blob: 717a60d7a4ea953b8dfc369b09d855ad74b49659 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0 OR MIT
/*
* Copyright 2014-2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <linux/mutex.h>
#include <linux/log2.h>
#include <linux/sched.h>
#include <linux/sched/mm.h>
#include <linux/sched/task.h>
#include <linux/mmu_context.h>
#include <linux/slab.h>
#include <linux/notifier.h>
#include <linux/compat.h>
#include <linux/mman.h>
#include <linux/file.h>
#include <linux/pm_runtime.h>
#include "amdgpu_amdkfd.h"
#include "amdgpu.h"
struct mm_struct;
#include "kfd_priv.h"
#include "kfd_device_queue_manager.h"
#include "kfd_svm.h"
#include "kfd_smi_events.h"
#include "kfd_debug.h"
/*
* List of struct kfd_process (field kfd_process).
* Unique/indexed by mm_struct*
*/
DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
DEFINE_MUTEX(kfd_processes_mutex);
DEFINE_SRCU(kfd_processes_srcu);
/* For process termination handling */
static struct workqueue_struct *kfd_process_wq;
/* Ordered, single-threaded workqueue for restoring evicted
* processes. Restoring multiple processes concurrently under memory
* pressure can lead to processes blocking each other from validating
* their BOs and result in a live-lock situation where processes
* remain evicted indefinitely.
*/
static struct workqueue_struct *kfd_restore_wq;
static struct kfd_process *find_process(const struct task_struct *thread,
bool ref);
static void kfd_process_ref_release(struct kref *ref);
static struct kfd_process *create_process(const struct task_struct *thread);
static void evict_process_worker(struct work_struct *work);
static void restore_process_worker(struct work_struct *work);
static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
struct kfd_procfs_tree {
struct kobject *kobj;
};
static struct kfd_procfs_tree procfs;
/*
* Structure for SDMA activity tracking
*/
struct kfd_sdma_activity_handler_workarea {
struct work_struct sdma_activity_work;
struct kfd_process_device *pdd;
uint64_t sdma_activity_counter;
};
struct temp_sdma_queue_list {
uint64_t __user *rptr;
uint64_t sdma_val;
unsigned int queue_id;
struct list_head list;
};
static void kfd_sdma_activity_worker(struct work_struct *work)
{
struct kfd_sdma_activity_handler_workarea *workarea;
struct kfd_process_device *pdd;
uint64_t val;
struct mm_struct *mm;
struct queue *q;
struct qcm_process_device *qpd;
struct device_queue_manager *dqm;
int ret = 0;
struct temp_sdma_queue_list sdma_q_list;
struct temp_sdma_queue_list *sdma_q, *next;
workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
sdma_activity_work);
pdd = workarea->pdd;
if (!pdd)
return;
dqm = pdd->dev->dqm;
qpd = &pdd->qpd;
if (!dqm || !qpd)
return;
/*
* Total SDMA activity is current SDMA activity + past SDMA activity
* Past SDMA count is stored in pdd.
* To get the current activity counters for all active SDMA queues,
* we loop over all SDMA queues and get their counts from user-space.
*
* We cannot call get_user() with dqm_lock held as it can cause
* a circular lock dependency situation. To read the SDMA stats,
* we need to do the following:
*
* 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
* with dqm_lock/dqm_unlock().
* 2. Call get_user() for each node in temporary list without dqm_lock.
* Save the SDMA count for each node and also add the count to the total
* SDMA count counter.
* Its possible, during this step, a few SDMA queue nodes got deleted
* from the qpd->queues_list.
* 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
* If any node got deleted, its SDMA count would be captured in the sdma
* past activity counter. So subtract the SDMA counter stored in step 2
* for this node from the total SDMA count.
*/
INIT_LIST_HEAD(&sdma_q_list.list);
/*
* Create the temp list of all SDMA queues
*/
dqm_lock(dqm);
list_for_each_entry(q, &qpd->queues_list, list) {
if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
(q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
continue;
sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
if (!sdma_q) {
dqm_unlock(dqm);
goto cleanup;
}
INIT_LIST_HEAD(&sdma_q->list);
sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
sdma_q->queue_id = q->properties.queue_id;
list_add_tail(&sdma_q->list, &sdma_q_list.list);
}
/*
* If the temp list is empty, then no SDMA queues nodes were found in
* qpd->queues_list. Return the past activity count as the total sdma
* count
*/
if (list_empty(&sdma_q_list.list)) {
workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
dqm_unlock(dqm);
return;
}
dqm_unlock(dqm);
/*
* Get the usage count for each SDMA queue in temp_list.
*/
mm = get_task_mm(pdd->process->lead_thread);
if (!mm)
goto cleanup;
kthread_use_mm(mm);
list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
val = 0;
ret = read_sdma_queue_counter(sdma_q->rptr, &val);
if (ret) {
pr_debug("Failed to read SDMA queue active counter for queue id: %d",
sdma_q->queue_id);
} else {
sdma_q->sdma_val = val;
workarea->sdma_activity_counter += val;
}
}
kthread_unuse_mm(mm);
mmput(mm);
/*
* Do a second iteration over qpd_queues_list to check if any SDMA
* nodes got deleted while fetching SDMA counter.
*/
dqm_lock(dqm);
workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
list_for_each_entry(q, &qpd->queues_list, list) {
if (list_empty(&sdma_q_list.list))
break;
if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
(q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
continue;
list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
(sdma_q->queue_id == q->properties.queue_id)) {
list_del(&sdma_q->list);
kfree(sdma_q);
break;
}
}
}
dqm_unlock(dqm);
/*
* If temp list is not empty, it implies some queues got deleted
* from qpd->queues_list during SDMA usage read. Subtract the SDMA
* count for each node from the total SDMA count.
*/
list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
workarea->sdma_activity_counter -= sdma_q->sdma_val;
list_del(&sdma_q->list);
kfree(sdma_q);
}
return;
cleanup:
list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
list_del(&sdma_q->list);
kfree(sdma_q);
}
}
/**
* kfd_get_cu_occupancy - Collect number of waves in-flight on this device
* by current process. Translates acquired wave count into number of compute units
* that are occupied.
*
* @attr: Handle of attribute that allows reporting of wave count. The attribute
* handle encapsulates GPU device it is associated with, thereby allowing collection
* of waves in flight, etc
* @buffer: Handle of user provided buffer updated with wave count
*
* Return: Number of bytes written to user buffer or an error value
*/
static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
{
int cu_cnt;
int wave_cnt;
int max_waves_per_cu;
struct kfd_node *dev = NULL;
struct kfd_process *proc = NULL;
struct kfd_process_device *pdd = NULL;
pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
dev = pdd->dev;
if (dev->kfd2kgd->get_cu_occupancy == NULL)
return -EINVAL;
cu_cnt = 0;
proc = pdd->process;
if (pdd->qpd.queue_count == 0) {
pr_debug("Gpu-Id: %d has no active queues for process %d\n",
dev->id, proc->pasid);
return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
}
/* Collect wave count from device if it supports */
wave_cnt = 0;
max_waves_per_cu = 0;
dev->kfd2kgd->get_cu_occupancy(dev->adev, proc->pasid, &wave_cnt,
&max_waves_per_cu, 0);
/* Translate wave count to number of compute units */
cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
}
static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
char *buffer)
{
if (strcmp(attr->name, "pasid") == 0) {
struct kfd_process *p = container_of(attr, struct kfd_process,
attr_pasid);
return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
} else if (strncmp(attr->name, "vram_", 5) == 0) {
struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
attr_vram);
return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
} else if (strncmp(attr->name, "sdma_", 5) == 0) {
struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
attr_sdma);
struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
kfd_sdma_activity_worker);
sdma_activity_work_handler.pdd = pdd;
sdma_activity_work_handler.sdma_activity_counter = 0;
schedule_work(&sdma_activity_work_handler.sdma_activity_work);
flush_work(&sdma_activity_work_handler.sdma_activity_work);
return snprintf(buffer, PAGE_SIZE, "%llu\n",
(sdma_activity_work_handler.sdma_activity_counter)/
SDMA_ACTIVITY_DIVISOR);
} else {
pr_err("Invalid attribute");
return -EINVAL;
}
return 0;
}
static void kfd_procfs_kobj_release(struct kobject *kobj)
{
kfree(kobj);
}
static const struct sysfs_ops kfd_procfs_ops = {
.show = kfd_procfs_show,
};
static const struct kobj_type procfs_type = {
.release = kfd_procfs_kobj_release,
.sysfs_ops = &kfd_procfs_ops,
};
void kfd_procfs_init(void)
{
int ret = 0;
procfs.kobj = kfd_alloc_struct(procfs.kobj);
if (!procfs.kobj)
return;
ret = kobject_init_and_add(procfs.kobj, &procfs_type,
&kfd_device->kobj, "proc");
if (ret) {
pr_warn("Could not create procfs proc folder");
/* If we fail to create the procfs, clean up */
kfd_procfs_shutdown();
}
}
void kfd_procfs_shutdown(void)
{
if (procfs.kobj) {
kobject_del(procfs.kobj);
kobject_put(procfs.kobj);
procfs.kobj = NULL;
}
}
static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
struct attribute *attr, char *buffer)
{
struct queue *q = container_of(kobj, struct queue, kobj);
if (!strcmp(attr->name, "size"))
return snprintf(buffer, PAGE_SIZE, "%llu",
q->properties.queue_size);
else if (!strcmp(attr->name, "type"))
return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
else if (!strcmp(attr->name, "gpuid"))
return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
else
pr_err("Invalid attribute");
return 0;
}
static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
struct attribute *attr, char *buffer)
{
if (strcmp(attr->name, "evicted_ms") == 0) {
struct kfd_process_device *pdd = container_of(attr,
struct kfd_process_device,
attr_evict);
uint64_t evict_jiffies;
evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
return snprintf(buffer,
PAGE_SIZE,
"%llu\n",
jiffies64_to_msecs(evict_jiffies));
/* Sysfs handle that gets CU occupancy is per device */
} else if (strcmp(attr->name, "cu_occupancy") == 0) {
return kfd_get_cu_occupancy(attr, buffer);
} else {
pr_err("Invalid attribute");
}
return 0;
}
static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
struct attribute *attr, char *buf)
{
struct kfd_process_device *pdd;
if (!strcmp(attr->name, "faults")) {
pdd = container_of(attr, struct kfd_process_device,
attr_faults);
return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
}
if (!strcmp(attr->name, "page_in")) {
pdd = container_of(attr, struct kfd_process_device,
attr_page_in);
return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
}
if (!strcmp(attr->name, "page_out")) {
pdd = container_of(attr, struct kfd_process_device,
attr_page_out);
return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
}
return 0;
}
static struct attribute attr_queue_size = {
.name = "size",
.mode = KFD_SYSFS_FILE_MODE
};
static struct attribute attr_queue_type = {
.name = "type",
.mode = KFD_SYSFS_FILE_MODE
};
static struct attribute attr_queue_gpuid = {
.name = "gpuid",
.mode = KFD_SYSFS_FILE_MODE
};
static struct attribute *procfs_queue_attrs[] = {
&attr_queue_size,
&attr_queue_type,
&attr_queue_gpuid,
NULL
};
ATTRIBUTE_GROUPS(procfs_queue);
static const struct sysfs_ops procfs_queue_ops = {
.show = kfd_procfs_queue_show,
};
static const struct kobj_type procfs_queue_type = {
.sysfs_ops = &procfs_queue_ops,
.default_groups = procfs_queue_groups,
};
static const struct sysfs_ops procfs_stats_ops = {
.show = kfd_procfs_stats_show,
};
static const struct kobj_type procfs_stats_type = {
.sysfs_ops = &procfs_stats_ops,
.release = kfd_procfs_kobj_release,
};
static const struct sysfs_ops sysfs_counters_ops = {
.show = kfd_sysfs_counters_show,
};
static const struct kobj_type sysfs_counters_type = {
.sysfs_ops = &sysfs_counters_ops,
.release = kfd_procfs_kobj_release,
};
int kfd_procfs_add_queue(struct queue *q)
{
struct kfd_process *proc;
int ret;
if (!q || !q->process)
return -EINVAL;
proc = q->process;
/* Create proc/<pid>/queues/<queue id> folder */
if (!proc->kobj_queues)
return -EFAULT;
ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
proc->kobj_queues, "%u", q->properties.queue_id);
if (ret < 0) {
pr_warn("Creating proc/<pid>/queues/%u failed",
q->properties.queue_id);
kobject_put(&q->kobj);
return ret;
}
return 0;
}
static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
char *name)
{
int ret;
if (!kobj || !attr || !name)
return;
attr->name = name;
attr->mode = KFD_SYSFS_FILE_MODE;
sysfs_attr_init(attr);
ret = sysfs_create_file(kobj, attr);
if (ret)
pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
}
static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
{
int ret;
int i;
char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
if (!p || !p->kobj)
return;
/*
* Create sysfs files for each GPU:
* - proc/<pid>/stats_<gpuid>/
* - proc/<pid>/stats_<gpuid>/evicted_ms
* - proc/<pid>/stats_<gpuid>/cu_occupancy
*/
for (i = 0; i < p->n_pdds; i++) {
struct kfd_process_device *pdd = p->pdds[i];
snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
"stats_%u", pdd->dev->id);
pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
if (!pdd->kobj_stats)
return;
ret = kobject_init_and_add(pdd->kobj_stats,
&procfs_stats_type,
p->kobj,
stats_dir_filename);
if (ret) {
pr_warn("Creating KFD proc/stats_%s folder failed",
stats_dir_filename);
kobject_put(pdd->kobj_stats);
pdd->kobj_stats = NULL;
return;
}
kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
"evicted_ms");
/* Add sysfs file to report compute unit occupancy */
if (pdd->dev->kfd2kgd->get_cu_occupancy)
kfd_sysfs_create_file(pdd->kobj_stats,
&pdd->attr_cu_occupancy,
"cu_occupancy");
}
}
static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
{
int ret = 0;
int i;
char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
if (!p || !p->kobj)
return;
/*
* Create sysfs files for each GPU which supports SVM
* - proc/<pid>/counters_<gpuid>/
* - proc/<pid>/counters_<gpuid>/faults
* - proc/<pid>/counters_<gpuid>/page_in
* - proc/<pid>/counters_<gpuid>/page_out
*/
for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
struct kfd_process_device *pdd = p->pdds[i];
struct kobject *kobj_counters;
snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
"counters_%u", pdd->dev->id);
kobj_counters = kfd_alloc_struct(kobj_counters);
if (!kobj_counters)
return;
ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
p->kobj, counters_dir_filename);
if (ret) {
pr_warn("Creating KFD proc/%s folder failed",
counters_dir_filename);
kobject_put(kobj_counters);
return;
}
pdd->kobj_counters = kobj_counters;
kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
"faults");
kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
"page_in");
kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
"page_out");
}
}
static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
{
int i;
if (!p || !p->kobj)
return;
/*
* Create sysfs files for each GPU:
* - proc/<pid>/vram_<gpuid>
* - proc/<pid>/sdma_<gpuid>
*/
for (i = 0; i < p->n_pdds; i++) {
struct kfd_process_device *pdd = p->pdds[i];
snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
pdd->dev->id);
kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
pdd->vram_filename);
snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
pdd->dev->id);
kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
pdd->sdma_filename);
}
}
void kfd_procfs_del_queue(struct queue *q)
{
if (!q)
return;
kobject_del(&q->kobj);
kobject_put(&q->kobj);
}
int kfd_process_create_wq(void)
{
if (!kfd_process_wq)
kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
if (!kfd_restore_wq)
kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq",
WQ_FREEZABLE);
if (!kfd_process_wq || !kfd_restore_wq) {
kfd_process_destroy_wq();
return -ENOMEM;
}
return 0;
}
void kfd_process_destroy_wq(void)
{
if (kfd_process_wq) {
destroy_workqueue(kfd_process_wq);
kfd_process_wq = NULL;
}
if (kfd_restore_wq) {
destroy_workqueue(kfd_restore_wq);
kfd_restore_wq = NULL;
}
}
static void kfd_process_free_gpuvm(struct kgd_mem *mem,
struct kfd_process_device *pdd, void **kptr)
{
struct kfd_node *dev = pdd->dev;
if (kptr && *kptr) {
amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
*kptr = NULL;
}
amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
NULL);
}
/* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
* This function should be only called right after the process
* is created and when kfd_processes_mutex is still being held
* to avoid concurrency. Because of that exclusiveness, we do
* not need to take p->mutex.
*/
static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
uint64_t gpu_va, uint32_t size,
uint32_t flags, struct kgd_mem **mem, void **kptr)
{
struct kfd_node *kdev = pdd->dev;
int err;
err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
pdd->drm_priv, mem, NULL,
flags, false);
if (err)
goto err_alloc_mem;
err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
pdd->drm_priv);
if (err)
goto err_map_mem;
err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
if (err) {
pr_debug("Sync memory failed, wait interrupted by user signal\n");
goto sync_memory_failed;
}
if (kptr) {
err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(
(struct kgd_mem *)*mem, kptr, NULL);
if (err) {
pr_debug("Map GTT BO to kernel failed\n");
goto sync_memory_failed;
}
}
return err;
sync_memory_failed:
amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
err_map_mem:
amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
NULL);
err_alloc_mem:
*mem = NULL;
*kptr = NULL;
return err;
}
/* kfd_process_device_reserve_ib_mem - Reserve memory inside the
* process for IB usage The memory reserved is for KFD to submit
* IB to AMDGPU from kernel. If the memory is reserved
* successfully, ib_kaddr will have the CPU/kernel
* address. Check ib_kaddr before accessing the memory.
*/
static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
{
struct qcm_process_device *qpd = &pdd->qpd;
uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
struct kgd_mem *mem;
void *kaddr;
int ret;
if (qpd->ib_kaddr || !qpd->ib_base)
return 0;
/* ib_base is only set for dGPU */
ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
&mem, &kaddr);
if (ret)
return ret;
qpd->ib_mem = mem;
qpd->ib_kaddr = kaddr;
return 0;
}
static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
{
struct qcm_process_device *qpd = &pdd->qpd;
if (!qpd->ib_kaddr || !qpd->ib_base)
return;
kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr);
}
struct kfd_process *kfd_create_process(struct task_struct *thread)
{
struct kfd_process *process;
int ret;
if (!(thread->mm && mmget_not_zero(thread->mm)))
return ERR_PTR(-EINVAL);
/* Only the pthreads threading model is supported. */
if (thread->group_leader->mm != thread->mm) {
mmput(thread->mm);
return ERR_PTR(-EINVAL);
}
/*
* take kfd processes mutex before starting of process creation
* so there won't be a case where two threads of the same process
* create two kfd_process structures
*/
mutex_lock(&kfd_processes_mutex);
if (kfd_is_locked()) {
mutex_unlock(&kfd_processes_mutex);
pr_debug("KFD is locked! Cannot create process");
return ERR_PTR(-EINVAL);
}
/* A prior open of /dev/kfd could have already created the process. */
process = find_process(thread, false);
if (process) {
pr_debug("Process already found\n");
} else {
process = create_process(thread);
if (IS_ERR(process))
goto out;
if (!procfs.kobj)
goto out;
process->kobj = kfd_alloc_struct(process->kobj);
if (!process->kobj) {
pr_warn("Creating procfs kobject failed");
goto out;
}
ret = kobject_init_and_add(process->kobj, &procfs_type,
procfs.kobj, "%d",
(int)process->lead_thread->pid);
if (ret) {
pr_warn("Creating procfs pid directory failed");
kobject_put(process->kobj);
goto out;
}
kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
"pasid");
process->kobj_queues = kobject_create_and_add("queues",
process->kobj);
if (!process->kobj_queues)
pr_warn("Creating KFD proc/queues folder failed");
kfd_procfs_add_sysfs_stats(process);
kfd_procfs_add_sysfs_files(process);
kfd_procfs_add_sysfs_counters(process);
init_waitqueue_head(&process->wait_irq_drain);
}
out:
if (!IS_ERR(process))
kref_get(&process->ref);
mutex_unlock(&kfd_processes_mutex);
mmput(thread->mm);
return process;
}
struct kfd_process *kfd_get_process(const struct task_struct *thread)
{
struct kfd_process *process;
if (!thread->mm)
return ERR_PTR(-EINVAL);
/* Only the pthreads threading model is supported. */
if (thread->group_leader->mm != thread->mm)
return ERR_PTR(-EINVAL);
process = find_process(thread, false);
if (!process)
return ERR_PTR(-EINVAL);
return process;
}
static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
{
struct kfd_process *process;
hash_for_each_possible_rcu(kfd_processes_table, process,
kfd_processes, (uintptr_t)mm)
if (process->mm == mm)
return process;
return NULL;
}
static struct kfd_process *find_process(const struct task_struct *thread,
bool ref)
{
struct kfd_process *p;
int idx;
idx = srcu_read_lock(&kfd_processes_srcu);
p = find_process_by_mm(thread->mm);
if (p && ref)
kref_get(&p->ref);
srcu_read_unlock(&kfd_processes_srcu, idx);
return p;
}
void kfd_unref_process(struct kfd_process *p)
{
kref_put(&p->ref, kfd_process_ref_release);
}
/* This increments the process->ref counter. */
struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
{
struct task_struct *task = NULL;
struct kfd_process *p = NULL;
if (!pid) {
task = current;
get_task_struct(task);
} else {
task = get_pid_task(pid, PIDTYPE_PID);
}
if (task) {
p = find_process(task, true);
put_task_struct(task);
}
return p;
}
static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
{
struct kfd_process *p = pdd->process;
void *mem;
int id;
int i;
/*
* Remove all handles from idr and release appropriate
* local memory object
*/
idr_for_each_entry(&pdd->alloc_idr, mem, id) {
for (i = 0; i < p->n_pdds; i++) {
struct kfd_process_device *peer_pdd = p->pdds[i];
if (!peer_pdd->drm_priv)
continue;
amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
}
amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
pdd->drm_priv, NULL);
kfd_process_device_remove_obj_handle(pdd, id);
}
}
/*
* Just kunmap and unpin signal BO here. It will be freed in
* kfd_process_free_outstanding_kfd_bos()
*/
static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
{
struct kfd_process_device *pdd;
struct kfd_node *kdev;
void *mem;
kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
if (!kdev)
return;
mutex_lock(&p->mutex);
pdd = kfd_get_process_device_data(kdev, p);
if (!pdd)
goto out;
mem = kfd_process_device_translate_handle(
pdd, GET_IDR_HANDLE(p->signal_handle));
if (!mem)
goto out;
amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
out:
mutex_unlock(&p->mutex);
}
static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
{
int i;
for (i = 0; i < p->n_pdds; i++)
kfd_process_device_free_bos(p->pdds[i]);
}
static void kfd_process_destroy_pdds(struct kfd_process *p)
{
int i;
for (i = 0; i < p->n_pdds; i++) {
struct kfd_process_device *pdd = p->pdds[i];
pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
pdd->dev->id, p->pasid);
kfd_process_device_destroy_cwsr_dgpu(pdd);
kfd_process_device_destroy_ib_mem(pdd);
if (pdd->drm_file) {
amdgpu_amdkfd_gpuvm_release_process_vm(
pdd->dev->adev, pdd->drm_priv);
fput(pdd->drm_file);
}
if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
get_order(KFD_CWSR_TBA_TMA_SIZE));
idr_destroy(&pdd->alloc_idr);
kfd_free_process_doorbells(pdd->dev->kfd, pdd);
if (pdd->dev->kfd->shared_resources.enable_mes)
amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev,
pdd->proc_ctx_bo);
/*
* before destroying pdd, make sure to report availability
* for auto suspend
*/
if (pdd->runtime_inuse) {
pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev);
pdd->runtime_inuse = false;
}
kfree(pdd);
p->pdds[i] = NULL;
}
p->n_pdds = 0;
}
static void kfd_process_remove_sysfs(struct kfd_process *p)
{
struct kfd_process_device *pdd;
int i;
if (!p->kobj)
return;
sysfs_remove_file(p->kobj, &p->attr_pasid);
kobject_del(p->kobj_queues);
kobject_put(p->kobj_queues);
p->kobj_queues = NULL;
for (i = 0; i < p->n_pdds; i++) {
pdd = p->pdds[i];
sysfs_remove_file(p->kobj, &pdd->attr_vram);
sysfs_remove_file(p->kobj, &pdd->attr_sdma);
sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
if (pdd->dev->kfd2kgd->get_cu_occupancy)
sysfs_remove_file(pdd->kobj_stats,
&pdd->attr_cu_occupancy);
kobject_del(pdd->kobj_stats);
kobject_put(pdd->kobj_stats);
pdd->kobj_stats = NULL;
}
for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
pdd = p->pdds[i];
sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
kobject_del(pdd->kobj_counters);
kobject_put(pdd->kobj_counters);
pdd->kobj_counters = NULL;
}
kobject_del(p->kobj);
kobject_put(p->kobj);
p->kobj = NULL;
}
/* No process locking is needed in this function, because the process
* is not findable any more. We must assume that no other thread is
* using it any more, otherwise we couldn't safely free the process
* structure in the end.
*/
static void kfd_process_wq_release(struct work_struct *work)
{
struct kfd_process *p = container_of(work, struct kfd_process,
release_work);
struct dma_fence *ef;
kfd_process_dequeue_from_all_devices(p);
pqm_uninit(&p->pqm);
/* Signal the eviction fence after user mode queues are
* destroyed. This allows any BOs to be freed without
* triggering pointless evictions or waiting for fences.
*/
synchronize_rcu();
ef = rcu_access_pointer(p->ef);
dma_fence_signal(ef);
kfd_process_remove_sysfs(p);
kfd_process_kunmap_signal_bo(p);
kfd_process_free_outstanding_kfd_bos(p);
svm_range_list_fini(p);
kfd_process_destroy_pdds(p);
dma_fence_put(ef);
kfd_event_free_process(p);
kfd_pasid_free(p->pasid);
mutex_destroy(&p->mutex);
put_task_struct(p->lead_thread);
kfree(p);
}
static void kfd_process_ref_release(struct kref *ref)
{
struct kfd_process *p = container_of(ref, struct kfd_process, ref);
INIT_WORK(&p->release_work, kfd_process_wq_release);
queue_work(kfd_process_wq, &p->release_work);
}
static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
{
int idx = srcu_read_lock(&kfd_processes_srcu);
struct kfd_process *p = find_process_by_mm(mm);
srcu_read_unlock(&kfd_processes_srcu, idx);
return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
}
static void kfd_process_free_notifier(struct mmu_notifier *mn)
{
kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
}
static void kfd_process_notifier_release_internal(struct kfd_process *p)
{
int i;
cancel_delayed_work_sync(&p->eviction_work);
cancel_delayed_work_sync(&p->restore_work);
for (i = 0; i < p->n_pdds; i++) {
struct kfd_process_device *pdd = p->pdds[i];
/* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */
if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup)
amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
}
/* Indicate to other users that MM is no longer valid */
p->mm = NULL;
kfd_dbg_trap_disable(p);
if (atomic_read(&p->debugged_process_count) > 0) {
struct kfd_process *target;
unsigned int temp;
int idx = srcu_read_lock(&kfd_processes_srcu);
hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) {
if (target->debugger_process && target->debugger_process == p) {
mutex_lock_nested(&target->mutex, 1);
kfd_dbg_trap_disable(target);
mutex_unlock(&target->mutex);
if (atomic_read(&p->debugged_process_count) == 0)
break;
}
}
srcu_read_unlock(&kfd_processes_srcu, idx);
}
mmu_notifier_put(&p->mmu_notifier);
}
static void kfd_process_notifier_release(struct mmu_notifier *mn,
struct mm_struct *mm)
{
struct kfd_process *p;
/*
* The kfd_process structure can not be free because the
* mmu_notifier srcu is read locked
*/
p = container_of(mn, struct kfd_process, mmu_notifier);
if (WARN_ON(p->mm != mm))
return;
mutex_lock(&kfd_processes_mutex);
/*
* Do early return if table is empty.
*
* This could potentially happen if this function is called concurrently
* by mmu_notifier and by kfd_cleanup_pocesses.
*
*/
if (hash_empty(kfd_processes_table)) {
mutex_unlock(&kfd_processes_mutex);
return;
}
hash_del_rcu(&p->kfd_processes);
mutex_unlock(&kfd_processes_mutex);
synchronize_srcu(&kfd_processes_srcu);
kfd_process_notifier_release_internal(p);
}
static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
.release = kfd_process_notifier_release,
.alloc_notifier = kfd_process_alloc_notifier,
.free_notifier = kfd_process_free_notifier,
};
/*
* This code handles the case when driver is being unloaded before all
* mm_struct are released. We need to safely free the kfd_process and
* avoid race conditions with mmu_notifier that might try to free them.
*
*/
void kfd_cleanup_processes(void)
{
struct kfd_process *p;
struct hlist_node *p_temp;
unsigned int temp;
HLIST_HEAD(cleanup_list);
/*
* Move all remaining kfd_process from the process table to a
* temp list for processing. Once done, callback from mmu_notifier
* release will not see the kfd_process in the table and do early return,
* avoiding double free issues.
*/
mutex_lock(&kfd_processes_mutex);
hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) {
hash_del_rcu(&p->kfd_processes);
synchronize_srcu(&kfd_processes_srcu);
hlist_add_head(&p->kfd_processes, &cleanup_list);
}
mutex_unlock(&kfd_processes_mutex);
hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes)
kfd_process_notifier_release_internal(p);
/*
* Ensures that all outstanding free_notifier get called, triggering
* the release of the kfd_process struct.
*/
mmu_notifier_synchronize();
}
int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
{
unsigned long offset;
int i;
if (p->has_cwsr)
return 0;
for (i = 0; i < p->n_pdds; i++) {
struct kfd_node *dev = p->pdds[i]->dev;
struct qcm_process_device *qpd = &p->pdds[i]->qpd;
if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
continue;
offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
MAP_SHARED, offset);
if (IS_ERR_VALUE(qpd->tba_addr)) {
int err = qpd->tba_addr;
pr_err("Failure to set tba address. error %d.\n", err);
qpd->tba_addr = 0;
qpd->cwsr_kaddr = NULL;
return err;
}
memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled);
qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
}
p->has_cwsr = true;
return 0;
}
static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
{
struct kfd_node *dev = pdd->dev;
struct qcm_process_device *qpd = &pdd->qpd;
uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
| KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
struct kgd_mem *mem;
void *kaddr;
int ret;
if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
return 0;
/* cwsr_base is only set for dGPU */
ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
if (ret)
return ret;
qpd->cwsr_mem = mem;
qpd->cwsr_kaddr = kaddr;
qpd->tba_addr = qpd->cwsr_base;
memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
kfd_process_set_trap_debug_flag(&pdd->qpd,
pdd->process->debug_trap_enabled);
qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
return 0;
}
static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
{
struct kfd_node *dev = pdd->dev;
struct qcm_process_device *qpd = &pdd->qpd;
if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
return;
kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr);
}
void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
uint64_t tba_addr,
uint64_t tma_addr)
{
if (qpd->cwsr_kaddr) {
/* KFD trap handler is bound, record as second-level TBA/TMA
* in first-level TMA. First-level trap will jump to second.
*/
uint64_t *tma =
(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
tma[0] = tba_addr;
tma[1] = tma_addr;
} else {
/* No trap handler bound, bind as first-level TBA/TMA. */
qpd->tba_addr = tba_addr;
qpd->tma_addr = tma_addr;
}
}
bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
{
int i;
/* On most GFXv9 GPUs, the retry mode in the SQ must match the
* boot time retry setting. Mixing processes with different
* XNACK/retry settings can hang the GPU.
*
* Different GPUs can have different noretry settings depending
* on HW bugs or limitations. We need to find at least one
* XNACK mode for this process that's compatible with all GPUs.
* Fortunately GPUs with retry enabled (noretry=0) can run code
* built for XNACK-off. On GFXv9 it may perform slower.
*
* Therefore applications built for XNACK-off can always be
* supported and will be our fallback if any GPU does not
* support retry.
*/
for (i = 0; i < p->n_pdds; i++) {
struct kfd_node *dev = p->pdds[i]->dev;
/* Only consider GFXv9 and higher GPUs. Older GPUs don't
* support the SVM APIs and don't need to be considered
* for the XNACK mode selection.
*/
if (!KFD_IS_SOC15(dev))
continue;
/* Aldebaran can always support XNACK because it can support
* per-process XNACK mode selection. But let the dev->noretry
* setting still influence the default XNACK mode.
*/
if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev)) {
if (!amdgpu_sriov_xnack_support(dev->kfd->adev)) {
pr_debug("SRIOV platform xnack not supported\n");
return false;
}
continue;
}
/* GFXv10 and later GPUs do not support shader preemption
* during page faults. This can lead to poor QoS for queue
* management and memory-manager-related preemptions or
* even deadlocks.
*/
if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
return false;
if (dev->kfd->noretry)
return false;
}
return true;
}
void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd,
bool enabled)
{
if (qpd->cwsr_kaddr) {
uint64_t *tma =
(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
tma[2] = enabled;
}
}
/*
* On return the kfd_process is fully operational and will be freed when the
* mm is released
*/
static struct kfd_process *create_process(const struct task_struct *thread)
{
struct kfd_process *process;
struct mmu_notifier *mn;
int err = -ENOMEM;
process = kzalloc(sizeof(*process), GFP_KERNEL);
if (!process)
goto err_alloc_process;
kref_init(&process->ref);
mutex_init(&process->mutex);
process->mm = thread->mm;
process->lead_thread = thread->group_leader;
process->n_pdds = 0;
process->queues_paused = false;
INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
process->last_restore_timestamp = get_jiffies_64();
err = kfd_event_init_process(process);
if (err)
goto err_event_init;
process->is_32bit_user_mode = in_compat_syscall();
process->debug_trap_enabled = false;
process->debugger_process = NULL;
process->exception_enable_mask = 0;
atomic_set(&process->debugged_process_count, 0);
sema_init(&process->runtime_enable_sema, 0);
process->pasid = kfd_pasid_alloc();
if (process->pasid == 0) {
err = -ENOSPC;
goto err_alloc_pasid;
}
err = pqm_init(&process->pqm, process);
if (err != 0)
goto err_process_pqm_init;
/* init process apertures*/
err = kfd_init_apertures(process);
if (err != 0)
goto err_init_apertures;
/* Check XNACK support after PDDs are created in kfd_init_apertures */
process->xnack_enabled = kfd_process_xnack_mode(process, false);
err = svm_range_list_init(process);
if (err)
goto err_init_svm_range_list;
/* alloc_notifier needs to find the process in the hash table */
hash_add_rcu(kfd_processes_table, &process->kfd_processes,
(uintptr_t)process->mm);
/* Avoid free_notifier to start kfd_process_wq_release if
* mmu_notifier_get failed because of pending signal.
*/
kref_get(&process->ref);
/* MMU notifier registration must be the last call that can fail
* because after this point we cannot unwind the process creation.
* After this point, mmu_notifier_put will trigger the cleanup by
* dropping the last process reference in the free_notifier.
*/
mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
if (IS_ERR(mn)) {
err = PTR_ERR(mn);
goto err_register_notifier;
}
BUG_ON(mn != &process->mmu_notifier);
kfd_unref_process(process);
get_task_struct(process->lead_thread);
INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler);
return process;
err_register_notifier:
hash_del_rcu(&process->kfd_processes);
svm_range_list_fini(process);
err_init_svm_range_list:
kfd_process_free_outstanding_kfd_bos(process);
kfd_process_destroy_pdds(process);
err_init_apertures:
pqm_uninit(&process->pqm);
err_process_pqm_init:
kfd_pasid_free(process->pasid);
err_alloc_pasid:
kfd_event_free_process(process);
err_event_init:
mutex_destroy(&process->mutex);
kfree(process);
err_alloc_process:
return ERR_PTR(err);
}
struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
struct kfd_process *p)
{
int i;
for (i = 0; i < p->n_pdds; i++)
if (p->pdds[i]->dev == dev)
return p->pdds[i];
return NULL;
}
struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
struct kfd_process *p)
{
struct kfd_process_device *pdd = NULL;
int retval = 0;
if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
return NULL;
pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
if (!pdd)
return NULL;
pdd->dev = dev;
INIT_LIST_HEAD(&pdd->qpd.queues_list);
INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
pdd->qpd.dqm = dev->dqm;
pdd->qpd.pqm = &p->pqm;
pdd->qpd.evicted = 0;
pdd->qpd.mapped_gws_queue = false;
pdd->process = p;
pdd->bound = PDD_UNBOUND;
pdd->already_dequeued = false;
pdd->runtime_inuse = false;
pdd->vram_usage = 0;
pdd->sdma_past_activity_counter = 0;
pdd->user_gpu_id = dev->id;
atomic64_set(&pdd->evict_duration_counter, 0);
if (dev->kfd->shared_resources.enable_mes) {
retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev,
AMDGPU_MES_PROC_CTX_SIZE,
&pdd->proc_ctx_bo,
&pdd->proc_ctx_gpu_addr,
&pdd->proc_ctx_cpu_ptr,
false);
if (retval) {
pr_err("failed to allocate process context bo\n");
goto err_free_pdd;
}
memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE);
}
p->pdds[p->n_pdds++] = pdd;
if (kfd_dbg_is_per_vmid_supported(pdd->dev))
pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap(
pdd->dev->adev,
false,
0);
/* Init idr used for memory handle translation */
idr_init(&pdd->alloc_idr);
return pdd;
err_free_pdd:
kfree(pdd);
return NULL;
}
/**
* kfd_process_device_init_vm - Initialize a VM for a process-device
*
* @pdd: The process-device
* @drm_file: Optional pointer to a DRM file descriptor
*
* If @drm_file is specified, it will be used to acquire the VM from
* that file descriptor. If successful, the @pdd takes ownership of
* the file descriptor.
*
* If @drm_file is NULL, a new VM is created.
*
* Returns 0 on success, -errno on failure.
*/
int kfd_process_device_init_vm(struct kfd_process_device *pdd,
struct file *drm_file)
{
struct amdgpu_fpriv *drv_priv;
struct amdgpu_vm *avm;
struct kfd_process *p;
struct dma_fence *ef;
struct kfd_node *dev;
int ret;
if (!drm_file)
return -EINVAL;
if (pdd->drm_priv)
return -EBUSY;
ret = amdgpu_file_to_fpriv(drm_file, &drv_priv);
if (ret)
return ret;
avm = &drv_priv->vm;
p = pdd->process;
dev = pdd->dev;
ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm,
&p->kgd_process_info,
&ef);
if (ret) {
pr_err("Failed to create process VM object\n");
return ret;
}
RCU_INIT_POINTER(p->ef, ef);
pdd->drm_priv = drm_file->private_data;
ret = kfd_process_device_reserve_ib_mem(pdd);
if (ret)
goto err_reserve_ib_mem;
ret = kfd_process_device_init_cwsr_dgpu(pdd);
if (ret)
goto err_init_cwsr;
ret = amdgpu_amdkfd_gpuvm_set_vm_pasid(dev->adev, avm, p->pasid);
if (ret)
goto err_set_pasid;
pdd->drm_file = drm_file;
return 0;
err_set_pasid:
kfd_process_device_destroy_cwsr_dgpu(pdd);
err_init_cwsr:
kfd_process_device_destroy_ib_mem(pdd);
err_reserve_ib_mem:
pdd->drm_priv = NULL;
amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm);
return ret;
}
/*
* Direct the IOMMU to bind the process (specifically the pasid->mm)
* to the device.
* Unbinding occurs when the process dies or the device is removed.
*
* Assumes that the process lock is held.
*/
struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
struct kfd_process *p)
{
struct kfd_process_device *pdd;
int err;
pdd = kfd_get_process_device_data(dev, p);
if (!pdd) {
pr_err("Process device data doesn't exist\n");
return ERR_PTR(-ENOMEM);
}
if (!pdd->drm_priv)
return ERR_PTR(-ENODEV);
/*
* signal runtime-pm system to auto resume and prevent
* further runtime suspend once device pdd is created until
* pdd is destroyed.
*/
if (!pdd->runtime_inuse) {
err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev);
if (err < 0) {
pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
return ERR_PTR(err);
}
}
/*
* make sure that runtime_usage counter is incremented just once
* per pdd
*/
pdd->runtime_inuse = true;
return pdd;
}
/* Create specific handle mapped to mem from process local memory idr
* Assumes that the process lock is held.
*/
int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
void *mem)
{
return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
}
/* Translate specific handle from process local memory idr
* Assumes that the process lock is held.
*/
void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
int handle)
{
if (handle < 0)
return NULL;
return idr_find(&pdd->alloc_idr, handle);
}
/* Remove specific handle from process local memory idr
* Assumes that the process lock is held.
*/
void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
int handle)
{
if (handle >= 0)
idr_remove(&pdd->alloc_idr, handle);
}
/* This increments the process->ref counter. */
struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
{
struct kfd_process *p, *ret_p = NULL;
unsigned int temp;
int idx = srcu_read_lock(&kfd_processes_srcu);
hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
if (p->pasid == pasid) {
kref_get(&p->ref);
ret_p = p;
break;
}
}
srcu_read_unlock(&kfd_processes_srcu, idx);
return ret_p;
}
/* This increments the process->ref counter. */
struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
{
struct kfd_process *p;
int idx = srcu_read_lock(&kfd_processes_srcu);
p = find_process_by_mm(mm);
if (p)
kref_get(&p->ref);
srcu_read_unlock(&kfd_processes_srcu, idx);
return p;
}
/* kfd_process_evict_queues - Evict all user queues of a process
*
* Eviction is reference-counted per process-device. This means multiple
* evictions from different sources can be nested safely.
*/
int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger)
{
int r = 0;
int i;
unsigned int n_evicted = 0;
for (i = 0; i < p->n_pdds; i++) {
struct kfd_process_device *pdd = p->pdds[i];
kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid,
trigger);
r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
&pdd->qpd);
/* evict return -EIO if HWS is hang or asic is resetting, in this case
* we would like to set all the queues to be in evicted state to prevent
* them been add back since they actually not be saved right now.
*/
if (r && r != -EIO) {
pr_err("Failed to evict process queues\n");
goto fail;
}
n_evicted++;
}
return r;
fail:
/* To keep state consistent, roll back partial eviction by
* restoring queues
*/
for (i = 0; i < p->n_pdds; i++) {
struct kfd_process_device *pdd = p->pdds[i];
if (n_evicted == 0)
break;
kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
&pdd->qpd))
pr_err("Failed to restore queues\n");
n_evicted--;
}
return r;
}
/* kfd_process_restore_queues - Restore all user queues of a process */
int kfd_process_restore_queues(struct kfd_process *p)
{
int r, ret = 0;
int i;
for (i = 0; i < p->n_pdds; i++) {
struct kfd_process_device *pdd = p->pdds[i];
kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
&pdd->qpd);
if (r) {
pr_err("Failed to restore process queues\n");
if (!ret)
ret = r;
}
}
return ret;
}
int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
{
int i;
for (i = 0; i < p->n_pdds; i++)
if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
return i;
return -EINVAL;
}
int
kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
uint32_t *gpuid, uint32_t *gpuidx)
{
int i;
for (i = 0; i < p->n_pdds; i++)
if (p->pdds[i] && p->pdds[i]->dev == node) {
*gpuid = p->pdds[i]->user_gpu_id;
*gpuidx = i;
return 0;
}
return -EINVAL;
}
static int signal_eviction_fence(struct kfd_process *p)
{
struct dma_fence *ef;
int ret;
rcu_read_lock();
ef = dma_fence_get_rcu_safe(&p->ef);
rcu_read_unlock();
ret = dma_fence_signal(ef);
dma_fence_put(ef);
return ret;
}
static void evict_process_worker(struct work_struct *work)
{
int ret;
struct kfd_process *p;
struct delayed_work *dwork;
dwork = to_delayed_work(work);
/* Process termination destroys this worker thread. So during the
* lifetime of this thread, kfd_process p will be valid
*/
p = container_of(dwork, struct kfd_process, eviction_work);
pr_debug("Started evicting pasid 0x%x\n", p->pasid);
ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM);
if (!ret) {
/* If another thread already signaled the eviction fence,
* they are responsible stopping the queues and scheduling
* the restore work.
*/
if (!signal_eviction_fence(p))
queue_delayed_work(kfd_restore_wq, &p->restore_work,
msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
else
kfd_process_restore_queues(p);
pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
} else
pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
}
static int restore_process_helper(struct kfd_process *p)
{
int ret = 0;
/* VMs may not have been acquired yet during debugging. */
if (p->kgd_process_info) {
ret = amdgpu_amdkfd_gpuvm_restore_process_bos(
p->kgd_process_info, &p->ef);
if (ret)
return ret;
}
ret = kfd_process_restore_queues(p);
if (!ret)
pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
else
pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
return ret;
}
static void restore_process_worker(struct work_struct *work)
{
struct delayed_work *dwork;
struct kfd_process *p;
int ret = 0;
dwork = to_delayed_work(work);
/* Process termination destroys this worker thread. So during the
* lifetime of this thread, kfd_process p will be valid
*/
p = container_of(dwork, struct kfd_process, restore_work);
pr_debug("Started restoring pasid 0x%x\n", p->pasid);
/* Setting last_restore_timestamp before successful restoration.
* Otherwise this would have to be set by KGD (restore_process_bos)
* before KFD BOs are unreserved. If not, the process can be evicted
* again before the timestamp is set.
* If restore fails, the timestamp will be set again in the next
* attempt. This would mean that the minimum GPU quanta would be
* PROCESS_ACTIVE_TIME_MS - (time to execute the following two
* functions)
*/
p->last_restore_timestamp = get_jiffies_64();
ret = restore_process_helper(p);
if (ret) {
pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
p->pasid, PROCESS_BACK_OFF_TIME_MS);
ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
WARN(!ret, "reschedule restore work failed\n");
}
}
void kfd_suspend_all_processes(void)
{
struct kfd_process *p;
unsigned int temp;
int idx = srcu_read_lock(&kfd_processes_srcu);
WARN(debug_evictions, "Evicting all processes");
hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND))
pr_err("Failed to suspend process 0x%x\n", p->pasid);
signal_eviction_fence(p);
}
srcu_read_unlock(&kfd_processes_srcu, idx);
}
int kfd_resume_all_processes(void)
{
struct kfd_process *p;
unsigned int temp;
int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
if (restore_process_helper(p)) {
pr_err("Restore process %d failed during resume\n",
p->pasid);
ret = -EFAULT;
}
}
srcu_read_unlock(&kfd_processes_srcu, idx);
return ret;
}
int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
struct vm_area_struct *vma)
{
struct kfd_process_device *pdd;
struct qcm_process_device *qpd;
if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
pr_err("Incorrect CWSR mapping size.\n");
return -EINVAL;
}
pdd = kfd_get_process_device_data(dev, process);
if (!pdd)
return -EINVAL;
qpd = &pdd->qpd;
qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
get_order(KFD_CWSR_TBA_TMA_SIZE));
if (!qpd->cwsr_kaddr) {
pr_err("Error allocating per process CWSR buffer.\n");
return -ENOMEM;
}
vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND
| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP);
/* Mapping pages to user process */
return remap_pfn_range(vma, vma->vm_start,
PFN_DOWN(__pa(qpd->cwsr_kaddr)),
KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
}
/* assumes caller holds process lock. */
int kfd_process_drain_interrupts(struct kfd_process_device *pdd)
{
uint32_t irq_drain_fence[8];
uint8_t node_id = 0;
int r = 0;
if (!KFD_IS_SOC15(pdd->dev))
return 0;
pdd->process->irq_drain_is_open = true;
memset(irq_drain_fence, 0, sizeof(irq_drain_fence));
irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) |
KFD_IRQ_FENCE_CLIENTID;
irq_drain_fence[3] = pdd->process->pasid;
/*
* For GFX 9.4.3, send the NodeId also in IH cookie DW[3]
*/
if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3)) {
node_id = ffs(pdd->dev->interrupt_bitmap) - 1;
irq_drain_fence[3] |= node_id << 16;
}
/* ensure stale irqs scheduled KFD interrupts and send drain fence. */
if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev,
irq_drain_fence)) {
pdd->process->irq_drain_is_open = false;
return 0;
}
r = wait_event_interruptible(pdd->process->wait_irq_drain,
!READ_ONCE(pdd->process->irq_drain_is_open));
if (r)
pdd->process->irq_drain_is_open = false;
return r;
}
void kfd_process_close_interrupt_drain(unsigned int pasid)
{
struct kfd_process *p;
p = kfd_lookup_process_by_pasid(pasid);
if (!p)
return;
WRITE_ONCE(p->irq_drain_is_open, false);
wake_up_all(&p->wait_irq_drain);
kfd_unref_process(p);
}
struct send_exception_work_handler_workarea {
struct work_struct work;
struct kfd_process *p;
unsigned int queue_id;
uint64_t error_reason;
};
static void send_exception_work_handler(struct work_struct *work)
{
struct send_exception_work_handler_workarea *workarea;
struct kfd_process *p;
struct queue *q;
struct mm_struct *mm;
struct kfd_context_save_area_header __user *csa_header;
uint64_t __user *err_payload_ptr;
uint64_t cur_err;
uint32_t ev_id;
workarea = container_of(work,
struct send_exception_work_handler_workarea,
work);
p = workarea->p;
mm = get_task_mm(p->lead_thread);
if (!mm)
return;
kthread_use_mm(mm);
q = pqm_get_user_queue(&p->pqm, workarea->queue_id);
if (!q)
goto out;
csa_header = (void __user *)q->properties.ctx_save_restore_area_address;
get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr);
get_user(cur_err, err_payload_ptr);
cur_err |= workarea->error_reason;
put_user(cur_err, err_payload_ptr);
get_user(ev_id, &csa_header->err_event_id);
kfd_set_event(p, ev_id);
out:
kthread_unuse_mm(mm);
mmput(mm);
}
int kfd_send_exception_to_runtime(struct kfd_process *p,
unsigned int queue_id,
uint64_t error_reason)
{
struct send_exception_work_handler_workarea worker;
INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler);
worker.p = p;
worker.queue_id = queue_id;
worker.error_reason = error_reason;
schedule_work(&worker.work);
flush_work(&worker.work);
destroy_work_on_stack(&worker.work);
return 0;
}
struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
{
int i;
if (gpu_id) {
for (i = 0; i < p->n_pdds; i++) {
struct kfd_process_device *pdd = p->pdds[i];
if (pdd->user_gpu_id == gpu_id)
return pdd;
}
}
return NULL;
}
int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
{
int i;
if (!actual_gpu_id)
return 0;
for (i = 0; i < p->n_pdds; i++) {
struct kfd_process_device *pdd = p->pdds[i];
if (pdd->dev->id == actual_gpu_id)
return pdd->user_gpu_id;
}
return -EINVAL;
}
#if defined(CONFIG_DEBUG_FS)
int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
{
struct kfd_process *p;
unsigned int temp;
int r = 0;
int idx = srcu_read_lock(&kfd_processes_srcu);
hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
seq_printf(m, "Process %d PASID 0x%x:\n",
p->lead_thread->tgid, p->pasid);
mutex_lock(&p->mutex);
r = pqm_debugfs_mqds(m, &p->pqm);
mutex_unlock(&p->mutex);
if (r)
break;
}
srcu_read_unlock(&kfd_processes_srcu, idx);
return r;
}
#endif