *handle) |
| { |
| struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
| |
| if (amdgpu_sriov_vf(adev)) |
| return 0; |
| |
| sdma_v6_0_ctxempty_int_enable(adev, false); |
| sdma_v6_0_enable(adev, false); |
| |
| return 0; |
| } |
| |
| static int sdma_v6_0_suspend(void *handle) |
| { |
| struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
| |
| return sdma_v6_0_hw_fini(adev); |
| } |
| |
| static int sdma_v6_0_resume(void *handle) |
| { |
| struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
| |
| return sdma_v6_0_hw_init(adev); |
| } |
| |
| static bool sdma_v6_0_is_idle(void *handle) |
| { |
| struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
| u32 i; |
| |
| for (i = 0; i < adev->sdma.num_instances; i++) { |
| u32 tmp = RREG32(sdma_v6_0_get_reg_offset(adev, i, regSDMA0_STATUS_REG)); |
| |
| if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static int sdma_v6_0_wait_for_idle(void *handle) |
| { |
| unsigned i; |
| u32 sdma0, sdma1; |
| struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
| |
| for (i = 0; i < adev->usec_timeout; i++) { |
| sdma0 = RREG32(sdma_v6_0_get_reg_offset(adev, 0, regSDMA0_STATUS_REG)); |
| sdma1 = RREG32(sdma_v6_0_get_reg_offset(adev, 1, regSDMA0_STATUS_REG)); |
| |
| if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK) |
| return 0; |
| udelay(1); |
| } |
| return -ETIMEDOUT; |
| } |
| |
| static int sdma_v6_0_ring_preempt_ib(struct amdgpu_ring *ring) |
| { |
| int i, r = 0; |
| struct amdgpu_device *adev = ring->adev; |
| u32 index = 0; |
| u64 sdma_gfx_preempt; |
| |
| amdgpu_sdma_get_index_from_ring(ring, &index); |
| sdma_gfx_preempt = |
| sdma_v6_0_get_reg_offset(adev, index, regSDMA0_QUEUE0_PREEMPT); |
| |
| /* assert preemption condition */ |
| amdgpu_ring_set_preempt_cond_exec(ring, false); |
| |
| /* emit the trailing fence */ |
| ring->trail_seq += 1; |
| amdgpu_ring_alloc(ring, 10); |
| sdma_v6_0_ring_emit_fence(ring, ring->trail_fence_gpu_addr, |
| ring->trail_seq, 0); |
| amdgpu_ring_commit(ring); |
| |
| /* assert IB preemption */ |
| WREG32(sdma_gfx_preempt, 1); |
| |
| /* poll the trailing fence */ |
| for (i = 0; i < adev->usec_timeout; i++) { |
| if (ring->trail_seq == |
| le32_to_cpu(*(ring->trail_fence_cpu_addr))) |
| break; |
| udelay(1); |
| } |
| |
| if (i >= adev->usec_timeout) { |
| r = -EINVAL; |
| DRM_ERROR("ring %d failed to be preempted\n", ring->idx); |
| } |
| |
| /* deassert IB preemption */ |
| WREG32(sdma_gfx_preempt, 0); |
| |
| /* deassert the preemption condition */ |
| amdgpu_ring_set_preempt_cond_exec(ring, true); |
| return r; |
| } |
| |
| static int sdma_v6_0_set_trap_irq_state(struct amdgpu_device *adev, |
| struct amdgpu_irq_src *source, |
| unsigned type, |
| enum amdgpu_interrupt_state state) |
| { |
| u32 sdma_cntl; |
| |
| u32 reg_offset = sdma_v6_0_get_reg_offset(adev, type, regSDMA0_CNTL); |
| |
| if (!amdgpu_sriov_vf(adev)) { |
| sdma_cntl = RREG32(reg_offset); |
| sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, |
| state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0); |
| WREG32(reg_offset, sdma_cntl); |
| } |
| |
| return 0; |
| } |
| |
| static int sdma_v6_0_process_trap_irq(struct amdgpu_device *adev, |
| struct amdgpu_irq_src *source, |
| struct amdgpu_iv_entry *entry) |
| { |
| int instances, queue; |
| uint32_t mes_queue_id = entry->src_data[0]; |
| |
| DRM_DEBUG("IH: SDMA trap\n"); |
| |
| if (adev->enable_mes && (mes_queue_id & AMDGPU_FENCE_MES_QUEUE_FLAG)) { |
| struct amdgpu_mes_queue *queue; |
| |
| mes_queue_id &= AMDGPU_FENCE_MES_QUEUE_ID_MASK; |
| |
| spin_lock(&adev->mes.queue_id_lock); |
| queue = idr_find(&adev->mes.queue_id_idr, mes_queue_id); |
| if (queue) { |
| DRM_DEBUG("process smda queue id = %d\n", mes_queue_id); |
| amdgpu_fence_process(queue->ring); |
| } |
| spin_unlock(&adev->mes.queue_id_lock); |
| return 0; |
| } |
| |
| queue = entry->ring_id & 0xf; |
| instances = (entry->ring_id & 0xf0) >> 4; |
| if (instances > 1) { |
| DRM_ERROR("IH: wrong ring_ID detected, as wrong sdma instance\n"); |
| return -EINVAL; |
| } |
| |
| switch (entry->client_id) { |
| case SOC21_IH_CLIENTID_GFX: |
| switch (queue) { |
| case 0: |
| amdgpu_fence_process(&adev->sdma.instance[instances].ring); |
| break; |
| default: |
| break; |
| } |
| break; |
| } |
| return 0; |
| } |
| |
| static int sdma_v6_0_process_illegal_inst_irq(struct amdgpu_device *adev, |
| struct amdgpu_irq_src *source, |
| struct amdgpu_iv_entry *entry) |
| { |
| return 0; |
| } |
| |
| static int sdma_v6_0_set_clockgating_state(void *handle, |
| enum amd_clockgating_state state) |
| { |
| return 0; |
| } |
| |
| static int sdma_v6_0_set_powergating_state(void *handle, |
| enum amd_powergating_state state) |
| { |
| return 0; |
| } |
| |
| static void sdma_v6_0_get_clockgating_state(void *handle, u64 *flags) |
| { |
| } |
| |
| const struct amd_ip_funcs sdma_v6_0_ip_funcs = { |
| .name = "sdma_v6_0", |
| .early_init = sdma_v6_0_early_init, |
| .late_init = NULL, |
| .sw_init = sdma_v6_0_sw_init, |
| .sw_fini = sdma_v6_0_sw_fini, |
| .hw_init = sdma_v6_0_hw_init, |
| .hw_fini = sdma_v6_0_hw_fini, |
| .suspend = sdma_v6_0_suspend, |
| .resume = sdma_v6_0_resume, |
| .is_idle = sdma_v6_0_is_idle, |
| .wait_for_idle = sdma_v6_0_wait_for_idle, |
| .soft_reset = sdma_v6_0_soft_reset, |
| .check_soft_reset = sdma_v6_0_check_soft_reset, |
| .set_clockgating_state = sdma_v6_0_set_clockgating_state, |
| .set_powergating_state = sdma_v6_0_set_powergating_state, |
| .get_clockgating_state = sdma_v6_0_get_clockgating_state, |
| }; |
| |
| static const struct amdgpu_ring_funcs sdma_v6_0_ring_funcs = { |
| .type = AMDGPU_RING_TYPE_SDMA, |
| .align_mask = 0xf, |
| .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), |
| .support_64bit_ptrs = true, |
| .secure_submission_supported = true, |
| .get_rptr = sdma_v6_0_ring_get_rptr, |
| .get_wptr = sdma_v6_0_ring_get_wptr, |
| .set_wptr = sdma_v6_0_ring_set_wptr, |
| .emit_frame_size = |
| 5 + /* sdma_v6_0_ring_init_cond_exec */ |
| 6 + /* sdma_v6_0_ring_emit_hdp_flush */ |
| 6 + /* sdma_v6_0_ring_emit_pipeline_sync */ |
| /* sdma_v6_0_ring_emit_vm_flush */ |
| SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + |
| SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 + |
| 10 + 10 + 10, /* sdma_v6_0_ring_emit_fence x3 for user fence, vm fence */ |
| .emit_ib_size = 5 + 7 + 6, /* sdma_v6_0_ring_emit_ib */ |
| .emit_ib = sdma_v6_0_ring_emit_ib, |
| .emit_mem_sync = sdma_v6_0_ring_emit_mem_sync, |
| .emit_fence = sdma_v6_0_ring_emit_fence, |
| .emit_pipeline_sync = sdma_v6_0_ring_emit_pipeline_sync, |
| .emit_vm_flush = sdma_v6_0_ring_emit_vm_flush, |
| .emit_hdp_flush = sdma_v6_0_ring_emit_hdp_flush, |
| .test_ring = sdma_v6_0_ring_test_ring, |
| .test_ib = sdma_v6_0_ring_test_ib, |
| .insert_nop = sdma_v6_0_ring_insert_nop, |
| .pad_ib = sdma_v6_0_ring_pad_ib, |
| .emit_wreg = sdma_v6_0_ring_emit_wreg, |
| .emit_reg_wait = sdma_v6_0_ring_emit_reg_wait, |
| .emit_reg_write_reg_wait = sdma_v6_0_ring_emit_reg_write_reg_wait, |
| .init_cond_exec = sdma_v6_0_ring_init_cond_exec, |
| .preempt_ib = sdma_v6_0_ring_preempt_ib, |
| }; |
| |
| static void sdma_v6_0_set_ring_funcs(struct amdgpu_device *adev) |
| { |
| int i; |
| |
| for (i = 0; i < adev->sdma.num_instances; i++) { |
| adev->sdma.instance[i].ring.funcs = &sdma_v6_0_ring_funcs; |
| adev->sdma.instance[i].ring.me = i; |
| } |
| } |
| |
| static const struct amdgpu_irq_src_funcs sdma_v6_0_trap_irq_funcs = { |
| .set = sdma_v6_0_set_trap_irq_state, |
| .process = sdma_v6_0_process_trap_irq, |
| }; |
| |
| static const struct amdgpu_irq_src_funcs sdma_v6_0_illegal_inst_irq_funcs = { |
| .process = sdma_v6_0_process_illegal_inst_irq, |
| }; |
| |
| static void sdma_v6_0_set_irq_funcs(struct amdgpu_device *adev) |
| { |
| adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE0 + |
| adev->sdma.num_instances; |
| adev->sdma.trap_irq.funcs = &sdma_v6_0_trap_irq_funcs; |
| adev->sdma.illegal_inst_irq.funcs = &sdma_v6_0_illegal_inst_irq_funcs; |
| } |
| |
| /** |
| * sdma_v6_0_emit_copy_buffer - copy buffer using the sDMA engine |
| * |
| * @ib: indirect buffer to fill with commands |
| * @src_offset: src GPU address |
| * @dst_offset: dst GPU address |
| * @byte_count: number of bytes to xfer |
| * @tmz: if a secure copy should be used |
| * |
| * Copy GPU buffers using the DMA engine. |
| * Used by the amdgpu ttm implementation to move pages if |
| * registered as the asic copy callback. |
| */ |
| static void sdma_v6_0_emit_copy_buffer(struct amdgpu_ib *ib, |
| uint64_t src_offset, |
| uint64_t dst_offset, |
| uint32_t byte_count, |
| bool tmz) |
| { |
| ib->ptr[ib->length_dw++] = SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_COPY) | |
| SDMA_PKT_COPY_LINEAR_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) | |
| SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0); |
| ib->ptr[ib->length_dw++] = byte_count - 1; |
| ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ |
| ib->ptr[ib->length_dw++] = lower_32_bits(src_offset); |
| ib->ptr[ib->length_dw++] = upper_32_bits(src_offset); |
| ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); |
| ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); |
| } |
| |
| /** |
| * sdma_v6_0_emit_fill_buffer - fill buffer using the sDMA engine |
| * |
| * @ib: indirect buffer to fill |
| * @src_data: value to write to buffer |
| * @dst_offset: dst GPU address |
| * @byte_count: number of bytes to xfer |
| * |
| * Fill GPU buffers using the DMA engine. |
| */ |
| static void sdma_v6_0_emit_fill_buffer(struct amdgpu_ib *ib, |
| uint32_t src_data, |
| uint64_t dst_offset, |
| uint32_t byte_count) |
| { |
| ib->ptr[ib->length_dw++] = SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_CONST_FILL); |
| ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); |
| ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); |
| ib->ptr[ib->length_dw++] = src_data; |
| ib->ptr[ib->length_dw++] = byte_count - 1; |
| } |
| |
| static const struct amdgpu_buffer_funcs sdma_v6_0_buffer_funcs = { |
| .copy_max_bytes = 0x400000, |
| .copy_num_dw = 7, |
| .emit_copy_buffer = sdma_v6_0_emit_copy_buffer, |
| |
| .fill_max_bytes = 0x400000, |
| .fill_num_dw = 5, |
| .emit_fill_buffer = sdma_v6_0_emit_fill_buffer, |
| }; |
| |
| static void sdma_v6_0_set_buffer_funcs(struct amdgpu_device *adev) |
| { |
| adev->mman.buffer_funcs = &sdma_v6_0_buffer_funcs; |
| adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring; |
| } |
| |
| static const struct amdgpu_vm_pte_funcs sdma_v6_0_vm_pte_funcs = { |
| .copy_pte_num_dw = 7, |
| .copy_pte = sdma_v6_0_vm_copy_pte, |
| .write_pte = sdma_v6_0_vm_write_pte, |
| .set_pte_pde = sdma_v6_0_vm_set_pte_pde, |
| }; |
| |
| static void sdma_v6_0_set_vm_pte_funcs(struct amdgpu_device *adev) |
| { |
| unsigned i; |
| |
| adev->vm_manager.vm_pte_funcs = &sdma_v6_0_vm_pte_funcs; |
| for (i = 0; i < adev->sdma.num_instances; i++) { |
| adev->vm_manager.vm_pte_scheds[i] = |
| &adev->sdma.instance[i].ring.sched; |
| } |
| adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances; |
| } |
| |
| const struct amdgpu_ip_block_version sdma_v6_0_ip_block = { |
| .type = AMD_IP_BLOCK_TYPE_SDMA, |
| .major = 6, |
| .minor = 0, |
| .rev = 0, |
| .funcs = &sdma_v6_0_ip_funcs, |
| }; |