| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright © 2023 Intel Corporation |
| */ |
| |
| #include "xe_gsc.h" |
| |
| #include <drm/drm_managed.h> |
| |
| #include <generated/xe_wa_oob.h> |
| |
| #include "abi/gsc_mkhi_commands_abi.h" |
| #include "xe_bb.h" |
| #include "xe_bo.h" |
| #include "xe_device.h" |
| #include "xe_exec_queue.h" |
| #include "xe_gsc_proxy.h" |
| #include "xe_gsc_submit.h" |
| #include "xe_gt.h" |
| #include "xe_gt_printk.h" |
| #include "xe_huc.h" |
| #include "xe_map.h" |
| #include "xe_mmio.h" |
| #include "xe_sched_job.h" |
| #include "xe_uc_fw.h" |
| #include "xe_wa.h" |
| #include "instructions/xe_gsc_commands.h" |
| #include "regs/xe_gsc_regs.h" |
| |
| static struct xe_gt * |
| gsc_to_gt(struct xe_gsc *gsc) |
| { |
| return container_of(gsc, struct xe_gt, uc.gsc); |
| } |
| |
| static int memcpy_fw(struct xe_gsc *gsc) |
| { |
| struct xe_gt *gt = gsc_to_gt(gsc); |
| struct xe_device *xe = gt_to_xe(gt); |
| u32 fw_size = gsc->fw.size; |
| void *storage; |
| |
| /* |
| * FIXME: xe_migrate_copy does not work with stolen mem yet, so we use |
| * a memcpy for now. |
| */ |
| storage = kmalloc(fw_size, GFP_KERNEL); |
| if (!storage) |
| return -ENOMEM; |
| |
| xe_map_memcpy_from(xe, storage, &gsc->fw.bo->vmap, 0, fw_size); |
| xe_map_memcpy_to(xe, &gsc->private->vmap, 0, storage, fw_size); |
| xe_map_memset(xe, &gsc->private->vmap, fw_size, 0, gsc->private->size - fw_size); |
| |
| kfree(storage); |
| |
| return 0; |
| } |
| |
| static int emit_gsc_upload(struct xe_gsc *gsc) |
| { |
| struct xe_gt *gt = gsc_to_gt(gsc); |
| u64 offset = xe_bo_ggtt_addr(gsc->private); |
| struct xe_bb *bb; |
| struct xe_sched_job *job; |
| struct dma_fence *fence; |
| long timeout; |
| |
| bb = xe_bb_new(gt, 4, false); |
| if (IS_ERR(bb)) |
| return PTR_ERR(bb); |
| |
| bb->cs[bb->len++] = GSC_FW_LOAD; |
| bb->cs[bb->len++] = lower_32_bits(offset); |
| bb->cs[bb->len++] = upper_32_bits(offset); |
| bb->cs[bb->len++] = (gsc->private->size / SZ_4K) | GSC_FW_LOAD_LIMIT_VALID; |
| |
| job = xe_bb_create_job(gsc->q, bb); |
| if (IS_ERR(job)) { |
| xe_bb_free(bb, NULL); |
| return PTR_ERR(job); |
| } |
| |
| xe_sched_job_arm(job); |
| fence = dma_fence_get(&job->drm.s_fence->finished); |
| xe_sched_job_push(job); |
| |
| timeout = dma_fence_wait_timeout(fence, false, HZ); |
| dma_fence_put(fence); |
| xe_bb_free(bb, NULL); |
| if (timeout < 0) |
| return timeout; |
| else if (!timeout) |
| return -ETIME; |
| |
| return 0; |
| } |
| |
| #define version_query_wr(xe_, map_, offset_, field_, val_) \ |
| xe_map_wr_field(xe_, map_, offset_, struct gsc_get_compatibility_version_in, field_, val_) |
| #define version_query_rd(xe_, map_, offset_, field_) \ |
| xe_map_rd_field(xe_, map_, offset_, struct gsc_get_compatibility_version_out, field_) |
| |
| static u32 emit_version_query_msg(struct xe_device *xe, struct iosys_map *map, u32 wr_offset) |
| { |
| xe_map_memset(xe, map, wr_offset, 0, sizeof(struct gsc_get_compatibility_version_in)); |
| |
| version_query_wr(xe, map, wr_offset, header.group_id, MKHI_GROUP_ID_GFX_SRV); |
| version_query_wr(xe, map, wr_offset, header.command, |
| MKHI_GFX_SRV_GET_HOST_COMPATIBILITY_VERSION); |
| |
| return wr_offset + sizeof(struct gsc_get_compatibility_version_in); |
| } |
| |
| #define GSC_VER_PKT_SZ SZ_4K /* 4K each for input and output */ |
| static int query_compatibility_version(struct xe_gsc *gsc) |
| { |
| struct xe_uc_fw_version *compat = &gsc->fw.versions.found[XE_UC_FW_VER_COMPATIBILITY]; |
| struct xe_gt *gt = gsc_to_gt(gsc); |
| struct xe_tile *tile = gt_to_tile(gt); |
| struct xe_device *xe = gt_to_xe(gt); |
| struct xe_bo *bo; |
| u32 wr_offset; |
| u32 rd_offset; |
| u64 ggtt_offset; |
| int err; |
| |
| bo = xe_bo_create_pin_map(xe, tile, NULL, GSC_VER_PKT_SZ * 2, |
| ttm_bo_type_kernel, |
| XE_BO_CREATE_SYSTEM_BIT | |
| XE_BO_CREATE_GGTT_BIT); |
| if (IS_ERR(bo)) { |
| xe_gt_err(gt, "failed to allocate bo for GSC version query\n"); |
| return PTR_ERR(bo); |
| } |
| |
| ggtt_offset = xe_bo_ggtt_addr(bo); |
| |
| wr_offset = xe_gsc_emit_header(xe, &bo->vmap, 0, HECI_MEADDRESS_MKHI, 0, |
| sizeof(struct gsc_get_compatibility_version_in)); |
| wr_offset = emit_version_query_msg(xe, &bo->vmap, wr_offset); |
| |
| err = xe_gsc_pkt_submit_kernel(gsc, ggtt_offset, wr_offset, |
| ggtt_offset + GSC_VER_PKT_SZ, |
| GSC_VER_PKT_SZ); |
| if (err) { |
| xe_gt_err(gt, |
| "failed to submit GSC request for compatibility version: %d\n", |
| err); |
| goto out_bo; |
| } |
| |
| err = xe_gsc_read_out_header(xe, &bo->vmap, GSC_VER_PKT_SZ, |
| sizeof(struct gsc_get_compatibility_version_out), |
| &rd_offset); |
| if (err) { |
| xe_gt_err(gt, "HuC: invalid GSC reply for version query (err=%d)\n", err); |
| return err; |
| } |
| |
| compat->major = version_query_rd(xe, &bo->vmap, rd_offset, compat_major); |
| compat->minor = version_query_rd(xe, &bo->vmap, rd_offset, compat_minor); |
| |
| xe_gt_info(gt, "found GSC cv%u.%u\n", compat->major, compat->minor); |
| |
| out_bo: |
| xe_bo_unpin_map_no_vm(bo); |
| return err; |
| } |
| |
| static int gsc_fw_is_loaded(struct xe_gt *gt) |
| { |
| return xe_mmio_read32(gt, HECI_FWSTS1(MTL_GSC_HECI1_BASE)) & |
| HECI1_FWSTS1_INIT_COMPLETE; |
| } |
| |
| static int gsc_fw_wait(struct xe_gt *gt) |
| { |
| /* |
| * GSC load can take up to 250ms from the moment the instruction is |
| * executed by the GSCCS. To account for possible submission delays or |
| * other issues, we use a 500ms timeout in the wait here. |
| */ |
| return xe_mmio_wait32(gt, HECI_FWSTS1(MTL_GSC_HECI1_BASE), |
| HECI1_FWSTS1_INIT_COMPLETE, |
| HECI1_FWSTS1_INIT_COMPLETE, |
| 500 * USEC_PER_MSEC, NULL, false); |
| } |
| |
| static int gsc_upload(struct xe_gsc *gsc) |
| { |
| struct xe_gt *gt = gsc_to_gt(gsc); |
| struct xe_device *xe = gt_to_xe(gt); |
| int err; |
| |
| /* we should only be here if the init step were successful */ |
| xe_assert(xe, xe_uc_fw_is_loadable(&gsc->fw) && gsc->q); |
| |
| if (gsc_fw_is_loaded(gt)) { |
| xe_gt_err(gt, "GSC already loaded at upload time\n"); |
| return -EEXIST; |
| } |
| |
| err = memcpy_fw(gsc); |
| if (err) { |
| xe_gt_err(gt, "Failed to memcpy GSC FW\n"); |
| return err; |
| } |
| |
| /* |
| * GSC is only killed by an FLR, so we need to trigger one on unload to |
| * make sure we stop it. This is because we assign a chunk of memory to |
| * the GSC as part of the FW load, so we need to make sure it stops |
| * using it when we release it to the system on driver unload. Note that |
| * this is not a problem of the unload per-se, because the GSC will not |
| * touch that memory unless there are requests for it coming from the |
| * driver; therefore, no accesses will happen while Xe is not loaded, |
| * but if we re-load the driver then the GSC might wake up and try to |
| * access that old memory location again. |
| * Given that an FLR is a very disruptive action (see the FLR function |
| * for details), we want to do it as the last action before releasing |
| * the access to the MMIO bar, which means we need to do it as part of |
| * mmio cleanup. |
| */ |
| xe->needs_flr_on_fini = true; |
| |
| err = emit_gsc_upload(gsc); |
| if (err) { |
| xe_gt_err(gt, "Failed to emit GSC FW upload (%pe)\n", ERR_PTR(err)); |
| return err; |
| } |
| |
| err = gsc_fw_wait(gt); |
| if (err) { |
| xe_gt_err(gt, "Failed to wait for GSC load (%pe)\n", ERR_PTR(err)); |
| return err; |
| } |
| |
| err = query_compatibility_version(gsc); |
| if (err) |
| return err; |
| |
| err = xe_uc_fw_check_version_requirements(&gsc->fw); |
| if (err) |
| return err; |
| |
| return 0; |
| } |
| |
| static int gsc_upload_and_init(struct xe_gsc *gsc) |
| { |
| struct xe_gt *gt = gsc_to_gt(gsc); |
| int ret; |
| |
| ret = gsc_upload(gsc); |
| if (ret) |
| return ret; |
| |
| xe_uc_fw_change_status(&gsc->fw, XE_UC_FIRMWARE_TRANSFERRED); |
| xe_gt_dbg(gt, "GSC FW async load completed\n"); |
| |
| /* HuC auth failure is not fatal */ |
| if (xe_huc_is_authenticated(>->uc.huc, XE_HUC_AUTH_VIA_GUC)) |
| xe_huc_auth(>->uc.huc, XE_HUC_AUTH_VIA_GSC); |
| |
| ret = xe_gsc_proxy_start(gsc); |
| if (ret) |
| return ret; |
| |
| xe_gt_dbg(gt, "GSC proxy init completed\n"); |
| |
| return 0; |
| } |
| |
| static void gsc_work(struct work_struct *work) |
| { |
| struct xe_gsc *gsc = container_of(work, typeof(*gsc), work); |
| struct xe_gt *gt = gsc_to_gt(gsc); |
| struct xe_device *xe = gt_to_xe(gt); |
| u32 actions; |
| int ret; |
| |
| spin_lock_irq(&gsc->lock); |
| actions = gsc->work_actions; |
| gsc->work_actions = 0; |
| spin_unlock_irq(&gsc->lock); |
| |
| xe_device_mem_access_get(xe); |
| xe_force_wake_get(gt_to_fw(gt), XE_FW_GSC); |
| |
| if (actions & GSC_ACTION_FW_LOAD) { |
| ret = gsc_upload_and_init(gsc); |
| if (ret && ret != -EEXIST) |
| xe_uc_fw_change_status(&gsc->fw, XE_UC_FIRMWARE_LOAD_FAIL); |
| else |
| xe_uc_fw_change_status(&gsc->fw, XE_UC_FIRMWARE_RUNNING); |
| } |
| |
| if (actions & GSC_ACTION_SW_PROXY) |
| xe_gsc_proxy_request_handler(gsc); |
| |
| xe_force_wake_put(gt_to_fw(gt), XE_FW_GSC); |
| xe_device_mem_access_put(xe); |
| } |
| |
| int xe_gsc_init(struct xe_gsc *gsc) |
| { |
| struct xe_gt *gt = gsc_to_gt(gsc); |
| struct xe_tile *tile = gt_to_tile(gt); |
| int ret; |
| |
| gsc->fw.type = XE_UC_FW_TYPE_GSC; |
| INIT_WORK(&gsc->work, gsc_work); |
| spin_lock_init(&gsc->lock); |
| |
| /* The GSC uC is only available on the media GT */ |
| if (tile->media_gt && (gt != tile->media_gt)) { |
| xe_uc_fw_change_status(&gsc->fw, XE_UC_FIRMWARE_NOT_SUPPORTED); |
| return 0; |
| } |
| |
| /* |
| * Some platforms can have GuC but not GSC. That would cause |
| * xe_uc_fw_init(gsc) to return a "not supported" failure code and abort |
| * all firmware loading. So check for GSC being enabled before |
| * propagating the failure back up. That way the higher level will keep |
| * going and load GuC as appropriate. |
| */ |
| ret = xe_uc_fw_init(&gsc->fw); |
| if (!xe_uc_fw_is_enabled(&gsc->fw)) |
| return 0; |
| else if (ret) |
| goto out; |
| |
| ret = xe_gsc_proxy_init(gsc); |
| if (ret && ret != -ENODEV) |
| goto out; |
| |
| return 0; |
| |
| out: |
| xe_gt_err(gt, "GSC init failed with %d", ret); |
| return ret; |
| } |
| |
| static void free_resources(struct drm_device *drm, void *arg) |
| { |
| struct xe_gsc *gsc = arg; |
| |
| if (gsc->wq) { |
| destroy_workqueue(gsc->wq); |
| gsc->wq = NULL; |
| } |
| |
| if (gsc->q) { |
| xe_exec_queue_put(gsc->q); |
| gsc->q = NULL; |
| } |
| |
| if (gsc->private) { |
| xe_bo_unpin_map_no_vm(gsc->private); |
| gsc->private = NULL; |
| } |
| } |
| |
| int xe_gsc_init_post_hwconfig(struct xe_gsc *gsc) |
| { |
| struct xe_gt *gt = gsc_to_gt(gsc); |
| struct xe_tile *tile = gt_to_tile(gt); |
| struct xe_device *xe = gt_to_xe(gt); |
| struct xe_hw_engine *hwe = xe_gt_hw_engine(gt, XE_ENGINE_CLASS_OTHER, 0, true); |
| struct xe_exec_queue *q; |
| struct workqueue_struct *wq; |
| struct xe_bo *bo; |
| int err; |
| |
| if (!xe_uc_fw_is_available(&gsc->fw)) |
| return 0; |
| |
| if (!hwe) |
| return -ENODEV; |
| |
| bo = xe_bo_create_pin_map(xe, tile, NULL, SZ_4M, |
| ttm_bo_type_kernel, |
| XE_BO_CREATE_STOLEN_BIT | |
| XE_BO_CREATE_GGTT_BIT); |
| if (IS_ERR(bo)) |
| return PTR_ERR(bo); |
| |
| q = xe_exec_queue_create(xe, NULL, |
| BIT(hwe->logical_instance), 1, hwe, |
| EXEC_QUEUE_FLAG_KERNEL | |
| EXEC_QUEUE_FLAG_PERMANENT, 0); |
| if (IS_ERR(q)) { |
| xe_gt_err(gt, "Failed to create queue for GSC submission\n"); |
| err = PTR_ERR(q); |
| goto out_bo; |
| } |
| |
| wq = alloc_ordered_workqueue("gsc-ordered-wq", 0); |
| if (!wq) { |
| err = -ENOMEM; |
| goto out_q; |
| } |
| |
| gsc->private = bo; |
| gsc->q = q; |
| gsc->wq = wq; |
| |
| err = drmm_add_action_or_reset(&xe->drm, free_resources, gsc); |
| if (err) |
| return err; |
| |
| xe_uc_fw_change_status(&gsc->fw, XE_UC_FIRMWARE_LOADABLE); |
| |
| return 0; |
| |
| out_q: |
| xe_exec_queue_put(q); |
| out_bo: |
| xe_bo_unpin_map_no_vm(bo); |
| return err; |
| } |
| |
| void xe_gsc_load_start(struct xe_gsc *gsc) |
| { |
| struct xe_gt *gt = gsc_to_gt(gsc); |
| |
| if (!xe_uc_fw_is_loadable(&gsc->fw) || !gsc->q) |
| return; |
| |
| /* GSC FW survives GT reset and D3Hot */ |
| if (gsc_fw_is_loaded(gt)) { |
| xe_uc_fw_change_status(&gsc->fw, XE_UC_FIRMWARE_TRANSFERRED); |
| return; |
| } |
| |
| spin_lock_irq(&gsc->lock); |
| gsc->work_actions |= GSC_ACTION_FW_LOAD; |
| spin_unlock_irq(&gsc->lock); |
| |
| queue_work(gsc->wq, &gsc->work); |
| } |
| |
| void xe_gsc_wait_for_worker_completion(struct xe_gsc *gsc) |
| { |
| if (xe_uc_fw_is_loadable(&gsc->fw) && gsc->wq) |
| flush_work(&gsc->work); |
| } |
| |
| /** |
| * xe_gsc_remove() - Clean up the GSC structures before driver removal |
| * @gsc: the GSC uC |
| */ |
| void xe_gsc_remove(struct xe_gsc *gsc) |
| { |
| xe_gsc_proxy_remove(gsc); |
| } |
| |
| /* |
| * wa_14015076503: if the GSC FW is loaded, we need to alert it before doing a |
| * GSC engine reset by writing a notification bit in the GS1 register and then |
| * triggering an interrupt to GSC; from the interrupt it will take up to 200ms |
| * for the FW to get prepare for the reset, so we need to wait for that amount |
| * of time. |
| * After the reset is complete we need to then clear the GS1 register. |
| */ |
| void xe_gsc_wa_14015076503(struct xe_gt *gt, bool prep) |
| { |
| u32 gs1_set = prep ? HECI_H_GS1_ER_PREP : 0; |
| u32 gs1_clr = prep ? 0 : HECI_H_GS1_ER_PREP; |
| |
| /* WA only applies if the GSC is loaded */ |
| if (!XE_WA(gt, 14015076503) || !gsc_fw_is_loaded(gt)) |
| return; |
| |
| xe_mmio_rmw32(gt, HECI_H_GS1(MTL_GSC_HECI2_BASE), gs1_clr, gs1_set); |
| |
| if (prep) { |
| /* make sure the reset bit is clear when writing the CSR reg */ |
| xe_mmio_rmw32(gt, HECI_H_CSR(MTL_GSC_HECI2_BASE), |
| HECI_H_CSR_RST, HECI_H_CSR_IG); |
| msleep(200); |
| } |
| } |