| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright © 2022 Intel Corporation |
| */ |
| |
| #include "xe_guc_pc.h" |
| |
| #include <linux/delay.h> |
| |
| #include <drm/drm_managed.h> |
| |
| #include "abi/guc_actions_abi.h" |
| #include "abi/guc_actions_slpc_abi.h" |
| #include "regs/xe_gt_regs.h" |
| #include "regs/xe_regs.h" |
| #include "xe_bo.h" |
| #include "xe_device.h" |
| #include "xe_gt.h" |
| #include "xe_gt_idle.h" |
| #include "xe_gt_sysfs.h" |
| #include "xe_gt_types.h" |
| #include "xe_guc_ct.h" |
| #include "xe_map.h" |
| #include "xe_mmio.h" |
| #include "xe_pcode.h" |
| |
| #define MCHBAR_MIRROR_BASE_SNB 0x140000 |
| |
| #define RP_STATE_CAP XE_REG(MCHBAR_MIRROR_BASE_SNB + 0x5998) |
| #define RP0_MASK REG_GENMASK(7, 0) |
| #define RP1_MASK REG_GENMASK(15, 8) |
| #define RPN_MASK REG_GENMASK(23, 16) |
| |
| #define FREQ_INFO_REC XE_REG(MCHBAR_MIRROR_BASE_SNB + 0x5ef0) |
| #define RPE_MASK REG_GENMASK(15, 8) |
| |
| #define GT_PERF_STATUS XE_REG(0x1381b4) |
| #define CAGF_MASK REG_GENMASK(19, 11) |
| |
| #define GT_FREQUENCY_MULTIPLIER 50 |
| #define GT_FREQUENCY_SCALER 3 |
| |
| /** |
| * DOC: GuC Power Conservation (PC) |
| * |
| * GuC Power Conservation (PC) supports multiple features for the most |
| * efficient and performing use of the GT when GuC submission is enabled, |
| * including frequency management, Render-C states management, and various |
| * algorithms for power balancing. |
| * |
| * Single Loop Power Conservation (SLPC) is the name given to the suite of |
| * connected power conservation features in the GuC firmware. The firmware |
| * exposes a programming interface to the host for the control of SLPC. |
| * |
| * Frequency management: |
| * ===================== |
| * |
| * Xe driver enables SLPC with all of its defaults features and frequency |
| * selection, which varies per platform. |
| * |
| * Render-C States: |
| * ================ |
| * |
| * Render-C states is also a GuC PC feature that is now enabled in Xe for |
| * all platforms. |
| * |
| */ |
| |
| static struct xe_guc * |
| pc_to_guc(struct xe_guc_pc *pc) |
| { |
| return container_of(pc, struct xe_guc, pc); |
| } |
| |
| static struct xe_device * |
| pc_to_xe(struct xe_guc_pc *pc) |
| { |
| struct xe_guc *guc = pc_to_guc(pc); |
| struct xe_gt *gt = container_of(guc, struct xe_gt, uc.guc); |
| |
| return gt_to_xe(gt); |
| } |
| |
| static struct xe_gt * |
| pc_to_gt(struct xe_guc_pc *pc) |
| { |
| return container_of(pc, struct xe_gt, uc.guc.pc); |
| } |
| |
| static struct iosys_map * |
| pc_to_maps(struct xe_guc_pc *pc) |
| { |
| return &pc->bo->vmap; |
| } |
| |
| #define slpc_shared_data_read(pc_, field_) \ |
| xe_map_rd_field(pc_to_xe(pc_), pc_to_maps(pc_), 0, \ |
| struct slpc_shared_data, field_) |
| |
| #define slpc_shared_data_write(pc_, field_, val_) \ |
| xe_map_wr_field(pc_to_xe(pc_), pc_to_maps(pc_), 0, \ |
| struct slpc_shared_data, field_, val_) |
| |
| #define SLPC_EVENT(id, count) \ |
| (FIELD_PREP(HOST2GUC_PC_SLPC_REQUEST_MSG_1_EVENT_ID, id) | \ |
| FIELD_PREP(HOST2GUC_PC_SLPC_REQUEST_MSG_1_EVENT_ARGC, count)) |
| |
| static int wait_for_pc_state(struct xe_guc_pc *pc, |
| enum slpc_global_state state) |
| { |
| int timeout_us = 5000; /* rought 5ms, but no need for precision */ |
| int slept, wait = 10; |
| |
| xe_device_assert_mem_access(pc_to_xe(pc)); |
| |
| for (slept = 0; slept < timeout_us;) { |
| if (slpc_shared_data_read(pc, header.global_state) == state) |
| return 0; |
| |
| usleep_range(wait, wait << 1); |
| slept += wait; |
| wait <<= 1; |
| if (slept + wait > timeout_us) |
| wait = timeout_us - slept; |
| } |
| |
| return -ETIMEDOUT; |
| } |
| |
| static int pc_action_reset(struct xe_guc_pc *pc) |
| { |
| struct xe_guc_ct *ct = &pc_to_guc(pc)->ct; |
| int ret; |
| u32 action[] = { |
| GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST, |
| SLPC_EVENT(SLPC_EVENT_RESET, 2), |
| xe_bo_ggtt_addr(pc->bo), |
| 0, |
| }; |
| |
| ret = xe_guc_ct_send(ct, action, ARRAY_SIZE(action), 0, 0); |
| if (ret) |
| drm_err(&pc_to_xe(pc)->drm, "GuC PC reset: %pe", ERR_PTR(ret)); |
| |
| return ret; |
| } |
| |
| static int pc_action_shutdown(struct xe_guc_pc *pc) |
| { |
| struct xe_guc_ct *ct = &pc_to_guc(pc)->ct; |
| int ret; |
| u32 action[] = { |
| GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST, |
| SLPC_EVENT(SLPC_EVENT_SHUTDOWN, 2), |
| xe_bo_ggtt_addr(pc->bo), |
| 0, |
| }; |
| |
| ret = xe_guc_ct_send(ct, action, ARRAY_SIZE(action), 0, 0); |
| if (ret) |
| drm_err(&pc_to_xe(pc)->drm, "GuC PC shutdown %pe", |
| ERR_PTR(ret)); |
| |
| return ret; |
| } |
| |
| static int pc_action_query_task_state(struct xe_guc_pc *pc) |
| { |
| struct xe_guc_ct *ct = &pc_to_guc(pc)->ct; |
| int ret; |
| u32 action[] = { |
| GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST, |
| SLPC_EVENT(SLPC_EVENT_QUERY_TASK_STATE, 2), |
| xe_bo_ggtt_addr(pc->bo), |
| 0, |
| }; |
| |
| if (wait_for_pc_state(pc, SLPC_GLOBAL_STATE_RUNNING)) |
| return -EAGAIN; |
| |
| /* Blocking here to ensure the results are ready before reading them */ |
| ret = xe_guc_ct_send_block(ct, action, ARRAY_SIZE(action)); |
| if (ret) |
| drm_err(&pc_to_xe(pc)->drm, |
| "GuC PC query task state failed: %pe", ERR_PTR(ret)); |
| |
| return ret; |
| } |
| |
| static int pc_action_set_param(struct xe_guc_pc *pc, u8 id, u32 value) |
| { |
| struct xe_guc_ct *ct = &pc_to_guc(pc)->ct; |
| int ret; |
| u32 action[] = { |
| GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST, |
| SLPC_EVENT(SLPC_EVENT_PARAMETER_SET, 2), |
| id, |
| value, |
| }; |
| |
| if (wait_for_pc_state(pc, SLPC_GLOBAL_STATE_RUNNING)) |
| return -EAGAIN; |
| |
| ret = xe_guc_ct_send(ct, action, ARRAY_SIZE(action), 0, 0); |
| if (ret) |
| drm_err(&pc_to_xe(pc)->drm, "GuC PC set param failed: %pe", |
| ERR_PTR(ret)); |
| |
| return ret; |
| } |
| |
| static int pc_action_setup_gucrc(struct xe_guc_pc *pc, u32 mode) |
| { |
| struct xe_guc_ct *ct = &pc_to_guc(pc)->ct; |
| u32 action[] = { |
| XE_GUC_ACTION_SETUP_PC_GUCRC, |
| mode, |
| }; |
| int ret; |
| |
| ret = xe_guc_ct_send(ct, action, ARRAY_SIZE(action), 0, 0); |
| if (ret) |
| drm_err(&pc_to_xe(pc)->drm, "GuC RC enable failed: %pe", |
| ERR_PTR(ret)); |
| return ret; |
| } |
| |
| static u32 decode_freq(u32 raw) |
| { |
| return DIV_ROUND_CLOSEST(raw * GT_FREQUENCY_MULTIPLIER, |
| GT_FREQUENCY_SCALER); |
| } |
| |
| static u32 encode_freq(u32 freq) |
| { |
| return DIV_ROUND_CLOSEST(freq * GT_FREQUENCY_SCALER, |
| GT_FREQUENCY_MULTIPLIER); |
| } |
| |
| static u32 pc_get_min_freq(struct xe_guc_pc *pc) |
| { |
| u32 freq; |
| |
| freq = FIELD_GET(SLPC_MIN_UNSLICE_FREQ_MASK, |
| slpc_shared_data_read(pc, task_state_data.freq)); |
| |
| return decode_freq(freq); |
| } |
| |
| static void pc_set_manual_rp_ctrl(struct xe_guc_pc *pc, bool enable) |
| { |
| struct xe_gt *gt = pc_to_gt(pc); |
| u32 state = enable ? RPSWCTL_ENABLE : RPSWCTL_DISABLE; |
| |
| /* Allow/Disallow punit to process software freq requests */ |
| xe_mmio_write32(gt, RP_CONTROL, state); |
| } |
| |
| static void pc_set_cur_freq(struct xe_guc_pc *pc, u32 freq) |
| { |
| struct xe_gt *gt = pc_to_gt(pc); |
| u32 rpnswreq; |
| |
| pc_set_manual_rp_ctrl(pc, true); |
| |
| /* Req freq is in units of 16.66 Mhz */ |
| rpnswreq = REG_FIELD_PREP(REQ_RATIO_MASK, encode_freq(freq)); |
| xe_mmio_write32(gt, RPNSWREQ, rpnswreq); |
| |
| /* Sleep for a small time to allow pcode to respond */ |
| usleep_range(100, 300); |
| |
| pc_set_manual_rp_ctrl(pc, false); |
| } |
| |
| static int pc_set_min_freq(struct xe_guc_pc *pc, u32 freq) |
| { |
| /* |
| * Let's only check for the rpn-rp0 range. If max < min, |
| * min becomes a fixed request. |
| */ |
| if (freq < pc->rpn_freq || freq > pc->rp0_freq) |
| return -EINVAL; |
| |
| /* |
| * GuC policy is to elevate minimum frequency to the efficient levels |
| * Our goal is to have the admin choices respected. |
| */ |
| pc_action_set_param(pc, SLPC_PARAM_IGNORE_EFFICIENT_FREQUENCY, |
| freq < pc->rpe_freq); |
| |
| return pc_action_set_param(pc, |
| SLPC_PARAM_GLOBAL_MIN_GT_UNSLICE_FREQ_MHZ, |
| freq); |
| } |
| |
| static int pc_get_max_freq(struct xe_guc_pc *pc) |
| { |
| u32 freq; |
| |
| freq = FIELD_GET(SLPC_MAX_UNSLICE_FREQ_MASK, |
| slpc_shared_data_read(pc, task_state_data.freq)); |
| |
| return decode_freq(freq); |
| } |
| |
| static int pc_set_max_freq(struct xe_guc_pc *pc, u32 freq) |
| { |
| /* |
| * Let's only check for the rpn-rp0 range. If max < min, |
| * min becomes a fixed request. |
| * Also, overclocking is not supported. |
| */ |
| if (freq < pc->rpn_freq || freq > pc->rp0_freq) |
| return -EINVAL; |
| |
| return pc_action_set_param(pc, |
| SLPC_PARAM_GLOBAL_MAX_GT_UNSLICE_FREQ_MHZ, |
| freq); |
| } |
| |
| static void mtl_update_rpe_value(struct xe_guc_pc *pc) |
| { |
| struct xe_gt *gt = pc_to_gt(pc); |
| u32 reg; |
| |
| if (xe_gt_is_media_type(gt)) |
| reg = xe_mmio_read32(gt, MTL_MPE_FREQUENCY); |
| else |
| reg = xe_mmio_read32(gt, MTL_GT_RPE_FREQUENCY); |
| |
| pc->rpe_freq = decode_freq(REG_FIELD_GET(MTL_RPE_MASK, reg)); |
| } |
| |
| static void tgl_update_rpe_value(struct xe_guc_pc *pc) |
| { |
| struct xe_gt *gt = pc_to_gt(pc); |
| struct xe_device *xe = gt_to_xe(gt); |
| u32 reg; |
| |
| /* |
| * For PVC we still need to use fused RP1 as the approximation for RPe |
| * For other platforms than PVC we get the resolved RPe directly from |
| * PCODE at a different register |
| */ |
| if (xe->info.platform == XE_PVC) |
| reg = xe_mmio_read32(gt, PVC_RP_STATE_CAP); |
| else |
| reg = xe_mmio_read32(gt, FREQ_INFO_REC); |
| |
| pc->rpe_freq = REG_FIELD_GET(RPE_MASK, reg) * GT_FREQUENCY_MULTIPLIER; |
| } |
| |
| static void pc_update_rp_values(struct xe_guc_pc *pc) |
| { |
| struct xe_gt *gt = pc_to_gt(pc); |
| struct xe_device *xe = gt_to_xe(gt); |
| |
| if (GRAPHICS_VERx100(xe) >= 1270) |
| mtl_update_rpe_value(pc); |
| else |
| tgl_update_rpe_value(pc); |
| |
| /* |
| * RPe is decided at runtime by PCODE. In the rare case where that's |
| * smaller than the fused min, we will trust the PCODE and use that |
| * as our minimum one. |
| */ |
| pc->rpn_freq = min(pc->rpn_freq, pc->rpe_freq); |
| } |
| |
| /** |
| * xe_guc_pc_get_act_freq - Get Actual running frequency |
| * @pc: The GuC PC |
| * |
| * Returns: The Actual running frequency. Which might be 0 if GT is in Render-C sleep state (RC6). |
| */ |
| u32 xe_guc_pc_get_act_freq(struct xe_guc_pc *pc) |
| { |
| struct xe_gt *gt = pc_to_gt(pc); |
| struct xe_device *xe = gt_to_xe(gt); |
| u32 freq; |
| |
| xe_device_mem_access_get(gt_to_xe(gt)); |
| |
| /* When in RC6, actual frequency reported will be 0. */ |
| if (GRAPHICS_VERx100(xe) >= 1270) { |
| freq = xe_mmio_read32(gt, MTL_MIRROR_TARGET_WP1); |
| freq = REG_FIELD_GET(MTL_CAGF_MASK, freq); |
| } else { |
| freq = xe_mmio_read32(gt, GT_PERF_STATUS); |
| freq = REG_FIELD_GET(CAGF_MASK, freq); |
| } |
| |
| freq = decode_freq(freq); |
| |
| xe_device_mem_access_put(gt_to_xe(gt)); |
| |
| return freq; |
| } |
| |
| /** |
| * xe_guc_pc_get_cur_freq - Get Current requested frequency |
| * @pc: The GuC PC |
| * @freq: A pointer to a u32 where the freq value will be returned |
| * |
| * Returns: 0 on success, |
| * -EAGAIN if GuC PC not ready (likely in middle of a reset). |
| */ |
| int xe_guc_pc_get_cur_freq(struct xe_guc_pc *pc, u32 *freq) |
| { |
| struct xe_gt *gt = pc_to_gt(pc); |
| int ret; |
| |
| xe_device_mem_access_get(gt_to_xe(gt)); |
| /* |
| * GuC SLPC plays with cur freq request when GuCRC is enabled |
| * Block RC6 for a more reliable read. |
| */ |
| ret = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL); |
| if (ret) |
| goto out; |
| |
| *freq = xe_mmio_read32(gt, RPNSWREQ); |
| |
| *freq = REG_FIELD_GET(REQ_RATIO_MASK, *freq); |
| *freq = decode_freq(*freq); |
| |
| XE_WARN_ON(xe_force_wake_put(gt_to_fw(gt), XE_FORCEWAKE_ALL)); |
| out: |
| xe_device_mem_access_put(gt_to_xe(gt)); |
| return ret; |
| } |
| |
| /** |
| * xe_guc_pc_get_rp0_freq - Get the RP0 freq |
| * @pc: The GuC PC |
| * |
| * Returns: RP0 freq. |
| */ |
| u32 xe_guc_pc_get_rp0_freq(struct xe_guc_pc *pc) |
| { |
| return pc->rp0_freq; |
| } |
| |
| /** |
| * xe_guc_pc_get_rpe_freq - Get the RPe freq |
| * @pc: The GuC PC |
| * |
| * Returns: RPe freq. |
| */ |
| u32 xe_guc_pc_get_rpe_freq(struct xe_guc_pc *pc) |
| { |
| struct xe_gt *gt = pc_to_gt(pc); |
| struct xe_device *xe = gt_to_xe(gt); |
| |
| xe_device_mem_access_get(xe); |
| pc_update_rp_values(pc); |
| xe_device_mem_access_put(xe); |
| |
| return pc->rpe_freq; |
| } |
| |
| /** |
| * xe_guc_pc_get_rpn_freq - Get the RPn freq |
| * @pc: The GuC PC |
| * |
| * Returns: RPn freq. |
| */ |
| u32 xe_guc_pc_get_rpn_freq(struct xe_guc_pc *pc) |
| { |
| return pc->rpn_freq; |
| } |
| |
| /** |
| * xe_guc_pc_get_min_freq - Get the min operational frequency |
| * @pc: The GuC PC |
| * @freq: A pointer to a u32 where the freq value will be returned |
| * |
| * Returns: 0 on success, |
| * -EAGAIN if GuC PC not ready (likely in middle of a reset). |
| */ |
| int xe_guc_pc_get_min_freq(struct xe_guc_pc *pc, u32 *freq) |
| { |
| struct xe_gt *gt = pc_to_gt(pc); |
| int ret; |
| |
| xe_device_mem_access_get(pc_to_xe(pc)); |
| mutex_lock(&pc->freq_lock); |
| if (!pc->freq_ready) { |
| /* Might be in the middle of a gt reset */ |
| ret = -EAGAIN; |
| goto out; |
| } |
| |
| /* |
| * GuC SLPC plays with min freq request when GuCRC is enabled |
| * Block RC6 for a more reliable read. |
| */ |
| ret = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL); |
| if (ret) |
| goto out; |
| |
| ret = pc_action_query_task_state(pc); |
| if (ret) |
| goto fw; |
| |
| *freq = pc_get_min_freq(pc); |
| |
| fw: |
| XE_WARN_ON(xe_force_wake_put(gt_to_fw(gt), XE_FORCEWAKE_ALL)); |
| out: |
| mutex_unlock(&pc->freq_lock); |
| xe_device_mem_access_put(pc_to_xe(pc)); |
| return ret; |
| } |
| |
| /** |
| * xe_guc_pc_set_min_freq - Set the minimal operational frequency |
| * @pc: The GuC PC |
| * @freq: The selected minimal frequency |
| * |
| * Returns: 0 on success, |
| * -EAGAIN if GuC PC not ready (likely in middle of a reset), |
| * -EINVAL if value out of bounds. |
| */ |
| int xe_guc_pc_set_min_freq(struct xe_guc_pc *pc, u32 freq) |
| { |
| int ret; |
| |
| xe_device_mem_access_get(pc_to_xe(pc)); |
| mutex_lock(&pc->freq_lock); |
| if (!pc->freq_ready) { |
| /* Might be in the middle of a gt reset */ |
| ret = -EAGAIN; |
| goto out; |
| } |
| |
| ret = pc_set_min_freq(pc, freq); |
| if (ret) |
| goto out; |
| |
| pc->user_requested_min = freq; |
| |
| out: |
| mutex_unlock(&pc->freq_lock); |
| xe_device_mem_access_put(pc_to_xe(pc)); |
| |
| return ret; |
| } |
| |
| /** |
| * xe_guc_pc_get_max_freq - Get Maximum operational frequency |
| * @pc: The GuC PC |
| * @freq: A pointer to a u32 where the freq value will be returned |
| * |
| * Returns: 0 on success, |
| * -EAGAIN if GuC PC not ready (likely in middle of a reset). |
| */ |
| int xe_guc_pc_get_max_freq(struct xe_guc_pc *pc, u32 *freq) |
| { |
| int ret; |
| |
| xe_device_mem_access_get(pc_to_xe(pc)); |
| mutex_lock(&pc->freq_lock); |
| if (!pc->freq_ready) { |
| /* Might be in the middle of a gt reset */ |
| ret = -EAGAIN; |
| goto out; |
| } |
| |
| ret = pc_action_query_task_state(pc); |
| if (ret) |
| goto out; |
| |
| *freq = pc_get_max_freq(pc); |
| |
| out: |
| mutex_unlock(&pc->freq_lock); |
| xe_device_mem_access_put(pc_to_xe(pc)); |
| return ret; |
| } |
| |
| /** |
| * xe_guc_pc_set_max_freq - Set the maximum operational frequency |
| * @pc: The GuC PC |
| * @freq: The selected maximum frequency value |
| * |
| * Returns: 0 on success, |
| * -EAGAIN if GuC PC not ready (likely in middle of a reset), |
| * -EINVAL if value out of bounds. |
| */ |
| int xe_guc_pc_set_max_freq(struct xe_guc_pc *pc, u32 freq) |
| { |
| int ret; |
| |
| xe_device_mem_access_get(pc_to_xe(pc)); |
| mutex_lock(&pc->freq_lock); |
| if (!pc->freq_ready) { |
| /* Might be in the middle of a gt reset */ |
| ret = -EAGAIN; |
| goto out; |
| } |
| |
| ret = pc_set_max_freq(pc, freq); |
| if (ret) |
| goto out; |
| |
| pc->user_requested_max = freq; |
| |
| out: |
| mutex_unlock(&pc->freq_lock); |
| xe_device_mem_access_put(pc_to_xe(pc)); |
| return ret; |
| } |
| |
| /** |
| * xe_guc_pc_c_status - get the current GT C state |
| * @pc: XE_GuC_PC instance |
| */ |
| enum xe_gt_idle_state xe_guc_pc_c_status(struct xe_guc_pc *pc) |
| { |
| struct xe_gt *gt = pc_to_gt(pc); |
| u32 reg, gt_c_state; |
| |
| xe_device_mem_access_get(gt_to_xe(gt)); |
| |
| if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) { |
| reg = xe_mmio_read32(gt, MTL_MIRROR_TARGET_WP1); |
| gt_c_state = REG_FIELD_GET(MTL_CC_MASK, reg); |
| } else { |
| reg = xe_mmio_read32(gt, GT_CORE_STATUS); |
| gt_c_state = REG_FIELD_GET(RCN_MASK, reg); |
| } |
| |
| xe_device_mem_access_put(gt_to_xe(gt)); |
| |
| switch (gt_c_state) { |
| case GT_C6: |
| return GT_IDLE_C6; |
| case GT_C0: |
| return GT_IDLE_C0; |
| default: |
| return GT_IDLE_UNKNOWN; |
| } |
| } |
| |
| /** |
| * xe_guc_pc_rc6_residency - rc6 residency counter |
| * @pc: Xe_GuC_PC instance |
| */ |
| u64 xe_guc_pc_rc6_residency(struct xe_guc_pc *pc) |
| { |
| struct xe_gt *gt = pc_to_gt(pc); |
| u32 reg; |
| |
| xe_device_mem_access_get(gt_to_xe(gt)); |
| reg = xe_mmio_read32(gt, GT_GFX_RC6); |
| xe_device_mem_access_put(gt_to_xe(gt)); |
| |
| return reg; |
| } |
| |
| /** |
| * xe_guc_pc_mc6_residency - mc6 residency counter |
| * @pc: Xe_GuC_PC instance |
| */ |
| u64 xe_guc_pc_mc6_residency(struct xe_guc_pc *pc) |
| { |
| struct xe_gt *gt = pc_to_gt(pc); |
| u64 reg; |
| |
| xe_device_mem_access_get(gt_to_xe(gt)); |
| reg = xe_mmio_read32(gt, MTL_MEDIA_MC6); |
| xe_device_mem_access_put(gt_to_xe(gt)); |
| |
| return reg; |
| } |
| |
| static void mtl_init_fused_rp_values(struct xe_guc_pc *pc) |
| { |
| struct xe_gt *gt = pc_to_gt(pc); |
| u32 reg; |
| |
| xe_device_assert_mem_access(pc_to_xe(pc)); |
| |
| if (xe_gt_is_media_type(gt)) |
| reg = xe_mmio_read32(gt, MTL_MEDIAP_STATE_CAP); |
| else |
| reg = xe_mmio_read32(gt, MTL_RP_STATE_CAP); |
| |
| pc->rp0_freq = decode_freq(REG_FIELD_GET(MTL_RP0_CAP_MASK, reg)); |
| |
| pc->rpn_freq = decode_freq(REG_FIELD_GET(MTL_RPN_CAP_MASK, reg)); |
| } |
| |
| static void tgl_init_fused_rp_values(struct xe_guc_pc *pc) |
| { |
| struct xe_gt *gt = pc_to_gt(pc); |
| struct xe_device *xe = gt_to_xe(gt); |
| u32 reg; |
| |
| xe_device_assert_mem_access(pc_to_xe(pc)); |
| |
| if (xe->info.platform == XE_PVC) |
| reg = xe_mmio_read32(gt, PVC_RP_STATE_CAP); |
| else |
| reg = xe_mmio_read32(gt, RP_STATE_CAP); |
| pc->rp0_freq = REG_FIELD_GET(RP0_MASK, reg) * GT_FREQUENCY_MULTIPLIER; |
| pc->rpn_freq = REG_FIELD_GET(RPN_MASK, reg) * GT_FREQUENCY_MULTIPLIER; |
| } |
| |
| static void pc_init_fused_rp_values(struct xe_guc_pc *pc) |
| { |
| struct xe_gt *gt = pc_to_gt(pc); |
| struct xe_device *xe = gt_to_xe(gt); |
| |
| if (GRAPHICS_VERx100(xe) >= 1270) |
| mtl_init_fused_rp_values(pc); |
| else |
| tgl_init_fused_rp_values(pc); |
| } |
| |
| /** |
| * xe_guc_pc_init_early - Initialize RPx values and request a higher GT |
| * frequency to allow faster GuC load times |
| * @pc: Xe_GuC_PC instance |
| */ |
| void xe_guc_pc_init_early(struct xe_guc_pc *pc) |
| { |
| struct xe_gt *gt = pc_to_gt(pc); |
| |
| xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT); |
| pc_init_fused_rp_values(pc); |
| pc_set_cur_freq(pc, pc->rp0_freq); |
| } |
| |
| static int pc_adjust_freq_bounds(struct xe_guc_pc *pc) |
| { |
| int ret; |
| |
| lockdep_assert_held(&pc->freq_lock); |
| |
| ret = pc_action_query_task_state(pc); |
| if (ret) |
| return ret; |
| |
| /* |
| * GuC defaults to some RPmax that is not actually achievable without |
| * overclocking. Let's adjust it to the Hardware RP0, which is the |
| * regular maximum |
| */ |
| if (pc_get_max_freq(pc) > pc->rp0_freq) |
| pc_set_max_freq(pc, pc->rp0_freq); |
| |
| /* |
| * Same thing happens for Server platforms where min is listed as |
| * RPMax |
| */ |
| if (pc_get_min_freq(pc) > pc->rp0_freq) |
| pc_set_min_freq(pc, pc->rp0_freq); |
| |
| return 0; |
| } |
| |
| static int pc_adjust_requested_freq(struct xe_guc_pc *pc) |
| { |
| int ret = 0; |
| |
| lockdep_assert_held(&pc->freq_lock); |
| |
| if (pc->user_requested_min != 0) { |
| ret = pc_set_min_freq(pc, pc->user_requested_min); |
| if (ret) |
| return ret; |
| } |
| |
| if (pc->user_requested_max != 0) { |
| ret = pc_set_max_freq(pc, pc->user_requested_max); |
| if (ret) |
| return ret; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * xe_guc_pc_gucrc_disable - Disable GuC RC |
| * @pc: Xe_GuC_PC instance |
| * |
| * Disables GuC RC by taking control of RC6 back from GuC. |
| * |
| * Return: 0 on success, negative error code on error. |
| */ |
| int xe_guc_pc_gucrc_disable(struct xe_guc_pc *pc) |
| { |
| struct xe_device *xe = pc_to_xe(pc); |
| struct xe_gt *gt = pc_to_gt(pc); |
| int ret = 0; |
| |
| if (xe->info.skip_guc_pc) |
| return 0; |
| |
| xe_device_mem_access_get(pc_to_xe(pc)); |
| |
| ret = pc_action_setup_gucrc(pc, XE_GUCRC_HOST_CONTROL); |
| if (ret) |
| goto out; |
| |
| ret = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL); |
| if (ret) |
| goto out; |
| |
| xe_gt_idle_disable_c6(gt); |
| |
| XE_WARN_ON(xe_force_wake_put(gt_to_fw(gt), XE_FORCEWAKE_ALL)); |
| |
| out: |
| xe_device_mem_access_put(pc_to_xe(pc)); |
| return ret; |
| } |
| |
| static void pc_init_pcode_freq(struct xe_guc_pc *pc) |
| { |
| u32 min = DIV_ROUND_CLOSEST(pc->rpn_freq, GT_FREQUENCY_MULTIPLIER); |
| u32 max = DIV_ROUND_CLOSEST(pc->rp0_freq, GT_FREQUENCY_MULTIPLIER); |
| |
| XE_WARN_ON(xe_pcode_init_min_freq_table(pc_to_gt(pc), min, max)); |
| } |
| |
| static int pc_init_freqs(struct xe_guc_pc *pc) |
| { |
| int ret; |
| |
| mutex_lock(&pc->freq_lock); |
| |
| ret = pc_adjust_freq_bounds(pc); |
| if (ret) |
| goto out; |
| |
| ret = pc_adjust_requested_freq(pc); |
| if (ret) |
| goto out; |
| |
| pc_update_rp_values(pc); |
| |
| pc_init_pcode_freq(pc); |
| |
| /* |
| * The frequencies are really ready for use only after the user |
| * requested ones got restored. |
| */ |
| pc->freq_ready = true; |
| |
| out: |
| mutex_unlock(&pc->freq_lock); |
| return ret; |
| } |
| |
| /** |
| * xe_guc_pc_start - Start GuC's Power Conservation component |
| * @pc: Xe_GuC_PC instance |
| */ |
| int xe_guc_pc_start(struct xe_guc_pc *pc) |
| { |
| struct xe_device *xe = pc_to_xe(pc); |
| struct xe_gt *gt = pc_to_gt(pc); |
| u32 size = PAGE_ALIGN(sizeof(struct slpc_shared_data)); |
| int ret; |
| |
| xe_gt_assert(gt, xe_device_uc_enabled(xe)); |
| |
| xe_device_mem_access_get(pc_to_xe(pc)); |
| |
| ret = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL); |
| if (ret) |
| goto out_fail_force_wake; |
| |
| if (xe->info.skip_guc_pc) { |
| if (xe->info.platform != XE_PVC) |
| xe_gt_idle_enable_c6(gt); |
| |
| /* Request max possible since dynamic freq mgmt is not enabled */ |
| pc_set_cur_freq(pc, UINT_MAX); |
| |
| ret = 0; |
| goto out; |
| } |
| |
| memset(pc->bo->vmap.vaddr, 0, size); |
| slpc_shared_data_write(pc, header.size, size); |
| |
| ret = pc_action_reset(pc); |
| if (ret) |
| goto out; |
| |
| if (wait_for_pc_state(pc, SLPC_GLOBAL_STATE_RUNNING)) { |
| drm_err(&pc_to_xe(pc)->drm, "GuC PC Start failed\n"); |
| ret = -EIO; |
| goto out; |
| } |
| |
| ret = pc_init_freqs(pc); |
| if (ret) |
| goto out; |
| |
| if (xe->info.platform == XE_PVC) { |
| xe_guc_pc_gucrc_disable(pc); |
| ret = 0; |
| goto out; |
| } |
| |
| ret = pc_action_setup_gucrc(pc, XE_GUCRC_FIRMWARE_CONTROL); |
| |
| out: |
| XE_WARN_ON(xe_force_wake_put(gt_to_fw(gt), XE_FORCEWAKE_ALL)); |
| out_fail_force_wake: |
| xe_device_mem_access_put(pc_to_xe(pc)); |
| return ret; |
| } |
| |
| /** |
| * xe_guc_pc_stop - Stop GuC's Power Conservation component |
| * @pc: Xe_GuC_PC instance |
| */ |
| int xe_guc_pc_stop(struct xe_guc_pc *pc) |
| { |
| struct xe_device *xe = pc_to_xe(pc); |
| int ret; |
| |
| xe_device_mem_access_get(pc_to_xe(pc)); |
| |
| if (xe->info.skip_guc_pc) { |
| xe_gt_idle_disable_c6(pc_to_gt(pc)); |
| ret = 0; |
| goto out; |
| } |
| |
| mutex_lock(&pc->freq_lock); |
| pc->freq_ready = false; |
| mutex_unlock(&pc->freq_lock); |
| |
| ret = pc_action_shutdown(pc); |
| if (ret) |
| goto out; |
| |
| if (wait_for_pc_state(pc, SLPC_GLOBAL_STATE_NOT_RUNNING)) { |
| drm_err(&pc_to_xe(pc)->drm, "GuC PC Shutdown failed\n"); |
| ret = -EIO; |
| } |
| |
| out: |
| xe_device_mem_access_put(pc_to_xe(pc)); |
| return ret; |
| } |
| |
| /** |
| * xe_guc_pc_fini - Finalize GuC's Power Conservation component |
| * @drm: DRM device |
| * @arg: opaque pointer that should point to Xe_GuC_PC instance |
| */ |
| static void xe_guc_pc_fini(struct drm_device *drm, void *arg) |
| { |
| struct xe_guc_pc *pc = arg; |
| struct xe_device *xe = pc_to_xe(pc); |
| |
| if (xe->info.skip_guc_pc) { |
| xe_device_mem_access_get(xe); |
| xe_gt_idle_disable_c6(pc_to_gt(pc)); |
| xe_device_mem_access_put(xe); |
| return; |
| } |
| |
| xe_force_wake_get(gt_to_fw(pc_to_gt(pc)), XE_FORCEWAKE_ALL); |
| XE_WARN_ON(xe_guc_pc_gucrc_disable(pc)); |
| XE_WARN_ON(xe_guc_pc_stop(pc)); |
| xe_force_wake_put(gt_to_fw(pc_to_gt(pc)), XE_FORCEWAKE_ALL); |
| } |
| |
| /** |
| * xe_guc_pc_init - Initialize GuC's Power Conservation component |
| * @pc: Xe_GuC_PC instance |
| */ |
| int xe_guc_pc_init(struct xe_guc_pc *pc) |
| { |
| struct xe_gt *gt = pc_to_gt(pc); |
| struct xe_tile *tile = gt_to_tile(gt); |
| struct xe_device *xe = gt_to_xe(gt); |
| struct xe_bo *bo; |
| u32 size = PAGE_ALIGN(sizeof(struct slpc_shared_data)); |
| int err; |
| |
| if (xe->info.skip_guc_pc) |
| return 0; |
| |
| err = drmm_mutex_init(&xe->drm, &pc->freq_lock); |
| if (err) |
| return err; |
| |
| bo = xe_managed_bo_create_pin_map(xe, tile, size, |
| XE_BO_CREATE_VRAM_IF_DGFX(tile) | |
| XE_BO_CREATE_GGTT_BIT); |
| if (IS_ERR(bo)) |
| return PTR_ERR(bo); |
| |
| pc->bo = bo; |
| |
| err = drmm_add_action_or_reset(&xe->drm, xe_guc_pc_fini, pc); |
| if (err) |
| return err; |
| |
| return 0; |
| } |