blob: 42d40560cd30d787ba2b1e6487dc6a065c810843 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0 OR MIT */
/*
* Copyright 2014-2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef KFD_PRIV_H_INCLUDED
#define KFD_PRIV_H_INCLUDED
#include <linux/hashtable.h>
#include <linux/mmu_notifier.h>
#include <linux/memremap.h>
#include <linux/mutex.h>
#include <linux/types.h>
#include <linux/atomic.h>
#include <linux/workqueue.h>
#include <linux/spinlock.h>
#include <linux/kfd_ioctl.h>
#include <linux/idr.h>
#include <linux/kfifo.h>
#include <linux/seq_file.h>
#include <linux/kref.h>
#include <linux/sysfs.h>
#include <linux/device_cgroup.h>
#include <drm/drm_file.h>
#include <drm/drm_drv.h>
#include <drm/drm_device.h>
#include <drm/drm_ioctl.h>
#include <kgd_kfd_interface.h>
#include <linux/swap.h>
#include "amd_shared.h"
#include "amdgpu.h"
#define KFD_MAX_RING_ENTRY_SIZE 8
#define KFD_SYSFS_FILE_MODE 0444
/* GPU ID hash width in bits */
#define KFD_GPU_ID_HASH_WIDTH 16
/* Use upper bits of mmap offset to store KFD driver specific information.
* BITS[63:62] - Encode MMAP type
* BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to
* BITS[45:0] - MMAP offset value
*
* NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
* defines are w.r.t to PAGE_SIZE
*/
#define KFD_MMAP_TYPE_SHIFT 62
#define KFD_MMAP_TYPE_MASK (0x3ULL << KFD_MMAP_TYPE_SHIFT)
#define KFD_MMAP_TYPE_DOORBELL (0x3ULL << KFD_MMAP_TYPE_SHIFT)
#define KFD_MMAP_TYPE_EVENTS (0x2ULL << KFD_MMAP_TYPE_SHIFT)
#define KFD_MMAP_TYPE_RESERVED_MEM (0x1ULL << KFD_MMAP_TYPE_SHIFT)
#define KFD_MMAP_TYPE_MMIO (0x0ULL << KFD_MMAP_TYPE_SHIFT)
#define KFD_MMAP_GPU_ID_SHIFT 46
#define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \
<< KFD_MMAP_GPU_ID_SHIFT)
#define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\
& KFD_MMAP_GPU_ID_MASK)
#define KFD_MMAP_GET_GPU_ID(offset) ((offset & KFD_MMAP_GPU_ID_MASK) \
>> KFD_MMAP_GPU_ID_SHIFT)
/*
* When working with cp scheduler we should assign the HIQ manually or via
* the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot
* definitions for Kaveri. In Kaveri only the first ME queues participates
* in the cp scheduling taking that in mind we set the HIQ slot in the
* second ME.
*/
#define KFD_CIK_HIQ_PIPE 4
#define KFD_CIK_HIQ_QUEUE 0
/* Macro for allocating structures */
#define kfd_alloc_struct(ptr_to_struct) \
((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
#define KFD_MAX_NUM_OF_PROCESSES 512
#define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
/*
* Size of the per-process TBA+TMA buffer: 2 pages
*
* The first chunk is the TBA used for the CWSR ISA code. The second
* chunk is used as TMA for user-mode trap handler setup in daisy-chain mode.
*/
#define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2)
#define KFD_CWSR_TMA_OFFSET (PAGE_SIZE + 2048)
#define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE \
(KFD_MAX_NUM_OF_PROCESSES * \
KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
#define KFD_KERNEL_QUEUE_SIZE 2048
#define KFD_UNMAP_LATENCY_MS (4000)
#define KFD_MAX_SDMA_QUEUES 128
/*
* 512 = 0x200
* The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the
* same SDMA engine on SOC15, which has 8-byte doorbells for SDMA.
* 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC
* (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in
* the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE.
*/
#define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512
/**
* enum kfd_ioctl_flags - KFD ioctl flags
* Various flags that can be set in &amdkfd_ioctl_desc.flags to control how
* userspace can use a given ioctl.
*/
enum kfd_ioctl_flags {
/*
* @KFD_IOC_FLAG_CHECKPOINT_RESTORE:
* Certain KFD ioctls such as AMDKFD_IOC_CRIU_OP can potentially
* perform privileged operations and load arbitrary data into MQDs and
* eventually HQD registers when the queue is mapped by HWS. In order to
* prevent this we should perform additional security checks.
*
* This is equivalent to callers with the CHECKPOINT_RESTORE capability.
*
* Note: Since earlier versions of docker do not support CHECKPOINT_RESTORE,
* we also allow ioctls with SYS_ADMIN capability.
*/
KFD_IOC_FLAG_CHECKPOINT_RESTORE = BIT(0),
};
/*
* Kernel module parameter to specify maximum number of supported queues per
* device
*/
extern int max_num_of_queues_per_device;
/* Kernel module parameter to specify the scheduling policy */
extern int sched_policy;
/*
* Kernel module parameter to specify the maximum process
* number per HW scheduler
*/
extern int hws_max_conc_proc;
extern int cwsr_enable;
/*
* Kernel module parameter to specify whether to send sigterm to HSA process on
* unhandled exception
*/
extern int send_sigterm;
/*
* This kernel module is used to simulate large bar machine on non-large bar
* enabled machines.
*/
extern int debug_largebar;
/* Set sh_mem_config.retry_disable on GFX v9 */
extern int amdgpu_noretry;
/* Halt if HWS hang is detected */
extern int halt_if_hws_hang;
/* Whether MEC FW support GWS barriers */
extern bool hws_gws_support;
/* Queue preemption timeout in ms */
extern int queue_preemption_timeout_ms;
/*
* Don't evict process queues on vm fault
*/
extern int amdgpu_no_queue_eviction_on_vm_fault;
/* Enable eviction debug messages */
extern bool debug_evictions;
extern struct mutex kfd_processes_mutex;
enum cache_policy {
cache_policy_coherent,
cache_policy_noncoherent
};
#define KFD_GC_VERSION(dev) (amdgpu_ip_version((dev)->adev, GC_HWIP, 0))
#define KFD_IS_SOC15(dev) ((KFD_GC_VERSION(dev)) >= (IP_VERSION(9, 0, 1)))
#define KFD_SUPPORT_XNACK_PER_PROCESS(dev)\
((KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2)) || \
(KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 3)))
struct kfd_node;
struct kfd_event_interrupt_class {
bool (*interrupt_isr)(struct kfd_node *dev,
const uint32_t *ih_ring_entry, uint32_t *patched_ihre,
bool *patched_flag);
void (*interrupt_wq)(struct kfd_node *dev,
const uint32_t *ih_ring_entry);
};
struct kfd_device_info {
uint32_t gfx_target_version;
const struct kfd_event_interrupt_class *event_interrupt_class;
unsigned int max_pasid_bits;
unsigned int max_no_of_hqd;
unsigned int doorbell_size;
size_t ih_ring_entry_size;
uint8_t num_of_watch_points;
uint16_t mqd_size_aligned;
bool supports_cwsr;
bool needs_pci_atomics;
uint32_t no_atomic_fw_version;
unsigned int num_sdma_queues_per_engine;
unsigned int num_reserved_sdma_queues_per_engine;
DECLARE_BITMAP(reserved_sdma_queues_bitmap, KFD_MAX_SDMA_QUEUES);
};
unsigned int kfd_get_num_sdma_engines(struct kfd_node *kdev);
unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_node *kdev);
struct kfd_mem_obj {
uint32_t range_start;
uint32_t range_end;
uint64_t gpu_addr;
uint32_t *cpu_ptr;
void *gtt_mem;
};
struct kfd_vmid_info {
uint32_t first_vmid_kfd;
uint32_t last_vmid_kfd;
uint32_t vmid_num_kfd;
};
#define MAX_KFD_NODES 8
struct kfd_dev;
struct kfd_node {
unsigned int node_id;
struct amdgpu_device *adev; /* Duplicated here along with keeping
* a copy in kfd_dev to save a hop
*/
const struct kfd2kgd_calls *kfd2kgd; /* Duplicated here along with
* keeping a copy in kfd_dev to
* save a hop
*/
struct kfd_vmid_info vm_info;
unsigned int id; /* topology stub index */
uint32_t xcc_mask; /* Instance mask of XCCs present */
struct amdgpu_xcp *xcp;
/* Interrupts */
struct kfifo ih_fifo;
struct workqueue_struct *ih_wq;
struct work_struct interrupt_work;
spinlock_t interrupt_lock;
/*
* Interrupts of interest to KFD are copied
* from the HW ring into a SW ring.
*/
bool interrupts_active;
uint32_t interrupt_bitmap; /* Only used for GFX 9.4.3 */
/* QCM Device instance */
struct device_queue_manager *dqm;
/* Global GWS resource shared between processes */
void *gws;
bool gws_debug_workaround;
/* Clients watching SMI events */
struct list_head smi_clients;
spinlock_t smi_lock;
uint32_t reset_seq_num;
/* SRAM ECC flag */
atomic_t sram_ecc_flag;
/*spm process id */
unsigned int spm_pasid;
/* Maximum process number mapped to HW scheduler */
unsigned int max_proc_per_quantum;
unsigned int compute_vmid_bitmap;
struct kfd_local_mem_info local_mem_info;
struct kfd_dev *kfd;
};
struct kfd_dev {
struct amdgpu_device *adev;
struct kfd_device_info device_info;
u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
* page used by kernel queue
*/
struct kgd2kfd_shared_resources shared_resources;
const struct kfd2kgd_calls *kfd2kgd;
struct mutex doorbell_mutex;
void *gtt_mem;
uint64_t gtt_start_gpu_addr;
void *gtt_start_cpu_ptr;
void *gtt_sa_bitmap;
struct mutex gtt_sa_lock;
unsigned int gtt_sa_chunk_size;
unsigned int gtt_sa_num_of_chunks;
bool init_complete;
/* Firmware versions */
uint16_t mec_fw_version;
uint16_t mec2_fw_version;
uint16_t sdma_fw_version;
/* CWSR */
bool cwsr_enabled;
const void *cwsr_isa;
unsigned int cwsr_isa_size;
/* xGMI */
uint64_t hive_id;
bool pci_atomic_requested;
/* Compute Profile ref. count */
atomic_t compute_profile;
struct ida doorbell_ida;
unsigned int max_doorbell_slices;
int noretry;
struct kfd_node *nodes[MAX_KFD_NODES];
unsigned int num_nodes;
/* Track per device allocated watch points */
uint32_t alloc_watch_ids;
spinlock_t watch_points_lock;
/* Kernel doorbells for KFD device */
struct amdgpu_bo *doorbells;
/* bitmap for dynamic doorbell allocation from doorbell object */
unsigned long *doorbell_bitmap;
};
enum kfd_mempool {
KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
KFD_MEMPOOL_FRAMEBUFFER = 3,
};
/* Character device interface */
int kfd_chardev_init(void);
void kfd_chardev_exit(void);
/**
* enum kfd_unmap_queues_filter - Enum for queue filters.
*
* @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the
* running queues list.
*
* @KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES: Preempts all non-static queues
* in the run list.
*
* @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to
* specific process.
*
*/
enum kfd_unmap_queues_filter {
KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES = 1,
KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES = 2,
KFD_UNMAP_QUEUES_FILTER_BY_PASID = 3
};
/**
* enum kfd_queue_type - Enum for various queue types.
*
* @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
*
* @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type.
*
* @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
*
* @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
*
* @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface.
*/
enum kfd_queue_type {
KFD_QUEUE_TYPE_COMPUTE,
KFD_QUEUE_TYPE_SDMA,
KFD_QUEUE_TYPE_HIQ,
KFD_QUEUE_TYPE_DIQ,
KFD_QUEUE_TYPE_SDMA_XGMI
};
enum kfd_queue_format {
KFD_QUEUE_FORMAT_PM4,
KFD_QUEUE_FORMAT_AQL
};
enum KFD_QUEUE_PRIORITY {
KFD_QUEUE_PRIORITY_MINIMUM = 0,
KFD_QUEUE_PRIORITY_MAXIMUM = 15
};
/**
* struct queue_properties
*
* @type: The queue type.
*
* @queue_id: Queue identifier.
*
* @queue_address: Queue ring buffer address.
*
* @queue_size: Queue ring buffer size.
*
* @priority: Defines the queue priority relative to other queues in the
* process.
* This is just an indication and HW scheduling may override the priority as
* necessary while keeping the relative prioritization.
* the priority granularity is from 0 to f which f is the highest priority.
* currently all queues are initialized with the highest priority.
*
* @queue_percent: This field is partially implemented and currently a zero in
* this field defines that the queue is non active.
*
* @read_ptr: User space address which points to the number of dwords the
* cp read from the ring buffer. This field updates automatically by the H/W.
*
* @write_ptr: Defines the number of dwords written to the ring buffer.
*
* @doorbell_ptr: Notifies the H/W of new packet written to the queue ring
* buffer. This field should be similar to write_ptr and the user should
* update this field after updating the write_ptr.
*
* @doorbell_off: The doorbell offset in the doorbell pci-bar.
*
* @is_interop: Defines if this is a interop queue. Interop queue means that
* the queue can access both graphics and compute resources.
*
* @is_evicted: Defines if the queue is evicted. Only active queues
* are evicted, rendering them inactive.
*
* @is_active: Defines if the queue is active or not. @is_active and
* @is_evicted are protected by the DQM lock.
*
* @is_gws: Defines if the queue has been updated to be GWS-capable or not.
* @is_gws should be protected by the DQM lock, since changing it can yield the
* possibility of updating DQM state on number of GWS queues.
*
* @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
* of the queue.
*
* This structure represents the queue properties for each queue no matter if
* it's user mode or kernel mode queue.
*
*/
struct queue_properties {
enum kfd_queue_type type;
enum kfd_queue_format format;
unsigned int queue_id;
uint64_t queue_address;
uint64_t queue_size;
uint32_t priority;
uint32_t queue_percent;
uint32_t *read_ptr;
uint32_t *write_ptr;
void __iomem *doorbell_ptr;
uint32_t doorbell_off;
bool is_interop;
bool is_evicted;
bool is_suspended;
bool is_being_destroyed;
bool is_active;
bool is_gws;
uint32_t pm4_target_xcc;
bool is_dbg_wa;
bool is_user_cu_masked;
/* Not relevant for user mode queues in cp scheduling */
unsigned int vmid;
/* Relevant only for sdma queues*/
uint32_t sdma_engine_id;
uint32_t sdma_queue_id;
uint32_t sdma_vm_addr;
/* Relevant only for VI */
uint64_t eop_ring_buffer_address;
uint32_t eop_ring_buffer_size;
uint64_t ctx_save_restore_area_address;
uint32_t ctx_save_restore_area_size;
uint32_t ctl_stack_size;
uint64_t tba_addr;
uint64_t tma_addr;
uint64_t exception_status;
};
#define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 && \
(q).queue_address != 0 && \
(q).queue_percent > 0 && \
!(q).is_evicted && \
!(q).is_suspended)
enum mqd_update_flag {
UPDATE_FLAG_DBG_WA_ENABLE = 1,
UPDATE_FLAG_DBG_WA_DISABLE = 2,
UPDATE_FLAG_IS_GWS = 4, /* quirk for gfx9 IP */
};
struct mqd_update_info {
union {
struct {
uint32_t count; /* Must be a multiple of 32 */
uint32_t *ptr;
} cu_mask;
};
enum mqd_update_flag update_flag;
};
/**
* struct queue
*
* @list: Queue linked list.
*
* @mqd: The queue MQD (memory queue descriptor).
*
* @mqd_mem_obj: The MQD local gpu memory object.
*
* @gart_mqd_addr: The MQD gart mc address.
*
* @properties: The queue properties.
*
* @mec: Used only in no cp scheduling mode and identifies to micro engine id
* that the queue should be executed on.
*
* @pipe: Used only in no cp scheduling mode and identifies the queue's pipe
* id.
*
* @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
*
* @process: The kfd process that created this queue.
*
* @device: The kfd device that created this queue.
*
* @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL
* otherwise.
*
* This structure represents user mode compute queues.
* It contains all the necessary data to handle such queues.
*
*/
struct queue {
struct list_head list;
void *mqd;
struct kfd_mem_obj *mqd_mem_obj;
uint64_t gart_mqd_addr;
struct queue_properties properties;
uint32_t mec;
uint32_t pipe;
uint32_t queue;
unsigned int sdma_id;
unsigned int doorbell_id;
struct kfd_process *process;
struct kfd_node *device;
void *gws;
/* procfs */
struct kobject kobj;
void *gang_ctx_bo;
uint64_t gang_ctx_gpu_addr;
void *gang_ctx_cpu_ptr;
struct amdgpu_bo *wptr_bo;
};
enum KFD_MQD_TYPE {
KFD_MQD_TYPE_HIQ = 0, /* for hiq */
KFD_MQD_TYPE_CP, /* for cp queues and diq */
KFD_MQD_TYPE_SDMA, /* for sdma queues */
KFD_MQD_TYPE_DIQ, /* for diq */
KFD_MQD_TYPE_MAX
};
enum KFD_PIPE_PRIORITY {
KFD_PIPE_PRIORITY_CS_LOW = 0,
KFD_PIPE_PRIORITY_CS_MEDIUM,
KFD_PIPE_PRIORITY_CS_HIGH
};
struct scheduling_resources {
unsigned int vmid_mask;
enum kfd_queue_type type;
uint64_t queue_mask;
uint64_t gws_mask;
uint32_t oac_mask;
uint32_t gds_heap_base;
uint32_t gds_heap_size;
};
struct process_queue_manager {
/* data */
struct kfd_process *process;
struct list_head queues;
unsigned long *queue_slot_bitmap;
};
struct qcm_process_device {
/* The Device Queue Manager that owns this data */
struct device_queue_manager *dqm;
struct process_queue_manager *pqm;
/* Queues list */
struct list_head queues_list;
struct list_head priv_queue_list;
unsigned int queue_count;
unsigned int vmid;
bool is_debug;
unsigned int evicted; /* eviction counter, 0=active */
/* This flag tells if we should reset all wavefronts on
* process termination
*/
bool reset_wavefronts;
/* This flag tells us if this process has a GWS-capable
* queue that will be mapped into the runlist. It's
* possible to request a GWS BO, but not have the queue
* currently mapped, and this changes how the MAP_PROCESS
* PM4 packet is configured.
*/
bool mapped_gws_queue;
/* All the memory management data should be here too */
uint64_t gds_context_area;
/* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */
uint64_t page_table_base;
uint32_t sh_mem_config;
uint32_t sh_mem_bases;
uint32_t sh_mem_ape1_base;
uint32_t sh_mem_ape1_limit;
uint32_t gds_size;
uint32_t num_gws;
uint32_t num_oac;
uint32_t sh_hidden_private_base;
/* CWSR memory */
struct kgd_mem *cwsr_mem;
void *cwsr_kaddr;
uint64_t cwsr_base;
uint64_t tba_addr;
uint64_t tma_addr;
/* IB memory */
struct kgd_mem *ib_mem;
uint64_t ib_base;
void *ib_kaddr;
/* doorbells for kfd process */
struct amdgpu_bo *proc_doorbells;
/* bitmap for dynamic doorbell allocation from the bo */
unsigned long *doorbell_bitmap;
};
/* KFD Memory Eviction */
/* Approx. wait time before attempting to restore evicted BOs */
#define PROCESS_RESTORE_TIME_MS 100
/* Approx. back off time if restore fails due to lack of memory */
#define PROCESS_BACK_OFF_TIME_MS 100
/* Approx. time before evicting the process again */
#define PROCESS_ACTIVE_TIME_MS 10
/* 8 byte handle containing GPU ID in the most significant 4 bytes and
* idr_handle in the least significant 4 bytes
*/
#define MAKE_HANDLE(gpu_id, idr_handle) \
(((uint64_t)(gpu_id) << 32) + idr_handle)
#define GET_GPU_ID(handle) (handle >> 32)
#define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF)
enum kfd_pdd_bound {
PDD_UNBOUND = 0,
PDD_BOUND,
PDD_BOUND_SUSPENDED,
};
#define MAX_SYSFS_FILENAME_LEN 15
/*
* SDMA counter runs at 100MHz frequency.
* We display SDMA activity in microsecond granularity in sysfs.
* As a result, the divisor is 100.
*/
#define SDMA_ACTIVITY_DIVISOR 100
/* Data that is per-process-per device. */
struct kfd_process_device {
/* The device that owns this data. */
struct kfd_node *dev;
/* The process that owns this kfd_process_device. */
struct kfd_process *process;
/* per-process-per device QCM data structure */
struct qcm_process_device qpd;
/*Apertures*/
uint64_t lds_base;
uint64_t lds_limit;
uint64_t gpuvm_base;
uint64_t gpuvm_limit;
uint64_t scratch_base;
uint64_t scratch_limit;
/* VM context for GPUVM allocations */
struct file *drm_file;
void *drm_priv;
/* GPUVM allocations storage */
struct idr alloc_idr;
/* Flag used to tell the pdd has dequeued from the dqm.
* This is used to prevent dev->dqm->ops.process_termination() from
* being called twice when it is already called in IOMMU callback
* function.
*/
bool already_dequeued;
bool runtime_inuse;
/* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
enum kfd_pdd_bound bound;
/* VRAM usage */
uint64_t vram_usage;
struct attribute attr_vram;
char vram_filename[MAX_SYSFS_FILENAME_LEN];
/* SDMA activity tracking */
uint64_t sdma_past_activity_counter;
struct attribute attr_sdma;
char sdma_filename[MAX_SYSFS_FILENAME_LEN];
/* Eviction activity tracking */
uint64_t last_evict_timestamp;
atomic64_t evict_duration_counter;
struct attribute attr_evict;
struct kobject *kobj_stats;
/*
* @cu_occupancy: Reports occupancy of Compute Units (CU) of a process
* that is associated with device encoded by "this" struct instance. The
* value reflects CU usage by all of the waves launched by this process
* on this device. A very important property of occupancy parameter is
* that its value is a snapshot of current use.
*
* Following is to be noted regarding how this parameter is reported:
*
* The number of waves that a CU can launch is limited by couple of
* parameters. These are encoded by struct amdgpu_cu_info instance
* that is part of every device definition. For GFX9 devices this
* translates to 40 waves (simd_per_cu * max_waves_per_simd) when waves
* do not use scratch memory and 32 waves (max_scratch_slots_per_cu)
* when they do use scratch memory. This could change for future
* devices and therefore this example should be considered as a guide.
*
* All CU's of a device are available for the process. This may not be true
* under certain conditions - e.g. CU masking.
*
* Finally number of CU's that are occupied by a process is affected by both
* number of CU's a device has along with number of other competing processes
*/
struct attribute attr_cu_occupancy;
/* sysfs counters for GPU retry fault and page migration tracking */
struct kobject *kobj_counters;
struct attribute attr_faults;
struct attribute attr_page_in;
struct attribute attr_page_out;
uint64_t faults;
uint64_t page_in;
uint64_t page_out;
/* Exception code status*/
uint64_t exception_status;
void *vm_fault_exc_data;
size_t vm_fault_exc_data_size;
/* Tracks debug per-vmid request settings */
uint32_t spi_dbg_override;
uint32_t spi_dbg_launch_mode;
uint32_t watch_points[4];
uint32_t alloc_watch_ids;
/*
* If this process has been checkpointed before, then the user
* application will use the original gpu_id on the
* checkpointed node to refer to this device.
*/
uint32_t user_gpu_id;
void *proc_ctx_bo;
uint64_t proc_ctx_gpu_addr;
void *proc_ctx_cpu_ptr;
};
#define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
struct svm_range_list {
struct mutex lock;
struct rb_root_cached objects;
struct list_head list;
struct work_struct deferred_list_work;
struct list_head deferred_range_list;
struct list_head criu_svm_metadata_list;
spinlock_t deferred_list_lock;
atomic_t evicted_ranges;
atomic_t drain_pagefaults;
struct delayed_work restore_work;
DECLARE_BITMAP(bitmap_supported, MAX_GPU_INSTANCE);
struct task_struct *faulting_task;
};
/* Process data */
struct kfd_process {
/*
* kfd_process are stored in an mm_struct*->kfd_process*
* hash table (kfd_processes in kfd_process.c)
*/
struct hlist_node kfd_processes;
/*
* Opaque pointer to mm_struct. We don't hold a reference to
* it so it should never be dereferenced from here. This is
* only used for looking up processes by their mm.
*/
void *mm;
struct kref ref;
struct work_struct release_work;
struct mutex mutex;
/*
* In any process, the thread that started main() is the lead
* thread and outlives the rest.
* It is here because amd_iommu_bind_pasid wants a task_struct.
* It can also be used for safely getting a reference to the
* mm_struct of the process.
*/
struct task_struct *lead_thread;
/* We want to receive a notification when the mm_struct is destroyed */
struct mmu_notifier mmu_notifier;
u32 pasid;
/*
* Array of kfd_process_device pointers,
* one for each device the process is using.
*/
struct kfd_process_device *pdds[MAX_GPU_INSTANCE];
uint32_t n_pdds;
struct process_queue_manager pqm;
/*Is the user space process 32 bit?*/
bool is_32bit_user_mode;
/* Event-related data */
struct mutex event_mutex;
/* Event ID allocator and lookup */
struct idr event_idr;
/* Event page */
u64 signal_handle;
struct kfd_signal_page *signal_page;
size_t signal_mapped_size;
size_t signal_event_count;
bool signal_event_limit_reached;
/* Information used for memory eviction */
void *kgd_process_info;
/* Eviction fence that is attached to all the BOs of this process. The
* fence will be triggered during eviction and new one will be created
* during restore
*/
struct dma_fence __rcu *ef;
/* Work items for evicting and restoring BOs */
struct delayed_work eviction_work;
struct delayed_work restore_work;
/* seqno of the last scheduled eviction */
unsigned int last_eviction_seqno;
/* Approx. the last timestamp (in jiffies) when the process was
* restored after an eviction
*/
unsigned long last_restore_timestamp;
/* Indicates device process is debug attached with reserved vmid. */
bool debug_trap_enabled;
/* per-process-per device debug event fd file */
struct file *dbg_ev_file;
/* If the process is a kfd debugger, we need to know so we can clean
* up at exit time. If a process enables debugging on itself, it does
* its own clean-up, so we don't set the flag here. We track this by
* counting the number of processes this process is debugging.
*/
atomic_t debugged_process_count;
/* If the process is a debugged, this is the debugger process */
struct kfd_process *debugger_process;
/* Kobj for our procfs */
struct kobject *kobj;
struct kobject *kobj_queues;
struct attribute attr_pasid;
/* Keep track cwsr init */
bool has_cwsr;
/* Exception code enable mask and status */
uint64_t exception_enable_mask;
uint64_t exception_status;
/* Used to drain stale interrupts */
wait_queue_head_t wait_irq_drain;
bool irq_drain_is_open;
/* shared virtual memory registered by this process */
struct svm_range_list svms;
bool xnack_enabled;
/* Work area for debugger event writer worker. */
struct work_struct debug_event_workarea;
/* Tracks debug per-vmid request for debug flags */
u32 dbg_flags;
atomic_t poison;
/* Queues are in paused stated because we are in the process of doing a CRIU checkpoint */
bool queues_paused;
/* Tracks runtime enable status */
struct semaphore runtime_enable_sema;
bool is_runtime_retry;
struct kfd_runtime_info runtime_info;
};
#define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */
extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
extern struct srcu_struct kfd_processes_srcu;
/**
* typedef amdkfd_ioctl_t - typedef for ioctl function pointer.
*
* @filep: pointer to file structure.
* @p: amdkfd process pointer.
* @data: pointer to arg that was copied from user.
*
* Return: returns ioctl completion code.
*/
typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
void *data);
struct amdkfd_ioctl_desc {
unsigned int cmd;
int flags;
amdkfd_ioctl_t *func;
unsigned int cmd_drv;
const char *name;
};
bool kfd_dev_is_large_bar(struct kfd_node *dev);
int kfd_process_create_wq(void);
void kfd_process_destroy_wq(void);
void kfd_cleanup_processes(void);
struct kfd_process *kfd_create_process(struct task_struct *thread);
struct kfd_process *kfd_get_process(const struct task_struct *task);
struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid);
struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm);
int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id);
int kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
uint32_t *gpuid, uint32_t *gpuidx);
static inline int kfd_process_gpuid_from_gpuidx(struct kfd_process *p,
uint32_t gpuidx, uint32_t *gpuid) {
return gpuidx < p->n_pdds ? p->pdds[gpuidx]->dev->id : -EINVAL;
}
static inline struct kfd_process_device *kfd_process_device_from_gpuidx(
struct kfd_process *p, uint32_t gpuidx) {
return gpuidx < p->n_pdds ? p->pdds[gpuidx] : NULL;
}
void kfd_unref_process(struct kfd_process *p);
int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger);
int kfd_process_restore_queues(struct kfd_process *p);
void kfd_suspend_all_processes(void);
int kfd_resume_all_processes(void);
struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *process,
uint32_t gpu_id);
int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id);
int kfd_process_device_init_vm(struct kfd_process_device *pdd,
struct file *drm_file);
struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
struct kfd_process *p);
struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
struct kfd_process *p);
struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
struct kfd_process *p);
bool kfd_process_xnack_mode(struct kfd_process *p, bool supported);
int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
struct vm_area_struct *vma);
/* KFD process API for creating and translating handles */
int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
void *mem);
void *kfd_process_device_translate_handle(struct kfd_process_device *p,
int handle);
void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
int handle);
struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid);
/* PASIDs */
int kfd_pasid_init(void);
void kfd_pasid_exit(void);
bool kfd_set_pasid_limit(unsigned int new_limit);
unsigned int kfd_get_pasid_limit(void);
u32 kfd_pasid_alloc(void);
void kfd_pasid_free(u32 pasid);
/* Doorbells */
size_t kfd_doorbell_process_slice(struct kfd_dev *kfd);
int kfd_doorbell_init(struct kfd_dev *kfd);
void kfd_doorbell_fini(struct kfd_dev *kfd);
int kfd_doorbell_mmap(struct kfd_node *dev, struct kfd_process *process,
struct vm_area_struct *vma);
void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
unsigned int *doorbell_off);
void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
u32 read_kernel_doorbell(u32 __iomem *db);
void write_kernel_doorbell(void __iomem *db, u32 value);
void write_kernel_doorbell64(void __iomem *db, u64 value);
unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd,
struct kfd_process_device *pdd,
unsigned int doorbell_id);
phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd);
int kfd_alloc_process_doorbells(struct kfd_dev *kfd,
struct kfd_process_device *pdd);
void kfd_free_process_doorbells(struct kfd_dev *kfd,
struct kfd_process_device *pdd);
/* GTT Sub-Allocator */
int kfd_gtt_sa_allocate(struct kfd_node *node, unsigned int size,
struct kfd_mem_obj **mem_obj);
int kfd_gtt_sa_free(struct kfd_node *node, struct kfd_mem_obj *mem_obj);
extern struct device *kfd_device;
/* KFD's procfs */
void kfd_procfs_init(void);
void kfd_procfs_shutdown(void);
int kfd_procfs_add_queue(struct queue *q);
void kfd_procfs_del_queue(struct queue *q);
/* Topology */
int kfd_topology_init(void);
void kfd_topology_shutdown(void);
int kfd_topology_add_device(struct kfd_node *gpu);
int kfd_topology_remove_device(struct kfd_node *gpu);
struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
uint32_t proximity_domain);
struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock(
uint32_t proximity_domain);
struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id);
struct kfd_node *kfd_device_by_id(uint32_t gpu_id);
struct kfd_node *kfd_device_by_pci_dev(const struct pci_dev *pdev);
static inline bool kfd_irq_is_from_node(struct kfd_node *node, uint32_t node_id,
uint32_t vmid)
{
return (node->interrupt_bitmap & (1 << node_id)) != 0 &&
(node->compute_vmid_bitmap & (1 << vmid)) != 0;
}
static inline struct kfd_node *kfd_node_by_irq_ids(struct amdgpu_device *adev,
uint32_t node_id, uint32_t vmid) {
struct kfd_dev *dev = adev->kfd.dev;
uint32_t i;
if (KFD_GC_VERSION(dev) != IP_VERSION(9, 4, 3))
return dev->nodes[0];
for (i = 0; i < dev->num_nodes; i++)
if (kfd_irq_is_from_node(dev->nodes[i], node_id, vmid))
return dev->nodes[i];
return NULL;
}
int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_node **kdev);
int kfd_numa_node_to_apic_id(int numa_node_id);
/* Interrupts */
#define KFD_IRQ_FENCE_CLIENTID 0xff
#define KFD_IRQ_FENCE_SOURCEID 0xff
#define KFD_IRQ_IS_FENCE(client, source) \
((client) == KFD_IRQ_FENCE_CLIENTID && \
(source) == KFD_IRQ_FENCE_SOURCEID)
int kfd_interrupt_init(struct kfd_node *dev);
void kfd_interrupt_exit(struct kfd_node *dev);
bool enqueue_ih_ring_entry(struct kfd_node *kfd, const void *ih_ring_entry);
bool interrupt_is_wanted(struct kfd_node *dev,
const uint32_t *ih_ring_entry,
uint32_t *patched_ihre, bool *flag);
int kfd_process_drain_interrupts(struct kfd_process_device *pdd);
void kfd_process_close_interrupt_drain(unsigned int pasid);
/* amdkfd Apertures */
int kfd_init_apertures(struct kfd_process *process);
void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
uint64_t tba_addr,
uint64_t tma_addr);
void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd,
bool enabled);
/* CWSR initialization */
int kfd_process_init_cwsr_apu(struct kfd_process *process, struct file *filep);
/* CRIU */
/*
* Need to increment KFD_CRIU_PRIV_VERSION each time a change is made to any of the CRIU private
* structures:
* kfd_criu_process_priv_data
* kfd_criu_device_priv_data
* kfd_criu_bo_priv_data
* kfd_criu_queue_priv_data
* kfd_criu_event_priv_data
* kfd_criu_svm_range_priv_data
*/
#define KFD_CRIU_PRIV_VERSION 1
struct kfd_criu_process_priv_data {
uint32_t version;
uint32_t xnack_mode;
};
struct kfd_criu_device_priv_data {
/* For future use */
uint64_t reserved;
};
struct kfd_criu_bo_priv_data {
uint64_t user_addr;
uint32_t idr_handle;
uint32_t mapped_gpuids[MAX_GPU_INSTANCE];
};
/*
* The first 4 bytes of kfd_criu_queue_priv_data, kfd_criu_event_priv_data,
* kfd_criu_svm_range_priv_data is the object type
*/
enum kfd_criu_object_type {
KFD_CRIU_OBJECT_TYPE_QUEUE,
KFD_CRIU_OBJECT_TYPE_EVENT,
KFD_CRIU_OBJECT_TYPE_SVM_RANGE,
};
struct kfd_criu_svm_range_priv_data {
uint32_t object_type;
uint64_t start_addr;
uint64_t size;
/* Variable length array of attributes */
struct kfd_ioctl_svm_attribute attrs[];
};
struct kfd_criu_queue_priv_data {
uint32_t object_type;
uint64_t q_address;
uint64_t q_size;
uint64_t read_ptr_addr;
uint64_t write_ptr_addr;
uint64_t doorbell_off;
uint64_t eop_ring_buffer_address;
uint64_t ctx_save_restore_area_address;
uint32_t gpu_id;
uint32_t type;
uint32_t format;
uint32_t q_id;
uint32_t priority;
uint32_t q_percent;
uint32_t doorbell_id;
uint32_t gws;
uint32_t sdma_id;
uint32_t eop_ring_buffer_size;
uint32_t ctx_save_restore_area_size;
uint32_t ctl_stack_size;
uint32_t mqd_size;
};
struct kfd_criu_event_priv_data {
uint32_t object_type;
uint64_t user_handle;
uint32_t event_id;
uint32_t auto_reset;
uint32_t type;
uint32_t signaled;
union {
struct kfd_hsa_memory_exception_data memory_exception_data;
struct kfd_hsa_hw_exception_data hw_exception_data;
};
};
int kfd_process_get_queue_info(struct kfd_process *p,
uint32_t *num_queues,
uint64_t *priv_data_sizes);
int kfd_criu_checkpoint_queues(struct kfd_process *p,
uint8_t __user *user_priv_data,
uint64_t *priv_data_offset);
int kfd_criu_restore_queue(struct kfd_process *p,
uint8_t __user *user_priv_data,
uint64_t *priv_data_offset,
uint64_t max_priv_data_size);
int kfd_criu_checkpoint_events(struct kfd_process *p,
uint8_t __user *user_priv_data,
uint64_t *priv_data_offset);
int kfd_criu_restore_event(struct file *devkfd,
struct kfd_process *p,
uint8_t __user *user_priv_data,
uint64_t *priv_data_offset,
uint64_t max_priv_data_size);
/* CRIU - End */
/* Queue Context Management */
int init_queue(struct queue **q, const struct queue_properties *properties);
void uninit_queue(struct queue *q);
void print_queue_properties(struct queue_properties *q);
void print_queue(struct queue *q);
struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
struct kfd_node *dev);
struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
struct kfd_node *dev);
struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
struct kfd_node *dev);
struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type,
struct kfd_node *dev);
struct mqd_manager *mqd_manager_init_v11(enum KFD_MQD_TYPE type,
struct kfd_node *dev);
struct device_queue_manager *device_queue_manager_init(struct kfd_node *dev);
void device_queue_manager_uninit(struct device_queue_manager *dqm);
struct kernel_queue *kernel_queue_init(struct kfd_node *dev,
enum kfd_queue_type type);
void kernel_queue_uninit(struct kernel_queue *kq, bool hanging);
int kfd_dqm_evict_pasid(struct device_queue_manager *dqm, u32 pasid);
/* Process Queue Manager */
struct process_queue_node {
struct queue *q;
struct kernel_queue *kq;
struct list_head process_queue_list;
};
void kfd_process_dequeue_from_device(struct kfd_process_device *pdd);
void kfd_process_dequeue_from_all_devices(struct kfd_process *p);
int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
void pqm_uninit(struct process_queue_manager *pqm);
int pqm_create_queue(struct process_queue_manager *pqm,
struct kfd_node *dev,
struct file *f,
struct queue_properties *properties,
unsigned int *qid,
struct amdgpu_bo *wptr_bo,
const struct kfd_criu_queue_priv_data *q_data,
const void *restore_mqd,
const void *restore_ctl_stack,
uint32_t *p_doorbell_offset_in_process);
int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
int pqm_update_queue_properties(struct process_queue_manager *pqm, unsigned int qid,
struct queue_properties *p);
int pqm_update_mqd(struct process_queue_manager *pqm, unsigned int qid,
struct mqd_update_info *minfo);
int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid,
void *gws);
struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
unsigned int qid);
struct queue *pqm_get_user_queue(struct process_queue_manager *pqm,
unsigned int qid);
int pqm_get_wave_state(struct process_queue_manager *pqm,
unsigned int qid,
void __user *ctl_stack,
u32 *ctl_stack_used_size,
u32 *save_area_used_size);
int pqm_get_queue_snapshot(struct process_queue_manager *pqm,
uint64_t exception_clear_mask,
void __user *buf,
int *num_qss_entries,
uint32_t *entry_size);
int amdkfd_fence_wait_timeout(struct device_queue_manager *dqm,
uint64_t fence_value,
unsigned int timeout_ms);
int pqm_get_queue_checkpoint_info(struct process_queue_manager *pqm,
unsigned int qid,
u32 *mqd_size,
u32 *ctl_stack_size);
/* Packet Manager */
#define KFD_FENCE_COMPLETED (100)
#define KFD_FENCE_INIT (10)
struct packet_manager {
struct device_queue_manager *dqm;
struct kernel_queue *priv_queue;
struct mutex lock;
bool allocated;
struct kfd_mem_obj *ib_buffer_obj;
unsigned int ib_size_bytes;
bool is_over_subscription;
const struct packet_manager_funcs *pmf;
};
struct packet_manager_funcs {
/* Support ASIC-specific packet formats for PM4 packets */
int (*map_process)(struct packet_manager *pm, uint32_t *buffer,
struct qcm_process_device *qpd);
int (*runlist)(struct packet_manager *pm, uint32_t *buffer,
uint64_t ib, size_t ib_size_in_dwords, bool chain);
int (*set_resources)(struct packet_manager *pm, uint32_t *buffer,
struct scheduling_resources *res);
int (*map_queues)(struct packet_manager *pm, uint32_t *buffer,
struct queue *q, bool is_static);
int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer,
enum kfd_unmap_queues_filter mode,
uint32_t filter_param, bool reset);
int (*set_grace_period)(struct packet_manager *pm, uint32_t *buffer,
uint32_t grace_period);
int (*query_status)(struct packet_manager *pm, uint32_t *buffer,
uint64_t fence_address, uint64_t fence_value);
int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer);
/* Packet sizes */
int map_process_size;
int runlist_size;
int set_resources_size;
int map_queues_size;
int unmap_queues_size;
int set_grace_period_size;
int query_status_size;
int release_mem_size;
};
extern const struct packet_manager_funcs kfd_vi_pm_funcs;
extern const struct packet_manager_funcs kfd_v9_pm_funcs;
extern const struct packet_manager_funcs kfd_aldebaran_pm_funcs;
int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
void pm_uninit(struct packet_manager *pm, bool hanging);
int pm_send_set_resources(struct packet_manager *pm,
struct scheduling_resources *res);
int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
uint64_t fence_value);
int pm_send_unmap_queue(struct packet_manager *pm,
enum kfd_unmap_queues_filter mode,
uint32_t filter_param, bool reset);
void pm_release_ib(struct packet_manager *pm);
int pm_update_grace_period(struct packet_manager *pm, uint32_t grace_period);
/* Following PM funcs can be shared among VI and AI */
unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size);
uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
/* Events */
extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
extern const struct kfd_event_interrupt_class event_interrupt_class_v9;
extern const struct kfd_event_interrupt_class event_interrupt_class_v9_4_3;
extern const struct kfd_event_interrupt_class event_interrupt_class_v10;
extern const struct kfd_event_interrupt_class event_interrupt_class_v11;
extern const struct kfd_device_global_init_class device_global_init_class_cik;
int kfd_event_init_process(struct kfd_process *p);
void kfd_event_free_process(struct kfd_process *p);
int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
int kfd_wait_on_events(struct kfd_process *p,
uint32_t num_events, void __user *data,
bool all, uint32_t *user_timeout_ms,
uint32_t *wait_result);
void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id,
uint32_t valid_id_bits);
void kfd_signal_hw_exception_event(u32 pasid);
int kfd_set_event(struct kfd_process *p, uint32_t event_id);
int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset);
int kfd_event_create(struct file *devkfd, struct kfd_process *p,
uint32_t event_type, bool auto_reset, uint32_t node_id,
uint32_t *event_id, uint32_t *event_trigger_data,
uint64_t *event_page_offset, uint32_t *event_slot_index);
int kfd_get_num_events(struct kfd_process *p);
int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
void kfd_signal_vm_fault_event(struct kfd_node *dev, u32 pasid,
struct kfd_vm_fault_info *info,
struct kfd_hsa_memory_exception_data *data);
void kfd_signal_reset_event(struct kfd_node *dev);
void kfd_signal_poison_consumed_event(struct kfd_node *dev, u32 pasid);
static inline void kfd_flush_tlb(struct kfd_process_device *pdd,
enum TLB_FLUSH_TYPE type)
{
struct amdgpu_device *adev = pdd->dev->adev;
struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
amdgpu_vm_flush_compute_tlb(adev, vm, type, pdd->dev->xcc_mask);
}
static inline bool kfd_flush_tlb_after_unmap(struct kfd_dev *dev)
{
return KFD_GC_VERSION(dev) > IP_VERSION(9, 4, 2) ||
(KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 1) && dev->sdma_fw_version >= 18) ||
KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 0);
}
int kfd_send_exception_to_runtime(struct kfd_process *p,
unsigned int queue_id,
uint64_t error_reason);
bool kfd_is_locked(void);
/* Compute profile */
void kfd_inc_compute_active(struct kfd_node *dev);
void kfd_dec_compute_active(struct kfd_node *dev);
/* Cgroup Support */
/* Check with device cgroup if @kfd device is accessible */
static inline int kfd_devcgroup_check_permission(struct kfd_node *node)
{
#if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF)
struct drm_device *ddev;
if (node->xcp)
ddev = node->xcp->ddev;
else
ddev = adev_to_drm(node->adev);
return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR,
ddev->render->index,
DEVCG_ACC_WRITE | DEVCG_ACC_READ);
#else
return 0;
#endif
}
static inline bool kfd_is_first_node(struct kfd_node *node)
{
return (node == node->kfd->nodes[0]);
}
/* Debugfs */
#if defined(CONFIG_DEBUG_FS)
void kfd_debugfs_init(void);
void kfd_debugfs_fini(void);
int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data);
int pqm_debugfs_mqds(struct seq_file *m, void *data);
int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data);
int dqm_debugfs_hqds(struct seq_file *m, void *data);
int kfd_debugfs_rls_by_device(struct seq_file *m, void *data);
int pm_debugfs_runlist(struct seq_file *m, void *data);
int kfd_debugfs_hang_hws(struct kfd_node *dev);
int pm_debugfs_hang_hws(struct packet_manager *pm);
int dqm_debugfs_hang_hws(struct device_queue_manager *dqm);
#else
static inline void kfd_debugfs_init(void) {}
static inline void kfd_debugfs_fini(void) {}
#endif
#endif