| // SPDX-License-Identifier: GPL-2.0-only OR MIT |
| /* Copyright (c) 2023 Imagination Technologies Ltd. */ |
| |
| #include "pvr_ccb.h" |
| #include "pvr_device.h" |
| #include "pvr_device_info.h" |
| #include "pvr_fw.h" |
| #include "pvr_fw_info.h" |
| #include "pvr_fw_startstop.h" |
| #include "pvr_fw_trace.h" |
| #include "pvr_gem.h" |
| #include "pvr_power.h" |
| #include "pvr_rogue_fwif_dev_info.h" |
| #include "pvr_rogue_heap_config.h" |
| #include "pvr_vm.h" |
| |
| #include <drm/drm_drv.h> |
| #include <drm/drm_managed.h> |
| #include <drm/drm_mm.h> |
| #include <linux/clk.h> |
| #include <linux/firmware.h> |
| #include <linux/math.h> |
| #include <linux/minmax.h> |
| #include <linux/sizes.h> |
| |
| #define FW_MAX_SUPPORTED_MAJOR_VERSION 1 |
| |
| #define FW_BOOT_TIMEOUT_USEC 5000000 |
| |
| /* Config heap occupies top 192k of the firmware heap. */ |
| #define PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY SZ_64K |
| #define PVR_ROGUE_FW_CONFIG_HEAP_SIZE (3 * PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY) |
| |
| /* Main firmware allocations should come from the remainder of the heap. */ |
| #define PVR_ROGUE_FW_MAIN_HEAP_BASE ROGUE_FW_HEAP_BASE |
| |
| /* Offsets from start of configuration area of FW heap. */ |
| #define PVR_ROGUE_FWIF_CONNECTION_CTL_OFFSET 0 |
| #define PVR_ROGUE_FWIF_OSINIT_OFFSET \ |
| (PVR_ROGUE_FWIF_CONNECTION_CTL_OFFSET + PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY) |
| #define PVR_ROGUE_FWIF_SYSINIT_OFFSET \ |
| (PVR_ROGUE_FWIF_OSINIT_OFFSET + PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY) |
| |
| #define PVR_ROGUE_FAULT_PAGE_SIZE SZ_4K |
| |
| #define PVR_SYNC_OBJ_SIZE sizeof(u32) |
| |
| const struct pvr_fw_layout_entry * |
| pvr_fw_find_layout_entry(struct pvr_device *pvr_dev, enum pvr_fw_section_id id) |
| { |
| const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries; |
| u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num; |
| u32 entry; |
| |
| for (entry = 0; entry < num_layout_entries; entry++) { |
| if (layout_entries[entry].id == id) |
| return &layout_entries[entry]; |
| } |
| |
| return NULL; |
| } |
| |
| static const struct pvr_fw_layout_entry * |
| pvr_fw_find_private_data(struct pvr_device *pvr_dev) |
| { |
| const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries; |
| u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num; |
| u32 entry; |
| |
| for (entry = 0; entry < num_layout_entries; entry++) { |
| if (layout_entries[entry].id == META_PRIVATE_DATA || |
| layout_entries[entry].id == MIPS_PRIVATE_DATA || |
| layout_entries[entry].id == RISCV_PRIVATE_DATA) |
| return &layout_entries[entry]; |
| } |
| |
| return NULL; |
| } |
| |
| #define DEV_INFO_MASK_SIZE(x) DIV_ROUND_UP(x, 64) |
| |
| /** |
| * pvr_fw_validate() - Parse firmware header and check compatibility |
| * @pvr_dev: Device pointer. |
| * |
| * Returns: |
| * * 0 on success, or |
| * * -EINVAL if firmware is incompatible. |
| */ |
| static int |
| pvr_fw_validate(struct pvr_device *pvr_dev) |
| { |
| struct drm_device *drm_dev = from_pvr_device(pvr_dev); |
| const struct firmware *firmware = pvr_dev->fw_dev.firmware; |
| const struct pvr_fw_layout_entry *layout_entries; |
| const struct pvr_fw_info_header *header; |
| const u8 *fw = firmware->data; |
| u32 fw_offset = firmware->size - SZ_4K; |
| u32 layout_table_size; |
| u32 entry; |
| |
| if (firmware->size < SZ_4K || (firmware->size % FW_BLOCK_SIZE)) |
| return -EINVAL; |
| |
| header = (const struct pvr_fw_info_header *)&fw[fw_offset]; |
| |
| if (header->info_version != PVR_FW_INFO_VERSION) { |
| drm_err(drm_dev, "Unsupported fw info version %u\n", |
| header->info_version); |
| return -EINVAL; |
| } |
| |
| if (header->header_len != sizeof(struct pvr_fw_info_header) || |
| header->layout_entry_size != sizeof(struct pvr_fw_layout_entry) || |
| header->layout_entry_num > PVR_FW_INFO_MAX_NUM_ENTRIES) { |
| drm_err(drm_dev, "FW info format mismatch\n"); |
| return -EINVAL; |
| } |
| |
| if (!(header->flags & PVR_FW_FLAGS_OPEN_SOURCE) || |
| header->fw_version_major > FW_MAX_SUPPORTED_MAJOR_VERSION || |
| header->fw_version_major == 0) { |
| drm_err(drm_dev, "Unsupported FW version %u.%u (build: %u%s)\n", |
| header->fw_version_major, header->fw_version_minor, |
| header->fw_version_build, |
| (header->flags & PVR_FW_FLAGS_OPEN_SOURCE) ? " OS" : ""); |
| return -EINVAL; |
| } |
| |
| if (pvr_gpu_id_to_packed_bvnc(&pvr_dev->gpu_id) != header->bvnc) { |
| struct pvr_gpu_id fw_gpu_id; |
| |
| packed_bvnc_to_pvr_gpu_id(header->bvnc, &fw_gpu_id); |
| drm_err(drm_dev, "FW built for incorrect GPU ID %i.%i.%i.%i (expected %i.%i.%i.%i)\n", |
| fw_gpu_id.b, fw_gpu_id.v, fw_gpu_id.n, fw_gpu_id.c, |
| pvr_dev->gpu_id.b, pvr_dev->gpu_id.v, pvr_dev->gpu_id.n, pvr_dev->gpu_id.c); |
| return -EINVAL; |
| } |
| |
| fw_offset += header->header_len; |
| layout_table_size = |
| header->layout_entry_size * header->layout_entry_num; |
| if ((fw_offset + layout_table_size) > firmware->size) |
| return -EINVAL; |
| |
| layout_entries = (const struct pvr_fw_layout_entry *)&fw[fw_offset]; |
| for (entry = 0; entry < header->layout_entry_num; entry++) { |
| u32 start_addr = layout_entries[entry].base_addr; |
| u32 end_addr = start_addr + layout_entries[entry].alloc_size; |
| |
| if (start_addr >= end_addr) |
| return -EINVAL; |
| } |
| |
| fw_offset = (firmware->size - SZ_4K) - header->device_info_size; |
| |
| drm_info(drm_dev, "FW version v%u.%u (build %u OS)\n", header->fw_version_major, |
| header->fw_version_minor, header->fw_version_build); |
| |
| pvr_dev->fw_version.major = header->fw_version_major; |
| pvr_dev->fw_version.minor = header->fw_version_minor; |
| |
| pvr_dev->fw_dev.header = header; |
| pvr_dev->fw_dev.layout_entries = layout_entries; |
| |
| return 0; |
| } |
| |
| static int |
| pvr_fw_get_device_info(struct pvr_device *pvr_dev) |
| { |
| const struct firmware *firmware = pvr_dev->fw_dev.firmware; |
| struct pvr_fw_device_info_header *header; |
| const u8 *fw = firmware->data; |
| const u64 *dev_info; |
| u32 fw_offset; |
| |
| fw_offset = (firmware->size - SZ_4K) - pvr_dev->fw_dev.header->device_info_size; |
| |
| header = (struct pvr_fw_device_info_header *)&fw[fw_offset]; |
| dev_info = (u64 *)(header + 1); |
| |
| pvr_device_info_set_quirks(pvr_dev, dev_info, header->brn_mask_size); |
| dev_info += header->brn_mask_size; |
| |
| pvr_device_info_set_enhancements(pvr_dev, dev_info, header->ern_mask_size); |
| dev_info += header->ern_mask_size; |
| |
| return pvr_device_info_set_features(pvr_dev, dev_info, header->feature_mask_size, |
| header->feature_param_size); |
| } |
| |
| static void |
| layout_get_sizes(struct pvr_device *pvr_dev) |
| { |
| const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries; |
| u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num; |
| struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem; |
| |
| fw_mem->code_alloc_size = 0; |
| fw_mem->data_alloc_size = 0; |
| fw_mem->core_code_alloc_size = 0; |
| fw_mem->core_data_alloc_size = 0; |
| |
| /* Extract section sizes from FW layout table. */ |
| for (u32 entry = 0; entry < num_layout_entries; entry++) { |
| switch (layout_entries[entry].type) { |
| case FW_CODE: |
| fw_mem->code_alloc_size += layout_entries[entry].alloc_size; |
| break; |
| case FW_DATA: |
| fw_mem->data_alloc_size += layout_entries[entry].alloc_size; |
| break; |
| case FW_COREMEM_CODE: |
| fw_mem->core_code_alloc_size += |
| layout_entries[entry].alloc_size; |
| break; |
| case FW_COREMEM_DATA: |
| fw_mem->core_data_alloc_size += |
| layout_entries[entry].alloc_size; |
| break; |
| case NONE: |
| break; |
| } |
| } |
| } |
| |
| int |
| pvr_fw_find_mmu_segment(struct pvr_device *pvr_dev, u32 addr, u32 size, void *fw_code_ptr, |
| void *fw_data_ptr, void *fw_core_code_ptr, void *fw_core_data_ptr, |
| void **host_addr_out) |
| { |
| const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries; |
| u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num; |
| u32 end_addr = addr + size; |
| int entry = 0; |
| |
| /* Ensure requested range is not zero, and size is not causing addr to overflow. */ |
| if (end_addr <= addr) |
| return -EINVAL; |
| |
| for (entry = 0; entry < num_layout_entries; entry++) { |
| u32 entry_start_addr = layout_entries[entry].base_addr; |
| u32 entry_end_addr = entry_start_addr + layout_entries[entry].alloc_size; |
| |
| if (addr >= entry_start_addr && addr < entry_end_addr && |
| end_addr > entry_start_addr && end_addr <= entry_end_addr) { |
| switch (layout_entries[entry].type) { |
| case FW_CODE: |
| *host_addr_out = fw_code_ptr; |
| break; |
| |
| case FW_DATA: |
| *host_addr_out = fw_data_ptr; |
| break; |
| |
| case FW_COREMEM_CODE: |
| *host_addr_out = fw_core_code_ptr; |
| break; |
| |
| case FW_COREMEM_DATA: |
| *host_addr_out = fw_core_data_ptr; |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| /* Direct Mem write to mapped memory */ |
| addr -= layout_entries[entry].base_addr; |
| addr += layout_entries[entry].alloc_offset; |
| |
| /* |
| * Add offset to pointer to FW allocation only if that |
| * allocation is available |
| */ |
| *(u8 **)host_addr_out += addr; |
| return 0; |
| } |
| } |
| |
| return -EINVAL; |
| } |
| |
| static int |
| pvr_fw_create_fwif_connection_ctl(struct pvr_device *pvr_dev) |
| { |
| struct drm_device *drm_dev = from_pvr_device(pvr_dev); |
| struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; |
| |
| fw_dev->fwif_connection_ctl = |
| pvr_fw_object_create_and_map_offset(pvr_dev, |
| fw_dev->fw_heap_info.config_offset + |
| PVR_ROGUE_FWIF_CONNECTION_CTL_OFFSET, |
| sizeof(*fw_dev->fwif_connection_ctl), |
| PVR_BO_FW_FLAGS_DEVICE_UNCACHED, |
| NULL, NULL, |
| &fw_dev->mem.fwif_connection_ctl_obj); |
| if (IS_ERR(fw_dev->fwif_connection_ctl)) { |
| drm_err(drm_dev, |
| "Unable to allocate FWIF connection control memory\n"); |
| return PTR_ERR(fw_dev->fwif_connection_ctl); |
| } |
| |
| return 0; |
| } |
| |
| static void |
| pvr_fw_fini_fwif_connection_ctl(struct pvr_device *pvr_dev) |
| { |
| struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; |
| |
| pvr_fw_object_unmap_and_destroy(fw_dev->mem.fwif_connection_ctl_obj); |
| } |
| |
| static void |
| fw_osinit_init(void *cpu_ptr, void *priv) |
| { |
| struct rogue_fwif_osinit *fwif_osinit = cpu_ptr; |
| struct pvr_device *pvr_dev = priv; |
| struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; |
| struct pvr_fw_mem *fw_mem = &fw_dev->mem; |
| |
| fwif_osinit->kernel_ccbctl_fw_addr = pvr_dev->kccb.ccb.ctrl_fw_addr; |
| fwif_osinit->kernel_ccb_fw_addr = pvr_dev->kccb.ccb.ccb_fw_addr; |
| pvr_fw_object_get_fw_addr(pvr_dev->kccb.rtn_obj, |
| &fwif_osinit->kernel_ccb_rtn_slots_fw_addr); |
| |
| fwif_osinit->firmware_ccbctl_fw_addr = pvr_dev->fwccb.ctrl_fw_addr; |
| fwif_osinit->firmware_ccb_fw_addr = pvr_dev->fwccb.ccb_fw_addr; |
| |
| fwif_osinit->work_est_firmware_ccbctl_fw_addr = 0; |
| fwif_osinit->work_est_firmware_ccb_fw_addr = 0; |
| |
| pvr_fw_object_get_fw_addr(fw_mem->hwrinfobuf_obj, |
| &fwif_osinit->rogue_fwif_hwr_info_buf_ctl_fw_addr); |
| pvr_fw_object_get_fw_addr(fw_mem->osdata_obj, &fwif_osinit->fw_os_data_fw_addr); |
| |
| fwif_osinit->hwr_debug_dump_limit = 0; |
| |
| rogue_fwif_compchecks_bvnc_init(&fwif_osinit->rogue_comp_checks.hw_bvnc); |
| rogue_fwif_compchecks_bvnc_init(&fwif_osinit->rogue_comp_checks.fw_bvnc); |
| } |
| |
| static void |
| fw_osdata_init(void *cpu_ptr, void *priv) |
| { |
| struct rogue_fwif_osdata *fwif_osdata = cpu_ptr; |
| struct pvr_device *pvr_dev = priv; |
| struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem; |
| |
| pvr_fw_object_get_fw_addr(fw_mem->power_sync_obj, &fwif_osdata->power_sync_fw_addr); |
| } |
| |
| static void |
| fw_fault_page_init(void *cpu_ptr, void *priv) |
| { |
| u32 *fault_page = cpu_ptr; |
| |
| for (int i = 0; i < PVR_ROGUE_FAULT_PAGE_SIZE / sizeof(*fault_page); i++) |
| fault_page[i] = 0xdeadbee0; |
| } |
| |
| static void |
| fw_sysinit_init(void *cpu_ptr, void *priv) |
| { |
| struct rogue_fwif_sysinit *fwif_sysinit = cpu_ptr; |
| struct pvr_device *pvr_dev = priv; |
| struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; |
| struct pvr_fw_mem *fw_mem = &fw_dev->mem; |
| dma_addr_t fault_dma_addr = 0; |
| u32 clock_speed_hz = clk_get_rate(pvr_dev->core_clk); |
| |
| WARN_ON(!clock_speed_hz); |
| |
| WARN_ON(pvr_fw_object_get_dma_addr(fw_mem->fault_page_obj, 0, &fault_dma_addr)); |
| fwif_sysinit->fault_phys_addr = (u64)fault_dma_addr; |
| |
| fwif_sysinit->pds_exec_base = ROGUE_PDSCODEDATA_HEAP_BASE; |
| fwif_sysinit->usc_exec_base = ROGUE_USCCODE_HEAP_BASE; |
| |
| pvr_fw_object_get_fw_addr(fw_mem->runtime_cfg_obj, &fwif_sysinit->runtime_cfg_fw_addr); |
| pvr_fw_object_get_fw_addr(fw_dev->fw_trace.tracebuf_ctrl_obj, |
| &fwif_sysinit->trace_buf_ctl_fw_addr); |
| pvr_fw_object_get_fw_addr(fw_mem->sysdata_obj, &fwif_sysinit->fw_sys_data_fw_addr); |
| pvr_fw_object_get_fw_addr(fw_mem->gpu_util_fwcb_obj, |
| &fwif_sysinit->gpu_util_fw_cb_ctl_fw_addr); |
| if (fw_mem->core_data_obj) { |
| pvr_fw_object_get_fw_addr(fw_mem->core_data_obj, |
| &fwif_sysinit->coremem_data_store.fw_addr); |
| } |
| |
| /* Currently unsupported. */ |
| fwif_sysinit->counter_dump_ctl.buffer_fw_addr = 0; |
| fwif_sysinit->counter_dump_ctl.size_in_dwords = 0; |
| |
| /* Skip alignment checks. */ |
| fwif_sysinit->align_checks = 0; |
| |
| fwif_sysinit->filter_flags = 0; |
| fwif_sysinit->hw_perf_filter = 0; |
| fwif_sysinit->firmware_perf = FW_PERF_CONF_NONE; |
| fwif_sysinit->initial_core_clock_speed = clock_speed_hz; |
| fwif_sysinit->active_pm_latency_ms = 0; |
| fwif_sysinit->gpio_validation_mode = ROGUE_FWIF_GPIO_VAL_OFF; |
| fwif_sysinit->firmware_started = false; |
| fwif_sysinit->marker_val = 1; |
| |
| memset(&fwif_sysinit->bvnc_km_feature_flags, 0, |
| sizeof(fwif_sysinit->bvnc_km_feature_flags)); |
| } |
| |
| #define ROGUE_FWIF_SLC_MIN_SIZE_FOR_DM_OVERLAP_KB 4 |
| |
| static void |
| fw_sysdata_init(void *cpu_ptr, void *priv) |
| { |
| struct rogue_fwif_sysdata *fwif_sysdata = cpu_ptr; |
| struct pvr_device *pvr_dev = priv; |
| u32 slc_size_in_kilobytes = 0; |
| u32 config_flags = 0; |
| |
| WARN_ON(PVR_FEATURE_VALUE(pvr_dev, slc_size_in_kilobytes, &slc_size_in_kilobytes)); |
| |
| if (slc_size_in_kilobytes < ROGUE_FWIF_SLC_MIN_SIZE_FOR_DM_OVERLAP_KB) |
| config_flags |= ROGUE_FWIF_INICFG_DISABLE_DM_OVERLAP; |
| |
| fwif_sysdata->config_flags = config_flags; |
| } |
| |
| static void |
| fw_runtime_cfg_init(void *cpu_ptr, void *priv) |
| { |
| struct rogue_fwif_runtime_cfg *runtime_cfg = cpu_ptr; |
| struct pvr_device *pvr_dev = priv; |
| u32 clock_speed_hz = clk_get_rate(pvr_dev->core_clk); |
| |
| WARN_ON(!clock_speed_hz); |
| |
| runtime_cfg->core_clock_speed = clock_speed_hz; |
| runtime_cfg->active_pm_latency_ms = 0; |
| runtime_cfg->active_pm_latency_persistant = true; |
| WARN_ON(PVR_FEATURE_VALUE(pvr_dev, num_clusters, |
| &runtime_cfg->default_dusts_num_init) != 0); |
| } |
| |
| static void |
| fw_gpu_util_fwcb_init(void *cpu_ptr, void *priv) |
| { |
| struct rogue_fwif_gpu_util_fwcb *gpu_util_fwcb = cpu_ptr; |
| |
| gpu_util_fwcb->last_word = PVR_FWIF_GPU_UTIL_STATE_IDLE; |
| } |
| |
| static int |
| pvr_fw_create_structures(struct pvr_device *pvr_dev) |
| { |
| struct drm_device *drm_dev = from_pvr_device(pvr_dev); |
| struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; |
| struct pvr_fw_mem *fw_mem = &fw_dev->mem; |
| int err; |
| |
| fw_dev->power_sync = pvr_fw_object_create_and_map(pvr_dev, sizeof(*fw_dev->power_sync), |
| PVR_BO_FW_FLAGS_DEVICE_UNCACHED, |
| NULL, NULL, &fw_mem->power_sync_obj); |
| if (IS_ERR(fw_dev->power_sync)) { |
| drm_err(drm_dev, "Unable to allocate FW power_sync structure\n"); |
| return PTR_ERR(fw_dev->power_sync); |
| } |
| |
| fw_dev->hwrinfobuf = pvr_fw_object_create_and_map(pvr_dev, sizeof(*fw_dev->hwrinfobuf), |
| PVR_BO_FW_FLAGS_DEVICE_UNCACHED, |
| NULL, NULL, &fw_mem->hwrinfobuf_obj); |
| if (IS_ERR(fw_dev->hwrinfobuf)) { |
| drm_err(drm_dev, |
| "Unable to allocate FW hwrinfobuf structure\n"); |
| err = PTR_ERR(fw_dev->hwrinfobuf); |
| goto err_release_power_sync; |
| } |
| |
| err = pvr_fw_object_create(pvr_dev, PVR_SYNC_OBJ_SIZE, |
| PVR_BO_FW_FLAGS_DEVICE_UNCACHED, |
| NULL, NULL, &fw_mem->mmucache_sync_obj); |
| if (err) { |
| drm_err(drm_dev, |
| "Unable to allocate MMU cache sync object\n"); |
| goto err_release_hwrinfobuf; |
| } |
| |
| fw_dev->fwif_sysdata = pvr_fw_object_create_and_map(pvr_dev, |
| sizeof(*fw_dev->fwif_sysdata), |
| PVR_BO_FW_FLAGS_DEVICE_UNCACHED, |
| fw_sysdata_init, pvr_dev, |
| &fw_mem->sysdata_obj); |
| if (IS_ERR(fw_dev->fwif_sysdata)) { |
| drm_err(drm_dev, "Unable to allocate FW SYSDATA structure\n"); |
| err = PTR_ERR(fw_dev->fwif_sysdata); |
| goto err_release_mmucache_sync_obj; |
| } |
| |
| err = pvr_fw_object_create(pvr_dev, PVR_ROGUE_FAULT_PAGE_SIZE, |
| PVR_BO_FW_FLAGS_DEVICE_UNCACHED, |
| fw_fault_page_init, NULL, &fw_mem->fault_page_obj); |
| if (err) { |
| drm_err(drm_dev, "Unable to allocate FW fault page\n"); |
| goto err_release_sysdata; |
| } |
| |
| err = pvr_fw_object_create(pvr_dev, sizeof(struct rogue_fwif_gpu_util_fwcb), |
| PVR_BO_FW_FLAGS_DEVICE_UNCACHED, |
| fw_gpu_util_fwcb_init, pvr_dev, &fw_mem->gpu_util_fwcb_obj); |
| if (err) { |
| drm_err(drm_dev, "Unable to allocate GPU util FWCB\n"); |
| goto err_release_fault_page; |
| } |
| |
| err = pvr_fw_object_create(pvr_dev, sizeof(struct rogue_fwif_runtime_cfg), |
| PVR_BO_FW_FLAGS_DEVICE_UNCACHED, |
| fw_runtime_cfg_init, pvr_dev, &fw_mem->runtime_cfg_obj); |
| if (err) { |
| drm_err(drm_dev, "Unable to allocate FW runtime config\n"); |
| goto err_release_gpu_util_fwcb; |
| } |
| |
| err = pvr_fw_trace_init(pvr_dev); |
| if (err) |
| goto err_release_runtime_cfg; |
| |
| fw_dev->fwif_osdata = pvr_fw_object_create_and_map(pvr_dev, |
| sizeof(*fw_dev->fwif_osdata), |
| PVR_BO_FW_FLAGS_DEVICE_UNCACHED, |
| fw_osdata_init, pvr_dev, |
| &fw_mem->osdata_obj); |
| if (IS_ERR(fw_dev->fwif_osdata)) { |
| drm_err(drm_dev, "Unable to allocate FW OSDATA structure\n"); |
| err = PTR_ERR(fw_dev->fwif_osdata); |
| goto err_fw_trace_fini; |
| } |
| |
| fw_dev->fwif_osinit = |
| pvr_fw_object_create_and_map_offset(pvr_dev, |
| fw_dev->fw_heap_info.config_offset + |
| PVR_ROGUE_FWIF_OSINIT_OFFSET, |
| sizeof(*fw_dev->fwif_osinit), |
| PVR_BO_FW_FLAGS_DEVICE_UNCACHED, |
| fw_osinit_init, pvr_dev, &fw_mem->osinit_obj); |
| if (IS_ERR(fw_dev->fwif_osinit)) { |
| drm_err(drm_dev, "Unable to allocate FW OSINIT structure\n"); |
| err = PTR_ERR(fw_dev->fwif_osinit); |
| goto err_release_osdata; |
| } |
| |
| fw_dev->fwif_sysinit = |
| pvr_fw_object_create_and_map_offset(pvr_dev, |
| fw_dev->fw_heap_info.config_offset + |
| PVR_ROGUE_FWIF_SYSINIT_OFFSET, |
| sizeof(*fw_dev->fwif_sysinit), |
| PVR_BO_FW_FLAGS_DEVICE_UNCACHED, |
| fw_sysinit_init, pvr_dev, &fw_mem->sysinit_obj); |
| if (IS_ERR(fw_dev->fwif_sysinit)) { |
| drm_err(drm_dev, "Unable to allocate FW SYSINIT structure\n"); |
| err = PTR_ERR(fw_dev->fwif_sysinit); |
| goto err_release_osinit; |
| } |
| |
| return 0; |
| |
| err_release_osinit: |
| pvr_fw_object_unmap_and_destroy(fw_mem->osinit_obj); |
| |
| err_release_osdata: |
| pvr_fw_object_unmap_and_destroy(fw_mem->osdata_obj); |
| |
| err_fw_trace_fini: |
| pvr_fw_trace_fini(pvr_dev); |
| |
| err_release_runtime_cfg: |
| pvr_fw_object_destroy(fw_mem->runtime_cfg_obj); |
| |
| err_release_gpu_util_fwcb: |
| pvr_fw_object_destroy(fw_mem->gpu_util_fwcb_obj); |
| |
| err_release_fault_page: |
| pvr_fw_object_destroy(fw_mem->fault_page_obj); |
| |
| err_release_sysdata: |
| pvr_fw_object_unmap_and_destroy(fw_mem->sysdata_obj); |
| |
| err_release_mmucache_sync_obj: |
| pvr_fw_object_destroy(fw_mem->mmucache_sync_obj); |
| |
| err_release_hwrinfobuf: |
| pvr_fw_object_unmap_and_destroy(fw_mem->hwrinfobuf_obj); |
| |
| err_release_power_sync: |
| pvr_fw_object_unmap_and_destroy(fw_mem->power_sync_obj); |
| |
| return err; |
| } |
| |
| static void |
| pvr_fw_destroy_structures(struct pvr_device *pvr_dev) |
| { |
| struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; |
| struct pvr_fw_mem *fw_mem = &fw_dev->mem; |
| |
| pvr_fw_trace_fini(pvr_dev); |
| pvr_fw_object_destroy(fw_mem->runtime_cfg_obj); |
| pvr_fw_object_destroy(fw_mem->gpu_util_fwcb_obj); |
| pvr_fw_object_destroy(fw_mem->fault_page_obj); |
| pvr_fw_object_unmap_and_destroy(fw_mem->sysdata_obj); |
| pvr_fw_object_unmap_and_destroy(fw_mem->sysinit_obj); |
| |
| pvr_fw_object_destroy(fw_mem->mmucache_sync_obj); |
| pvr_fw_object_unmap_and_destroy(fw_mem->hwrinfobuf_obj); |
| pvr_fw_object_unmap_and_destroy(fw_mem->power_sync_obj); |
| pvr_fw_object_unmap_and_destroy(fw_mem->osdata_obj); |
| pvr_fw_object_unmap_and_destroy(fw_mem->osinit_obj); |
| } |
| |
| /** |
| * pvr_fw_process() - Process firmware image, allocate FW memory and create boot |
| * arguments |
| * @pvr_dev: Device pointer. |
| * |
| * Returns: |
| * * 0 on success, or |
| * * Any error returned by pvr_fw_object_create_and_map_offset(), or |
| * * Any error returned by pvr_fw_object_create_and_map(). |
| */ |
| static int |
| pvr_fw_process(struct pvr_device *pvr_dev) |
| { |
| struct drm_device *drm_dev = from_pvr_device(pvr_dev); |
| struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem; |
| const u8 *fw = pvr_dev->fw_dev.firmware->data; |
| const struct pvr_fw_layout_entry *private_data; |
| u8 *fw_code_ptr; |
| u8 *fw_data_ptr; |
| u8 *fw_core_code_ptr; |
| u8 *fw_core_data_ptr; |
| int err; |
| |
| layout_get_sizes(pvr_dev); |
| |
| private_data = pvr_fw_find_private_data(pvr_dev); |
| if (!private_data) |
| return -EINVAL; |
| |
| /* Allocate and map memory for firmware sections. */ |
| |
| /* |
| * Code allocation must be at the start of the firmware heap, otherwise |
| * firmware processor will be unable to boot. |
| * |
| * This has the useful side-effect that for every other object in the |
| * driver, a firmware address of 0 is invalid. |
| */ |
| fw_code_ptr = pvr_fw_object_create_and_map_offset(pvr_dev, 0, fw_mem->code_alloc_size, |
| PVR_BO_FW_FLAGS_DEVICE_UNCACHED, |
| NULL, NULL, &fw_mem->code_obj); |
| if (IS_ERR(fw_code_ptr)) { |
| drm_err(drm_dev, "Unable to allocate FW code memory\n"); |
| return PTR_ERR(fw_code_ptr); |
| } |
| |
| if (pvr_dev->fw_dev.defs->has_fixed_data_addr()) { |
| u32 base_addr = private_data->base_addr & pvr_dev->fw_dev.fw_heap_info.offset_mask; |
| |
| fw_data_ptr = |
| pvr_fw_object_create_and_map_offset(pvr_dev, base_addr, |
| fw_mem->data_alloc_size, |
| PVR_BO_FW_FLAGS_DEVICE_UNCACHED, |
| NULL, NULL, &fw_mem->data_obj); |
| } else { |
| fw_data_ptr = pvr_fw_object_create_and_map(pvr_dev, fw_mem->data_alloc_size, |
| PVR_BO_FW_FLAGS_DEVICE_UNCACHED, |
| NULL, NULL, &fw_mem->data_obj); |
| } |
| if (IS_ERR(fw_data_ptr)) { |
| drm_err(drm_dev, "Unable to allocate FW data memory\n"); |
| err = PTR_ERR(fw_data_ptr); |
| goto err_free_fw_code_obj; |
| } |
| |
| /* Core code and data sections are optional. */ |
| if (fw_mem->core_code_alloc_size) { |
| fw_core_code_ptr = |
| pvr_fw_object_create_and_map(pvr_dev, fw_mem->core_code_alloc_size, |
| PVR_BO_FW_FLAGS_DEVICE_UNCACHED, |
| NULL, NULL, &fw_mem->core_code_obj); |
| if (IS_ERR(fw_core_code_ptr)) { |
| drm_err(drm_dev, |
| "Unable to allocate FW core code memory\n"); |
| err = PTR_ERR(fw_core_code_ptr); |
| goto err_free_fw_data_obj; |
| } |
| } else { |
| fw_core_code_ptr = NULL; |
| } |
| |
| if (fw_mem->core_data_alloc_size) { |
| fw_core_data_ptr = |
| pvr_fw_object_create_and_map(pvr_dev, fw_mem->core_data_alloc_size, |
| PVR_BO_FW_FLAGS_DEVICE_UNCACHED, |
| NULL, NULL, &fw_mem->core_data_obj); |
| if (IS_ERR(fw_core_data_ptr)) { |
| drm_err(drm_dev, |
| "Unable to allocate FW core data memory\n"); |
| err = PTR_ERR(fw_core_data_ptr); |
| goto err_free_fw_core_code_obj; |
| } |
| } else { |
| fw_core_data_ptr = NULL; |
| } |
| |
| fw_mem->code = kzalloc(fw_mem->code_alloc_size, GFP_KERNEL); |
| fw_mem->data = kzalloc(fw_mem->data_alloc_size, GFP_KERNEL); |
| if (fw_mem->core_code_alloc_size) |
| fw_mem->core_code = kzalloc(fw_mem->core_code_alloc_size, GFP_KERNEL); |
| if (fw_mem->core_data_alloc_size) |
| fw_mem->core_data = kzalloc(fw_mem->core_data_alloc_size, GFP_KERNEL); |
| |
| if (!fw_mem->code || !fw_mem->data || |
| (!fw_mem->core_code && fw_mem->core_code_alloc_size) || |
| (!fw_mem->core_data && fw_mem->core_data_alloc_size)) { |
| err = -ENOMEM; |
| goto err_free_kdata; |
| } |
| |
| err = pvr_dev->fw_dev.defs->fw_process(pvr_dev, fw, |
| fw_mem->code, fw_mem->data, fw_mem->core_code, |
| fw_mem->core_data, fw_mem->core_code_alloc_size); |
| |
| if (err) |
| goto err_free_fw_core_data_obj; |
| |
| memcpy(fw_code_ptr, fw_mem->code, fw_mem->code_alloc_size); |
| memcpy(fw_data_ptr, fw_mem->data, fw_mem->data_alloc_size); |
| if (fw_mem->core_code) |
| memcpy(fw_core_code_ptr, fw_mem->core_code, fw_mem->core_code_alloc_size); |
| if (fw_mem->core_data) |
| memcpy(fw_core_data_ptr, fw_mem->core_data, fw_mem->core_data_alloc_size); |
| |
| /* We're finished with the firmware section memory on the CPU, unmap. */ |
| if (fw_core_data_ptr) |
| pvr_fw_object_vunmap(fw_mem->core_data_obj); |
| if (fw_core_code_ptr) |
| pvr_fw_object_vunmap(fw_mem->core_code_obj); |
| pvr_fw_object_vunmap(fw_mem->data_obj); |
| fw_data_ptr = NULL; |
| pvr_fw_object_vunmap(fw_mem->code_obj); |
| fw_code_ptr = NULL; |
| |
| err = pvr_fw_create_fwif_connection_ctl(pvr_dev); |
| if (err) |
| goto err_free_fw_core_data_obj; |
| |
| return 0; |
| |
| err_free_kdata: |
| kfree(fw_mem->core_data); |
| kfree(fw_mem->core_code); |
| kfree(fw_mem->data); |
| kfree(fw_mem->code); |
| |
| err_free_fw_core_data_obj: |
| if (fw_core_data_ptr) |
| pvr_fw_object_unmap_and_destroy(fw_mem->core_data_obj); |
| |
| err_free_fw_core_code_obj: |
| if (fw_core_code_ptr) |
| pvr_fw_object_unmap_and_destroy(fw_mem->core_code_obj); |
| |
| err_free_fw_data_obj: |
| if (fw_data_ptr) |
| pvr_fw_object_vunmap(fw_mem->data_obj); |
| pvr_fw_object_destroy(fw_mem->data_obj); |
| |
| err_free_fw_code_obj: |
| if (fw_code_ptr) |
| pvr_fw_object_vunmap(fw_mem->code_obj); |
| pvr_fw_object_destroy(fw_mem->code_obj); |
| |
| return err; |
| } |
| |
| static int |
| pvr_copy_to_fw(struct pvr_fw_object *dest_obj, u8 *src_ptr, u32 size) |
| { |
| u8 *dest_ptr = pvr_fw_object_vmap(dest_obj); |
| |
| if (IS_ERR(dest_ptr)) |
| return PTR_ERR(dest_ptr); |
| |
| memcpy(dest_ptr, src_ptr, size); |
| |
| pvr_fw_object_vunmap(dest_obj); |
| |
| return 0; |
| } |
| |
| static int |
| pvr_fw_reinit_code_data(struct pvr_device *pvr_dev) |
| { |
| struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem; |
| int err; |
| |
| err = pvr_copy_to_fw(fw_mem->code_obj, fw_mem->code, fw_mem->code_alloc_size); |
| if (err) |
| return err; |
| |
| err = pvr_copy_to_fw(fw_mem->data_obj, fw_mem->data, fw_mem->data_alloc_size); |
| if (err) |
| return err; |
| |
| if (fw_mem->core_code) { |
| err = pvr_copy_to_fw(fw_mem->core_code_obj, fw_mem->core_code, |
| fw_mem->core_code_alloc_size); |
| if (err) |
| return err; |
| } |
| |
| if (fw_mem->core_data) { |
| err = pvr_copy_to_fw(fw_mem->core_data_obj, fw_mem->core_data, |
| fw_mem->core_data_alloc_size); |
| if (err) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static void |
| pvr_fw_cleanup(struct pvr_device *pvr_dev) |
| { |
| struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem; |
| |
| pvr_fw_fini_fwif_connection_ctl(pvr_dev); |
| if (fw_mem->core_code_obj) |
| pvr_fw_object_destroy(fw_mem->core_code_obj); |
| if (fw_mem->core_data_obj) |
| pvr_fw_object_destroy(fw_mem->core_data_obj); |
| pvr_fw_object_destroy(fw_mem->code_obj); |
| pvr_fw_object_destroy(fw_mem->data_obj); |
| } |
| |
| /** |
| * pvr_wait_for_fw_boot() - Wait for firmware to finish booting |
| * @pvr_dev: Target PowerVR device. |
| * |
| * Returns: |
| * * 0 on success, or |
| * * -%ETIMEDOUT if firmware fails to boot within timeout. |
| */ |
| int |
| pvr_wait_for_fw_boot(struct pvr_device *pvr_dev) |
| { |
| ktime_t deadline = ktime_add_us(ktime_get(), FW_BOOT_TIMEOUT_USEC); |
| struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; |
| |
| while (ktime_to_ns(ktime_sub(deadline, ktime_get())) > 0) { |
| if (READ_ONCE(fw_dev->fwif_sysinit->firmware_started)) |
| return 0; |
| } |
| |
| return -ETIMEDOUT; |
| } |
| |
| /* |
| * pvr_fw_heap_info_init() - Calculate size and masks for FW heap |
| * @pvr_dev: Target PowerVR device. |
| * @log2_size: Log2 of raw heap size. |
| * @reserved_size: Size of reserved area of heap, in bytes. May be zero. |
| */ |
| void |
| pvr_fw_heap_info_init(struct pvr_device *pvr_dev, u32 log2_size, u32 reserved_size) |
| { |
| struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; |
| |
| fw_dev->fw_heap_info.gpu_addr = PVR_ROGUE_FW_MAIN_HEAP_BASE; |
| fw_dev->fw_heap_info.log2_size = log2_size; |
| fw_dev->fw_heap_info.reserved_size = reserved_size; |
| fw_dev->fw_heap_info.raw_size = 1 << fw_dev->fw_heap_info.log2_size; |
| fw_dev->fw_heap_info.offset_mask = fw_dev->fw_heap_info.raw_size - 1; |
| fw_dev->fw_heap_info.config_offset = fw_dev->fw_heap_info.raw_size - |
| PVR_ROGUE_FW_CONFIG_HEAP_SIZE; |
| fw_dev->fw_heap_info.size = fw_dev->fw_heap_info.raw_size - |
| (PVR_ROGUE_FW_CONFIG_HEAP_SIZE + reserved_size); |
| } |
| |
| /** |
| * pvr_fw_validate_init_device_info() - Validate firmware and initialise device information |
| * @pvr_dev: Target PowerVR device. |
| * |
| * This function must be called before querying device information. |
| * |
| * Returns: |
| * * 0 on success, or |
| * * -%EINVAL if firmware validation fails. |
| */ |
| int |
| pvr_fw_validate_init_device_info(struct pvr_device *pvr_dev) |
| { |
| int err; |
| |
| err = pvr_fw_validate(pvr_dev); |
| if (err) |
| return err; |
| |
| return pvr_fw_get_device_info(pvr_dev); |
| } |
| |
| /** |
| * pvr_fw_init() - Initialise and boot firmware |
| * @pvr_dev: Target PowerVR device |
| * |
| * On successful completion of the function the PowerVR device will be |
| * initialised and ready to use. |
| * |
| * Returns: |
| * * 0 on success, |
| * * -%EINVAL on invalid firmware image, |
| * * -%ENOMEM on out of memory, or |
| * * -%ETIMEDOUT if firmware processor fails to boot or on register poll timeout. |
| */ |
| int |
| pvr_fw_init(struct pvr_device *pvr_dev) |
| { |
| u32 kccb_size_log2 = ROGUE_FWIF_KCCB_NUMCMDS_LOG2_DEFAULT; |
| u32 kccb_rtn_size = (1 << kccb_size_log2) * sizeof(*pvr_dev->kccb.rtn); |
| struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; |
| int err; |
| |
| if (fw_dev->processor_type == PVR_FW_PROCESSOR_TYPE_META) |
| fw_dev->defs = &pvr_fw_defs_meta; |
| else if (fw_dev->processor_type == PVR_FW_PROCESSOR_TYPE_MIPS) |
| fw_dev->defs = &pvr_fw_defs_mips; |
| else |
| return -EINVAL; |
| |
| err = fw_dev->defs->init(pvr_dev); |
| if (err) |
| return err; |
| |
| drm_mm_init(&fw_dev->fw_mm, ROGUE_FW_HEAP_BASE, fw_dev->fw_heap_info.raw_size); |
| fw_dev->fw_mm_base = ROGUE_FW_HEAP_BASE; |
| spin_lock_init(&fw_dev->fw_mm_lock); |
| |
| INIT_LIST_HEAD(&fw_dev->fw_objs.list); |
| err = drmm_mutex_init(from_pvr_device(pvr_dev), &fw_dev->fw_objs.lock); |
| if (err) |
| goto err_mm_takedown; |
| |
| err = pvr_fw_process(pvr_dev); |
| if (err) |
| goto err_mm_takedown; |
| |
| /* Initialise KCCB and FWCCB. */ |
| err = pvr_kccb_init(pvr_dev); |
| if (err) |
| goto err_fw_cleanup; |
| |
| err = pvr_fwccb_init(pvr_dev); |
| if (err) |
| goto err_kccb_fini; |
| |
| /* Allocate memory for KCCB return slots. */ |
| pvr_dev->kccb.rtn = pvr_fw_object_create_and_map(pvr_dev, kccb_rtn_size, |
| PVR_BO_FW_FLAGS_DEVICE_UNCACHED, |
| NULL, NULL, &pvr_dev->kccb.rtn_obj); |
| if (IS_ERR(pvr_dev->kccb.rtn)) { |
| err = PTR_ERR(pvr_dev->kccb.rtn); |
| goto err_fwccb_fini; |
| } |
| |
| err = pvr_fw_create_structures(pvr_dev); |
| if (err) |
| goto err_kccb_rtn_release; |
| |
| err = pvr_fw_start(pvr_dev); |
| if (err) |
| goto err_destroy_structures; |
| |
| err = pvr_wait_for_fw_boot(pvr_dev); |
| if (err) { |
| drm_err(from_pvr_device(pvr_dev), "Firmware failed to boot\n"); |
| goto err_fw_stop; |
| } |
| |
| fw_dev->booted = true; |
| |
| return 0; |
| |
| err_fw_stop: |
| pvr_fw_stop(pvr_dev); |
| |
| err_destroy_structures: |
| pvr_fw_destroy_structures(pvr_dev); |
| |
| err_kccb_rtn_release: |
| pvr_fw_object_unmap_and_destroy(pvr_dev->kccb.rtn_obj); |
| |
| err_fwccb_fini: |
| pvr_ccb_fini(&pvr_dev->fwccb); |
| |
| err_kccb_fini: |
| pvr_kccb_fini(pvr_dev); |
| |
| err_fw_cleanup: |
| pvr_fw_cleanup(pvr_dev); |
| |
| err_mm_takedown: |
| drm_mm_takedown(&fw_dev->fw_mm); |
| |
| if (fw_dev->defs->fini) |
| fw_dev->defs->fini(pvr_dev); |
| |
| return err; |
| } |
| |
| /** |
| * pvr_fw_fini() - Shutdown firmware processor and free associated memory |
| * @pvr_dev: Target PowerVR device |
| */ |
| void |
| pvr_fw_fini(struct pvr_device *pvr_dev) |
| { |
| struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; |
| |
| fw_dev->booted = false; |
| |
| pvr_fw_destroy_structures(pvr_dev); |
| pvr_fw_object_unmap_and_destroy(pvr_dev->kccb.rtn_obj); |
| |
| /* |
| * Ensure FWCCB worker has finished executing before destroying FWCCB. The IRQ handler has |
| * been unregistered at this point so no new work should be being submitted. |
| */ |
| pvr_ccb_fini(&pvr_dev->fwccb); |
| pvr_kccb_fini(pvr_dev); |
| pvr_fw_cleanup(pvr_dev); |
| |
| mutex_lock(&pvr_dev->fw_dev.fw_objs.lock); |
| WARN_ON(!list_empty(&pvr_dev->fw_dev.fw_objs.list)); |
| mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock); |
| |
| drm_mm_takedown(&fw_dev->fw_mm); |
| |
| if (fw_dev->defs->fini) |
| fw_dev->defs->fini(pvr_dev); |
| } |
| |
| /** |
| * pvr_fw_mts_schedule() - Schedule work via an MTS kick |
| * @pvr_dev: Target PowerVR device |
| * @val: Kick mask. Should be a combination of %ROGUE_CR_MTS_SCHEDULE_* |
| */ |
| void |
| pvr_fw_mts_schedule(struct pvr_device *pvr_dev, u32 val) |
| { |
| /* Ensure memory is flushed before kicking MTS. */ |
| wmb(); |
| |
| pvr_cr_write32(pvr_dev, ROGUE_CR_MTS_SCHEDULE, val); |
| |
| /* Ensure the MTS kick goes through before continuing. */ |
| mb(); |
| } |
| |
| /** |
| * pvr_fw_structure_cleanup() - Send FW cleanup request for an object |
| * @pvr_dev: Target PowerVR device. |
| * @type: Type of object to cleanup. Must be one of &enum rogue_fwif_cleanup_type. |
| * @fw_obj: Pointer to FW object containing object to cleanup. |
| * @offset: Offset within FW object of object to cleanup. |
| * |
| * Returns: |
| * * 0 on success, |
| * * -EBUSY if object is busy, |
| * * -ETIMEDOUT on timeout, or |
| * * -EIO if device is lost. |
| */ |
| int |
| pvr_fw_structure_cleanup(struct pvr_device *pvr_dev, u32 type, struct pvr_fw_object *fw_obj, |
| u32 offset) |
| { |
| struct rogue_fwif_kccb_cmd cmd; |
| int slot_nr; |
| int idx; |
| int err; |
| u32 rtn; |
| |
| struct rogue_fwif_cleanup_request *cleanup_req = &cmd.cmd_data.cleanup_data; |
| |
| down_read(&pvr_dev->reset_sem); |
| |
| if (!drm_dev_enter(from_pvr_device(pvr_dev), &idx)) { |
| err = -EIO; |
| goto err_up_read; |
| } |
| |
| cmd.cmd_type = ROGUE_FWIF_KCCB_CMD_CLEANUP; |
| cmd.kccb_flags = 0; |
| cleanup_req->cleanup_type = type; |
| |
| switch (type) { |
| case ROGUE_FWIF_CLEANUP_FWCOMMONCONTEXT: |
| pvr_fw_object_get_fw_addr_offset(fw_obj, offset, |
| &cleanup_req->cleanup_data.context_fw_addr); |
| break; |
| case ROGUE_FWIF_CLEANUP_HWRTDATA: |
| pvr_fw_object_get_fw_addr_offset(fw_obj, offset, |
| &cleanup_req->cleanup_data.hwrt_data_fw_addr); |
| break; |
| case ROGUE_FWIF_CLEANUP_FREELIST: |
| pvr_fw_object_get_fw_addr_offset(fw_obj, offset, |
| &cleanup_req->cleanup_data.freelist_fw_addr); |
| break; |
| default: |
| err = -EINVAL; |
| goto err_drm_dev_exit; |
| } |
| |
| err = pvr_kccb_send_cmd(pvr_dev, &cmd, &slot_nr); |
| if (err) |
| goto err_drm_dev_exit; |
| |
| err = pvr_kccb_wait_for_completion(pvr_dev, slot_nr, HZ, &rtn); |
| if (err) |
| goto err_drm_dev_exit; |
| |
| if (rtn & ROGUE_FWIF_KCCB_RTN_SLOT_CLEANUP_BUSY) |
| err = -EBUSY; |
| |
| err_drm_dev_exit: |
| drm_dev_exit(idx); |
| |
| err_up_read: |
| up_read(&pvr_dev->reset_sem); |
| |
| return err; |
| } |
| |
| /** |
| * pvr_fw_object_fw_map() - Map a FW object in firmware address space |
| * @pvr_dev: Device pointer. |
| * @fw_obj: FW object to map. |
| * @dev_addr: Desired address in device space, if a specific address is |
| * required. 0 otherwise. |
| * |
| * Returns: |
| * * 0 on success, or |
| * * -%EINVAL if @fw_obj is already mapped but has no references, or |
| * * Any error returned by DRM. |
| */ |
| static int |
| pvr_fw_object_fw_map(struct pvr_device *pvr_dev, struct pvr_fw_object *fw_obj, u64 dev_addr) |
| { |
| struct pvr_gem_object *pvr_obj = fw_obj->gem; |
| struct drm_gem_object *gem_obj = gem_from_pvr_gem(pvr_obj); |
| struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; |
| |
| int err; |
| |
| spin_lock(&fw_dev->fw_mm_lock); |
| |
| if (drm_mm_node_allocated(&fw_obj->fw_mm_node)) { |
| err = -EINVAL; |
| goto err_unlock; |
| } |
| |
| if (!dev_addr) { |
| /* |
| * Allocate from the main heap only (firmware heap minus |
| * config space). |
| */ |
| err = drm_mm_insert_node_in_range(&fw_dev->fw_mm, &fw_obj->fw_mm_node, |
| gem_obj->size, 0, 0, |
| fw_dev->fw_heap_info.gpu_addr, |
| fw_dev->fw_heap_info.gpu_addr + |
| fw_dev->fw_heap_info.size, 0); |
| if (err) |
| goto err_unlock; |
| } else { |
| fw_obj->fw_mm_node.start = dev_addr; |
| fw_obj->fw_mm_node.size = gem_obj->size; |
| err = drm_mm_reserve_node(&fw_dev->fw_mm, &fw_obj->fw_mm_node); |
| if (err) |
| goto err_unlock; |
| } |
| |
| spin_unlock(&fw_dev->fw_mm_lock); |
| |
| /* Map object on GPU. */ |
| err = fw_dev->defs->vm_map(pvr_dev, fw_obj); |
| if (err) |
| goto err_remove_node; |
| |
| fw_obj->fw_addr_offset = (u32)(fw_obj->fw_mm_node.start - fw_dev->fw_mm_base); |
| |
| return 0; |
| |
| err_remove_node: |
| spin_lock(&fw_dev->fw_mm_lock); |
| drm_mm_remove_node(&fw_obj->fw_mm_node); |
| |
| err_unlock: |
| spin_unlock(&fw_dev->fw_mm_lock); |
| |
| return err; |
| } |
| |
| /** |
| * pvr_fw_object_fw_unmap() - Unmap a previously mapped FW object |
| * @fw_obj: FW object to unmap. |
| * |
| * Returns: |
| * * 0 on success, or |
| * * -%EINVAL if object is not currently mapped. |
| */ |
| static int |
| pvr_fw_object_fw_unmap(struct pvr_fw_object *fw_obj) |
| { |
| struct pvr_gem_object *pvr_obj = fw_obj->gem; |
| struct drm_gem_object *gem_obj = gem_from_pvr_gem(pvr_obj); |
| struct pvr_device *pvr_dev = to_pvr_device(gem_obj->dev); |
| struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; |
| |
| fw_dev->defs->vm_unmap(pvr_dev, fw_obj); |
| |
| spin_lock(&fw_dev->fw_mm_lock); |
| |
| if (!drm_mm_node_allocated(&fw_obj->fw_mm_node)) { |
| spin_unlock(&fw_dev->fw_mm_lock); |
| return -EINVAL; |
| } |
| |
| drm_mm_remove_node(&fw_obj->fw_mm_node); |
| |
| spin_unlock(&fw_dev->fw_mm_lock); |
| |
| return 0; |
| } |
| |
| static void * |
| pvr_fw_object_create_and_map_common(struct pvr_device *pvr_dev, size_t size, |
| u64 flags, u64 dev_addr, |
| void (*init)(void *cpu_ptr, void *priv), |
| void *init_priv, struct pvr_fw_object **fw_obj_out) |
| { |
| struct pvr_fw_object *fw_obj; |
| void *cpu_ptr; |
| int err; |
| |
| /* %DRM_PVR_BO_PM_FW_PROTECT is implicit for FW objects. */ |
| flags |= DRM_PVR_BO_PM_FW_PROTECT; |
| |
| fw_obj = kzalloc(sizeof(*fw_obj), GFP_KERNEL); |
| if (!fw_obj) |
| return ERR_PTR(-ENOMEM); |
| |
| INIT_LIST_HEAD(&fw_obj->node); |
| fw_obj->init = init; |
| fw_obj->init_priv = init_priv; |
| |
| fw_obj->gem = pvr_gem_object_create(pvr_dev, size, flags); |
| if (IS_ERR(fw_obj->gem)) { |
| err = PTR_ERR(fw_obj->gem); |
| fw_obj->gem = NULL; |
| goto err_put_object; |
| } |
| |
| err = pvr_fw_object_fw_map(pvr_dev, fw_obj, dev_addr); |
| if (err) |
| goto err_put_object; |
| |
| cpu_ptr = pvr_fw_object_vmap(fw_obj); |
| if (IS_ERR(cpu_ptr)) { |
| err = PTR_ERR(cpu_ptr); |
| goto err_put_object; |
| } |
| |
| *fw_obj_out = fw_obj; |
| |
| if (fw_obj->init) |
| fw_obj->init(cpu_ptr, fw_obj->init_priv); |
| |
| mutex_lock(&pvr_dev->fw_dev.fw_objs.lock); |
| list_add_tail(&fw_obj->node, &pvr_dev->fw_dev.fw_objs.list); |
| mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock); |
| |
| return cpu_ptr; |
| |
| err_put_object: |
| pvr_fw_object_destroy(fw_obj); |
| |
| return ERR_PTR(err); |
| } |
| |
| /** |
| * pvr_fw_object_create() - Create a FW object and map to firmware |
| * @pvr_dev: PowerVR device pointer. |
| * @size: Size of object, in bytes. |
| * @flags: Options which affect both this operation and future mapping |
| * operations performed on the returned object. Must be a combination of |
| * DRM_PVR_BO_* and/or PVR_BO_* flags. |
| * @init: Initialisation callback. |
| * @init_priv: Private pointer to pass to initialisation callback. |
| * @fw_obj_out: Pointer to location to store created object pointer. |
| * |
| * %DRM_PVR_BO_DEVICE_PM_FW_PROTECT is implied for all FW objects. Consequently, |
| * this function will fail if @flags has %DRM_PVR_BO_CPU_ALLOW_USERSPACE_ACCESS |
| * set. |
| * |
| * Returns: |
| * * 0 on success, or |
| * * Any error returned by pvr_fw_object_create_common(). |
| */ |
| int |
| pvr_fw_object_create(struct pvr_device *pvr_dev, size_t size, u64 flags, |
| void (*init)(void *cpu_ptr, void *priv), void *init_priv, |
| struct pvr_fw_object **fw_obj_out) |
| { |
| void *cpu_ptr; |
| |
| cpu_ptr = pvr_fw_object_create_and_map_common(pvr_dev, size, flags, 0, init, init_priv, |
| fw_obj_out); |
| if (IS_ERR(cpu_ptr)) |
| return PTR_ERR(cpu_ptr); |
| |
| pvr_fw_object_vunmap(*fw_obj_out); |
| |
| return 0; |
| } |
| |
| /** |
| * pvr_fw_object_create_and_map() - Create a FW object and map to firmware and CPU |
| * @pvr_dev: PowerVR device pointer. |
| * @size: Size of object, in bytes. |
| * @flags: Options which affect both this operation and future mapping |
| * operations performed on the returned object. Must be a combination of |
| * DRM_PVR_BO_* and/or PVR_BO_* flags. |
| * @init: Initialisation callback. |
| * @init_priv: Private pointer to pass to initialisation callback. |
| * @fw_obj_out: Pointer to location to store created object pointer. |
| * |
| * %DRM_PVR_BO_DEVICE_PM_FW_PROTECT is implied for all FW objects. Consequently, |
| * this function will fail if @flags has %DRM_PVR_BO_CPU_ALLOW_USERSPACE_ACCESS |
| * set. |
| * |
| * Caller is responsible for calling pvr_fw_object_vunmap() to release the CPU |
| * mapping. |
| * |
| * Returns: |
| * * Pointer to CPU mapping of newly created object, or |
| * * Any error returned by pvr_fw_object_create(), or |
| * * Any error returned by pvr_fw_object_vmap(). |
| */ |
| void * |
| pvr_fw_object_create_and_map(struct pvr_device *pvr_dev, size_t size, u64 flags, |
| void (*init)(void *cpu_ptr, void *priv), |
| void *init_priv, struct pvr_fw_object **fw_obj_out) |
| { |
| return pvr_fw_object_create_and_map_common(pvr_dev, size, flags, 0, init, init_priv, |
| fw_obj_out); |
| } |
| |
| /** |
| * pvr_fw_object_create_and_map_offset() - Create a FW object and map to |
| * firmware at the provided offset and to the CPU. |
| * @pvr_dev: PowerVR device pointer. |
| * @dev_offset: Base address of desired FW mapping, offset from start of FW heap. |
| * @size: Size of object, in bytes. |
| * @flags: Options which affect both this operation and future mapping |
| * operations performed on the returned object. Must be a combination of |
| * DRM_PVR_BO_* and/or PVR_BO_* flags. |
| * @init: Initialisation callback. |
| * @init_priv: Private pointer to pass to initialisation callback. |
| * @fw_obj_out: Pointer to location to store created object pointer. |
| * |
| * %DRM_PVR_BO_DEVICE_PM_FW_PROTECT is implied for all FW objects. Consequently, |
| * this function will fail if @flags has %DRM_PVR_BO_CPU_ALLOW_USERSPACE_ACCESS |
| * set. |
| * |
| * Caller is responsible for calling pvr_fw_object_vunmap() to release the CPU |
| * mapping. |
| * |
| * Returns: |
| * * Pointer to CPU mapping of newly created object, or |
| * * Any error returned by pvr_fw_object_create(), or |
| * * Any error returned by pvr_fw_object_vmap(). |
| */ |
| void * |
| pvr_fw_object_create_and_map_offset(struct pvr_device *pvr_dev, |
| u32 dev_offset, size_t size, u64 flags, |
| void (*init)(void *cpu_ptr, void *priv), |
| void *init_priv, struct pvr_fw_object **fw_obj_out) |
| { |
| u64 dev_addr = pvr_dev->fw_dev.fw_mm_base + dev_offset; |
| |
| return pvr_fw_object_create_and_map_common(pvr_dev, size, flags, dev_addr, init, init_priv, |
| fw_obj_out); |
| } |
| |
| /** |
| * pvr_fw_object_destroy() - Destroy a pvr_fw_object |
| * @fw_obj: Pointer to object to destroy. |
| */ |
| void pvr_fw_object_destroy(struct pvr_fw_object *fw_obj) |
| { |
| struct pvr_gem_object *pvr_obj = fw_obj->gem; |
| struct drm_gem_object *gem_obj = gem_from_pvr_gem(pvr_obj); |
| struct pvr_device *pvr_dev = to_pvr_device(gem_obj->dev); |
| |
| mutex_lock(&pvr_dev->fw_dev.fw_objs.lock); |
| list_del(&fw_obj->node); |
| mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock); |
| |
| if (drm_mm_node_allocated(&fw_obj->fw_mm_node)) { |
| /* If we can't unmap, leak the memory. */ |
| if (WARN_ON(pvr_fw_object_fw_unmap(fw_obj))) |
| return; |
| } |
| |
| if (fw_obj->gem) |
| pvr_gem_object_put(fw_obj->gem); |
| |
| kfree(fw_obj); |
| } |
| |
| /** |
| * pvr_fw_object_get_fw_addr_offset() - Return address of object in firmware address space, with |
| * given offset. |
| * @fw_obj: Pointer to object. |
| * @offset: Desired offset from start of object. |
| * @fw_addr_out: Location to store address to. |
| */ |
| void pvr_fw_object_get_fw_addr_offset(struct pvr_fw_object *fw_obj, u32 offset, u32 *fw_addr_out) |
| { |
| struct pvr_gem_object *pvr_obj = fw_obj->gem; |
| struct pvr_device *pvr_dev = to_pvr_device(gem_from_pvr_gem(pvr_obj)->dev); |
| |
| *fw_addr_out = pvr_dev->fw_dev.defs->get_fw_addr_with_offset(fw_obj, offset); |
| } |
| |
| /* |
| * pvr_fw_hard_reset() - Re-initialise the FW code and data segments, and reset all global FW |
| * structures |
| * @pvr_dev: Device pointer |
| * |
| * If this function returns an error then the caller must regard the device as lost. |
| * |
| * Returns: |
| * * 0 on success, or |
| * * Any error returned by pvr_fw_init_dev_structures() or pvr_fw_reset_all(). |
| */ |
| int |
| pvr_fw_hard_reset(struct pvr_device *pvr_dev) |
| { |
| struct list_head *pos; |
| int err; |
| |
| /* Reset all FW objects */ |
| mutex_lock(&pvr_dev->fw_dev.fw_objs.lock); |
| |
| list_for_each(pos, &pvr_dev->fw_dev.fw_objs.list) { |
| struct pvr_fw_object *fw_obj = container_of(pos, struct pvr_fw_object, node); |
| void *cpu_ptr = pvr_fw_object_vmap(fw_obj); |
| |
| WARN_ON(IS_ERR(cpu_ptr)); |
| |
| if (!(fw_obj->gem->flags & PVR_BO_FW_NO_CLEAR_ON_RESET)) { |
| memset(cpu_ptr, 0, pvr_gem_object_size(fw_obj->gem)); |
| |
| if (fw_obj->init) |
| fw_obj->init(cpu_ptr, fw_obj->init_priv); |
| } |
| |
| pvr_fw_object_vunmap(fw_obj); |
| } |
| |
| mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock); |
| |
| err = pvr_fw_reinit_code_data(pvr_dev); |
| if (err) |
| return err; |
| |
| return 0; |
| } |