| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Video Capture Driver (Video for Linux 1/2) |
| * for the Matrox Marvel G200,G400 and Rainbow Runner-G series |
| * |
| * This module is an interface to the KS0127 video decoder chip. |
| * |
| * Copyright (C) 1999 Ryan Drake <stiletto@mediaone.net> |
| * |
| ***************************************************************************** |
| * |
| * Modified and extended by |
| * Mike Bernson <mike@mlb.org> |
| * Gerard v.d. Horst |
| * Leon van Stuivenberg <l.vanstuivenberg@chello.nl> |
| * Gernot Ziegler <gz@lysator.liu.se> |
| * |
| * Version History: |
| * V1.0 Ryan Drake Initial version by Ryan Drake |
| * V1.1 Gerard v.d. Horst Added some debugoutput, reset the video-standard |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/delay.h> |
| #include <linux/errno.h> |
| #include <linux/kernel.h> |
| #include <linux/i2c.h> |
| #include <linux/videodev2.h> |
| #include <linux/slab.h> |
| #include <media/v4l2-device.h> |
| #include "ks0127.h" |
| |
| MODULE_DESCRIPTION("KS0127 video decoder driver"); |
| MODULE_AUTHOR("Ryan Drake"); |
| MODULE_LICENSE("GPL"); |
| |
| /* Addresses */ |
| #define I2C_KS0127_ADDON 0xD8 |
| #define I2C_KS0127_ONBOARD 0xDA |
| |
| |
| /* ks0127 control registers */ |
| #define KS_STAT 0x00 |
| #define KS_CMDA 0x01 |
| #define KS_CMDB 0x02 |
| #define KS_CMDC 0x03 |
| #define KS_CMDD 0x04 |
| #define KS_HAVB 0x05 |
| #define KS_HAVE 0x06 |
| #define KS_HS1B 0x07 |
| #define KS_HS1E 0x08 |
| #define KS_HS2B 0x09 |
| #define KS_HS2E 0x0a |
| #define KS_AGC 0x0b |
| #define KS_HXTRA 0x0c |
| #define KS_CDEM 0x0d |
| #define KS_PORTAB 0x0e |
| #define KS_LUMA 0x0f |
| #define KS_CON 0x10 |
| #define KS_BRT 0x11 |
| #define KS_CHROMA 0x12 |
| #define KS_CHROMB 0x13 |
| #define KS_DEMOD 0x14 |
| #define KS_SAT 0x15 |
| #define KS_HUE 0x16 |
| #define KS_VERTIA 0x17 |
| #define KS_VERTIB 0x18 |
| #define KS_VERTIC 0x19 |
| #define KS_HSCLL 0x1a |
| #define KS_HSCLH 0x1b |
| #define KS_VSCLL 0x1c |
| #define KS_VSCLH 0x1d |
| #define KS_OFMTA 0x1e |
| #define KS_OFMTB 0x1f |
| #define KS_VBICTL 0x20 |
| #define KS_CCDAT2 0x21 |
| #define KS_CCDAT1 0x22 |
| #define KS_VBIL30 0x23 |
| #define KS_VBIL74 0x24 |
| #define KS_VBIL118 0x25 |
| #define KS_VBIL1512 0x26 |
| #define KS_TTFRAM 0x27 |
| #define KS_TESTA 0x28 |
| #define KS_UVOFFH 0x29 |
| #define KS_UVOFFL 0x2a |
| #define KS_UGAIN 0x2b |
| #define KS_VGAIN 0x2c |
| #define KS_VAVB 0x2d |
| #define KS_VAVE 0x2e |
| #define KS_CTRACK 0x2f |
| #define KS_POLCTL 0x30 |
| #define KS_REFCOD 0x31 |
| #define KS_INVALY 0x32 |
| #define KS_INVALU 0x33 |
| #define KS_INVALV 0x34 |
| #define KS_UNUSEY 0x35 |
| #define KS_UNUSEU 0x36 |
| #define KS_UNUSEV 0x37 |
| #define KS_USRSAV 0x38 |
| #define KS_USREAV 0x39 |
| #define KS_SHS1A 0x3a |
| #define KS_SHS1B 0x3b |
| #define KS_SHS1C 0x3c |
| #define KS_CMDE 0x3d |
| #define KS_VSDEL 0x3e |
| #define KS_CMDF 0x3f |
| #define KS_GAMMA0 0x40 |
| #define KS_GAMMA1 0x41 |
| #define KS_GAMMA2 0x42 |
| #define KS_GAMMA3 0x43 |
| #define KS_GAMMA4 0x44 |
| #define KS_GAMMA5 0x45 |
| #define KS_GAMMA6 0x46 |
| #define KS_GAMMA7 0x47 |
| #define KS_GAMMA8 0x48 |
| #define KS_GAMMA9 0x49 |
| #define KS_GAMMA10 0x4a |
| #define KS_GAMMA11 0x4b |
| #define KS_GAMMA12 0x4c |
| #define KS_GAMMA13 0x4d |
| #define KS_GAMMA14 0x4e |
| #define KS_GAMMA15 0x4f |
| #define KS_GAMMA16 0x50 |
| #define KS_GAMMA17 0x51 |
| #define KS_GAMMA18 0x52 |
| #define KS_GAMMA19 0x53 |
| #define KS_GAMMA20 0x54 |
| #define KS_GAMMA21 0x55 |
| #define KS_GAMMA22 0x56 |
| #define KS_GAMMA23 0x57 |
| #define KS_GAMMA24 0x58 |
| #define KS_GAMMA25 0x59 |
| #define KS_GAMMA26 0x5a |
| #define KS_GAMMA27 0x5b |
| #define KS_GAMMA28 0x5c |
| #define KS_GAMMA29 0x5d |
| #define KS_GAMMA30 0x5e |
| #define KS_GAMMA31 0x5f |
| #define KS_GAMMAD0 0x60 |
| #define KS_GAMMAD1 0x61 |
| #define KS_GAMMAD2 0x62 |
| #define KS_GAMMAD3 0x63 |
| #define KS_GAMMAD4 0x64 |
| #define KS_GAMMAD5 0x65 |
| #define KS_GAMMAD6 0x66 |
| #define KS_GAMMAD7 0x67 |
| #define KS_GAMMAD8 0x68 |
| #define KS_GAMMAD9 0x69 |
| #define KS_GAMMAD10 0x6a |
| #define KS_GAMMAD11 0x6b |
| #define KS_GAMMAD12 0x6c |
| #define KS_GAMMAD13 0x6d |
| #define KS_GAMMAD14 0x6e |
| #define KS_GAMMAD15 0x6f |
| #define KS_GAMMAD16 0x70 |
| #define KS_GAMMAD17 0x71 |
| #define KS_GAMMAD18 0x72 |
| #define KS_GAMMAD19 0x73 |
| #define KS_GAMMAD20 0x74 |
| #define KS_GAMMAD21 0x75 |
| #define KS_GAMMAD22 0x76 |
| #define KS_GAMMAD23 0x77 |
| #define KS_GAMMAD24 0x78 |
| #define KS_GAMMAD25 0x79 |
| #define KS_GAMMAD26 0x7a |
| #define KS_GAMMAD27 0x7b |
| #define KS_GAMMAD28 0x7c |
| #define KS_GAMMAD29 0x7d |
| #define KS_GAMMAD30 0x7e |
| #define KS_GAMMAD31 0x7f |
| |
| |
| /**************************************************************************** |
| * mga_dev : represents one ks0127 chip. |
| ****************************************************************************/ |
| |
| struct adjust { |
| int contrast; |
| int bright; |
| int hue; |
| int ugain; |
| int vgain; |
| }; |
| |
| struct ks0127 { |
| struct v4l2_subdev sd; |
| v4l2_std_id norm; |
| u8 regs[256]; |
| }; |
| |
| static inline struct ks0127 *to_ks0127(struct v4l2_subdev *sd) |
| { |
| return container_of(sd, struct ks0127, sd); |
| } |
| |
| |
| static int debug; /* insmod parameter */ |
| |
| module_param(debug, int, 0); |
| MODULE_PARM_DESC(debug, "Debug output"); |
| |
| static u8 reg_defaults[64]; |
| |
| static void init_reg_defaults(void) |
| { |
| static int initialized; |
| u8 *table = reg_defaults; |
| |
| if (initialized) |
| return; |
| initialized = 1; |
| |
| table[KS_CMDA] = 0x2c; /* VSE=0, CCIR 601, autodetect standard */ |
| table[KS_CMDB] = 0x12; /* VALIGN=0, AGC control and input */ |
| table[KS_CMDC] = 0x00; /* Test options */ |
| /* clock & input select, write 1 to PORTA */ |
| table[KS_CMDD] = 0x01; |
| table[KS_HAVB] = 0x00; /* HAV Start Control */ |
| table[KS_HAVE] = 0x00; /* HAV End Control */ |
| table[KS_HS1B] = 0x10; /* HS1 Start Control */ |
| table[KS_HS1E] = 0x00; /* HS1 End Control */ |
| table[KS_HS2B] = 0x00; /* HS2 Start Control */ |
| table[KS_HS2E] = 0x00; /* HS2 End Control */ |
| table[KS_AGC] = 0x53; /* Manual setting for AGC */ |
| table[KS_HXTRA] = 0x00; /* Extra Bits for HAV and HS1/2 */ |
| table[KS_CDEM] = 0x00; /* Chroma Demodulation Control */ |
| table[KS_PORTAB] = 0x0f; /* port B is input, port A output GPPORT */ |
| table[KS_LUMA] = 0x01; /* Luma control */ |
| table[KS_CON] = 0x00; /* Contrast Control */ |
| table[KS_BRT] = 0x00; /* Brightness Control */ |
| table[KS_CHROMA] = 0x2a; /* Chroma control A */ |
| table[KS_CHROMB] = 0x90; /* Chroma control B */ |
| table[KS_DEMOD] = 0x00; /* Chroma Demodulation Control & Status */ |
| table[KS_SAT] = 0x00; /* Color Saturation Control*/ |
| table[KS_HUE] = 0x00; /* Hue Control */ |
| table[KS_VERTIA] = 0x00; /* Vertical Processing Control A */ |
| /* Vertical Processing Control B, luma 1 line delayed */ |
| table[KS_VERTIB] = 0x12; |
| table[KS_VERTIC] = 0x0b; /* Vertical Processing Control C */ |
| table[KS_HSCLL] = 0x00; /* Horizontal Scaling Ratio Low */ |
| table[KS_HSCLH] = 0x00; /* Horizontal Scaling Ratio High */ |
| table[KS_VSCLL] = 0x00; /* Vertical Scaling Ratio Low */ |
| table[KS_VSCLH] = 0x00; /* Vertical Scaling Ratio High */ |
| /* 16 bit YCbCr 4:2:2 output; I can't make the bt866 like 8 bit /Sam */ |
| table[KS_OFMTA] = 0x30; |
| table[KS_OFMTB] = 0x00; /* Output Control B */ |
| /* VBI Decoder Control; 4bit fmt: avoid Y overflow */ |
| table[KS_VBICTL] = 0x5d; |
| table[KS_CCDAT2] = 0x00; /* Read Only register */ |
| table[KS_CCDAT1] = 0x00; /* Read Only register */ |
| table[KS_VBIL30] = 0xa8; /* VBI data decoding options */ |
| table[KS_VBIL74] = 0xaa; /* VBI data decoding options */ |
| table[KS_VBIL118] = 0x2a; /* VBI data decoding options */ |
| table[KS_VBIL1512] = 0x00; /* VBI data decoding options */ |
| table[KS_TTFRAM] = 0x00; /* Teletext frame alignment pattern */ |
| table[KS_TESTA] = 0x00; /* test register, shouldn't be written */ |
| table[KS_UVOFFH] = 0x00; /* UV Offset Adjustment High */ |
| table[KS_UVOFFL] = 0x00; /* UV Offset Adjustment Low */ |
| table[KS_UGAIN] = 0x00; /* U Component Gain Adjustment */ |
| table[KS_VGAIN] = 0x00; /* V Component Gain Adjustment */ |
| table[KS_VAVB] = 0x07; /* VAV Begin */ |
| table[KS_VAVE] = 0x00; /* VAV End */ |
| table[KS_CTRACK] = 0x00; /* Chroma Tracking Control */ |
| table[KS_POLCTL] = 0x41; /* Timing Signal Polarity Control */ |
| table[KS_REFCOD] = 0x80; /* Reference Code Insertion Control */ |
| table[KS_INVALY] = 0x10; /* Invalid Y Code */ |
| table[KS_INVALU] = 0x80; /* Invalid U Code */ |
| table[KS_INVALV] = 0x80; /* Invalid V Code */ |
| table[KS_UNUSEY] = 0x10; /* Unused Y Code */ |
| table[KS_UNUSEU] = 0x80; /* Unused U Code */ |
| table[KS_UNUSEV] = 0x80; /* Unused V Code */ |
| table[KS_USRSAV] = 0x00; /* reserved */ |
| table[KS_USREAV] = 0x00; /* reserved */ |
| table[KS_SHS1A] = 0x00; /* User Defined SHS1 A */ |
| /* User Defined SHS1 B, ALT656=1 on 0127B */ |
| table[KS_SHS1B] = 0x80; |
| table[KS_SHS1C] = 0x00; /* User Defined SHS1 C */ |
| table[KS_CMDE] = 0x00; /* Command Register E */ |
| table[KS_VSDEL] = 0x00; /* VS Delay Control */ |
| /* Command Register F, update -immediately- */ |
| /* (there might come no vsync)*/ |
| table[KS_CMDF] = 0x02; |
| } |
| |
| |
| /* We need to manually read because of a bug in the KS0127 chip. |
| * |
| * An explanation from kayork@mail.utexas.edu: |
| * |
| * During I2C reads, the KS0127 only samples for a stop condition |
| * during the place where the acknowledge bit should be. Any standard |
| * I2C implementation (correctly) throws in another clock transition |
| * at the 9th bit, and the KS0127 will not recognize the stop condition |
| * and will continue to clock out data. |
| * |
| * So we have to do the read ourself. Big deal. |
| * workaround in i2c-algo-bit |
| */ |
| |
| |
| static u8 ks0127_read(struct v4l2_subdev *sd, u8 reg) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(sd); |
| char val = 0; |
| struct i2c_msg msgs[] = { |
| { |
| .addr = client->addr, |
| .len = sizeof(reg), |
| .buf = ® |
| }, |
| { |
| .addr = client->addr, |
| .flags = I2C_M_RD | I2C_M_NO_RD_ACK, |
| .len = sizeof(val), |
| .buf = &val |
| } |
| }; |
| int ret; |
| |
| ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs)); |
| if (ret != ARRAY_SIZE(msgs)) |
| v4l2_dbg(1, debug, sd, "read error\n"); |
| |
| return val; |
| } |
| |
| |
| static void ks0127_write(struct v4l2_subdev *sd, u8 reg, u8 val) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(sd); |
| struct ks0127 *ks = to_ks0127(sd); |
| char msg[] = { reg, val }; |
| |
| if (i2c_master_send(client, msg, sizeof(msg)) != sizeof(msg)) |
| v4l2_dbg(1, debug, sd, "write error\n"); |
| |
| ks->regs[reg] = val; |
| } |
| |
| |
| /* generic bit-twiddling */ |
| static void ks0127_and_or(struct v4l2_subdev *sd, u8 reg, u8 and_v, u8 or_v) |
| { |
| struct ks0127 *ks = to_ks0127(sd); |
| |
| u8 val = ks->regs[reg]; |
| val = (val & and_v) | or_v; |
| ks0127_write(sd, reg, val); |
| } |
| |
| |
| |
| /**************************************************************************** |
| * ks0127 private api |
| ****************************************************************************/ |
| static void ks0127_init(struct v4l2_subdev *sd) |
| { |
| u8 *table = reg_defaults; |
| int i; |
| |
| v4l2_dbg(1, debug, sd, "reset\n"); |
| msleep(1); |
| |
| /* initialize all registers to known values */ |
| /* (except STAT, 0x21, 0x22, TEST and 0x38,0x39) */ |
| |
| for (i = 1; i < 33; i++) |
| ks0127_write(sd, i, table[i]); |
| |
| for (i = 35; i < 40; i++) |
| ks0127_write(sd, i, table[i]); |
| |
| for (i = 41; i < 56; i++) |
| ks0127_write(sd, i, table[i]); |
| |
| for (i = 58; i < 64; i++) |
| ks0127_write(sd, i, table[i]); |
| |
| |
| if ((ks0127_read(sd, KS_STAT) & 0x80) == 0) { |
| v4l2_dbg(1, debug, sd, "ks0122s found\n"); |
| return; |
| } |
| |
| switch (ks0127_read(sd, KS_CMDE) & 0x0f) { |
| case 0: |
| v4l2_dbg(1, debug, sd, "ks0127 found\n"); |
| break; |
| |
| case 9: |
| v4l2_dbg(1, debug, sd, "ks0127B Revision A found\n"); |
| break; |
| |
| default: |
| v4l2_dbg(1, debug, sd, "unknown revision\n"); |
| break; |
| } |
| } |
| |
| static int ks0127_s_routing(struct v4l2_subdev *sd, |
| u32 input, u32 output, u32 config) |
| { |
| struct ks0127 *ks = to_ks0127(sd); |
| |
| switch (input) { |
| case KS_INPUT_COMPOSITE_1: |
| case KS_INPUT_COMPOSITE_2: |
| case KS_INPUT_COMPOSITE_3: |
| case KS_INPUT_COMPOSITE_4: |
| case KS_INPUT_COMPOSITE_5: |
| case KS_INPUT_COMPOSITE_6: |
| v4l2_dbg(1, debug, sd, |
| "s_routing %d: Composite\n", input); |
| /* autodetect 50/60 Hz */ |
| ks0127_and_or(sd, KS_CMDA, 0xfc, 0x00); |
| /* VSE=0 */ |
| ks0127_and_or(sd, KS_CMDA, ~0x40, 0x00); |
| /* set input line */ |
| ks0127_and_or(sd, KS_CMDB, 0xb0, input); |
| /* non-freerunning mode */ |
| ks0127_and_or(sd, KS_CMDC, 0x70, 0x0a); |
| /* analog input */ |
| ks0127_and_or(sd, KS_CMDD, 0x03, 0x00); |
| /* enable chroma demodulation */ |
| ks0127_and_or(sd, KS_CTRACK, 0xcf, 0x00); |
| /* chroma trap, HYBWR=1 */ |
| ks0127_and_or(sd, KS_LUMA, 0x00, |
| (reg_defaults[KS_LUMA])|0x0c); |
| /* scaler fullbw, luma comb off */ |
| ks0127_and_or(sd, KS_VERTIA, 0x08, 0x81); |
| /* manual chroma comb .25 .5 .25 */ |
| ks0127_and_or(sd, KS_VERTIC, 0x0f, 0x90); |
| |
| /* chroma path delay */ |
| ks0127_and_or(sd, KS_CHROMB, 0x0f, 0x90); |
| |
| ks0127_write(sd, KS_UGAIN, reg_defaults[KS_UGAIN]); |
| ks0127_write(sd, KS_VGAIN, reg_defaults[KS_VGAIN]); |
| ks0127_write(sd, KS_UVOFFH, reg_defaults[KS_UVOFFH]); |
| ks0127_write(sd, KS_UVOFFL, reg_defaults[KS_UVOFFL]); |
| break; |
| |
| case KS_INPUT_SVIDEO_1: |
| case KS_INPUT_SVIDEO_2: |
| case KS_INPUT_SVIDEO_3: |
| v4l2_dbg(1, debug, sd, |
| "s_routing %d: S-Video\n", input); |
| /* autodetect 50/60 Hz */ |
| ks0127_and_or(sd, KS_CMDA, 0xfc, 0x00); |
| /* VSE=0 */ |
| ks0127_and_or(sd, KS_CMDA, ~0x40, 0x00); |
| /* set input line */ |
| ks0127_and_or(sd, KS_CMDB, 0xb0, input); |
| /* non-freerunning mode */ |
| ks0127_and_or(sd, KS_CMDC, 0x70, 0x0a); |
| /* analog input */ |
| ks0127_and_or(sd, KS_CMDD, 0x03, 0x00); |
| /* enable chroma demodulation */ |
| ks0127_and_or(sd, KS_CTRACK, 0xcf, 0x00); |
| ks0127_and_or(sd, KS_LUMA, 0x00, |
| reg_defaults[KS_LUMA]); |
| /* disable luma comb */ |
| ks0127_and_or(sd, KS_VERTIA, 0x08, |
| (reg_defaults[KS_VERTIA]&0xf0)|0x01); |
| ks0127_and_or(sd, KS_VERTIC, 0x0f, |
| reg_defaults[KS_VERTIC]&0xf0); |
| |
| ks0127_and_or(sd, KS_CHROMB, 0x0f, |
| reg_defaults[KS_CHROMB]&0xf0); |
| |
| ks0127_write(sd, KS_UGAIN, reg_defaults[KS_UGAIN]); |
| ks0127_write(sd, KS_VGAIN, reg_defaults[KS_VGAIN]); |
| ks0127_write(sd, KS_UVOFFH, reg_defaults[KS_UVOFFH]); |
| ks0127_write(sd, KS_UVOFFL, reg_defaults[KS_UVOFFL]); |
| break; |
| |
| case KS_INPUT_YUV656: |
| v4l2_dbg(1, debug, sd, "s_routing 15: YUV656\n"); |
| if (ks->norm & V4L2_STD_525_60) |
| /* force 60 Hz */ |
| ks0127_and_or(sd, KS_CMDA, 0xfc, 0x03); |
| else |
| /* force 50 Hz */ |
| ks0127_and_or(sd, KS_CMDA, 0xfc, 0x02); |
| |
| ks0127_and_or(sd, KS_CMDA, 0xff, 0x40); /* VSE=1 */ |
| /* set input line and VALIGN */ |
| ks0127_and_or(sd, KS_CMDB, 0xb0, (input | 0x40)); |
| /* freerunning mode, */ |
| /* TSTGEN = 1 TSTGFR=11 TSTGPH=0 TSTGPK=0 VMEM=1*/ |
| ks0127_and_or(sd, KS_CMDC, 0x70, 0x87); |
| /* digital input, SYNDIR = 0 INPSL=01 CLKDIR=0 EAV=0 */ |
| ks0127_and_or(sd, KS_CMDD, 0x03, 0x08); |
| /* disable chroma demodulation */ |
| ks0127_and_or(sd, KS_CTRACK, 0xcf, 0x30); |
| /* HYPK =01 CTRAP = 0 HYBWR=0 PED=1 RGBH=1 UNIT=1 */ |
| ks0127_and_or(sd, KS_LUMA, 0x00, 0x71); |
| ks0127_and_or(sd, KS_VERTIC, 0x0f, |
| reg_defaults[KS_VERTIC]&0xf0); |
| |
| /* scaler fullbw, luma comb off */ |
| ks0127_and_or(sd, KS_VERTIA, 0x08, 0x81); |
| |
| ks0127_and_or(sd, KS_CHROMB, 0x0f, |
| reg_defaults[KS_CHROMB]&0xf0); |
| |
| ks0127_and_or(sd, KS_CON, 0x00, 0x00); |
| ks0127_and_or(sd, KS_BRT, 0x00, 32); /* spec: 34 */ |
| /* spec: 229 (e5) */ |
| ks0127_and_or(sd, KS_SAT, 0x00, 0xe8); |
| ks0127_and_or(sd, KS_HUE, 0x00, 0); |
| |
| ks0127_and_or(sd, KS_UGAIN, 0x00, 238); |
| ks0127_and_or(sd, KS_VGAIN, 0x00, 0x00); |
| |
| /*UOFF:0x30, VOFF:0x30, TSTCGN=1 */ |
| ks0127_and_or(sd, KS_UVOFFH, 0x00, 0x4f); |
| ks0127_and_or(sd, KS_UVOFFL, 0x00, 0x00); |
| break; |
| |
| default: |
| v4l2_dbg(1, debug, sd, |
| "s_routing: Unknown input %d\n", input); |
| break; |
| } |
| |
| /* hack: CDMLPF sometimes spontaneously switches on; */ |
| /* force back off */ |
| ks0127_write(sd, KS_DEMOD, reg_defaults[KS_DEMOD]); |
| return 0; |
| } |
| |
| static int ks0127_s_std(struct v4l2_subdev *sd, v4l2_std_id std) |
| { |
| struct ks0127 *ks = to_ks0127(sd); |
| |
| /* Set to automatic SECAM/Fsc mode */ |
| ks0127_and_or(sd, KS_DEMOD, 0xf0, 0x00); |
| |
| ks->norm = std; |
| if (std & V4L2_STD_NTSC) { |
| v4l2_dbg(1, debug, sd, |
| "s_std: NTSC_M\n"); |
| ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x20); |
| } else if (std & V4L2_STD_PAL_N) { |
| v4l2_dbg(1, debug, sd, |
| "s_std: NTSC_N (fixme)\n"); |
| ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x40); |
| } else if (std & V4L2_STD_PAL) { |
| v4l2_dbg(1, debug, sd, |
| "s_std: PAL_N\n"); |
| ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x20); |
| } else if (std & V4L2_STD_PAL_M) { |
| v4l2_dbg(1, debug, sd, |
| "s_std: PAL_M (fixme)\n"); |
| ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x40); |
| } else if (std & V4L2_STD_SECAM) { |
| v4l2_dbg(1, debug, sd, |
| "s_std: SECAM\n"); |
| |
| /* set to secam autodetection */ |
| ks0127_and_or(sd, KS_CHROMA, 0xdf, 0x20); |
| ks0127_and_or(sd, KS_DEMOD, 0xf0, 0x00); |
| schedule_timeout_interruptible(HZ/10+1); |
| |
| /* did it autodetect? */ |
| if (!(ks0127_read(sd, KS_DEMOD) & 0x40)) |
| /* force to secam mode */ |
| ks0127_and_or(sd, KS_DEMOD, 0xf0, 0x0f); |
| } else { |
| v4l2_dbg(1, debug, sd, "s_std: Unknown norm %llx\n", |
| (unsigned long long)std); |
| } |
| return 0; |
| } |
| |
| static int ks0127_s_stream(struct v4l2_subdev *sd, int enable) |
| { |
| v4l2_dbg(1, debug, sd, "s_stream(%d)\n", enable); |
| if (enable) { |
| /* All output pins on */ |
| ks0127_and_or(sd, KS_OFMTA, 0xcf, 0x30); |
| /* Obey the OEN pin */ |
| ks0127_and_or(sd, KS_CDEM, 0x7f, 0x00); |
| } else { |
| /* Video output pins off */ |
| ks0127_and_or(sd, KS_OFMTA, 0xcf, 0x00); |
| /* Ignore the OEN pin */ |
| ks0127_and_or(sd, KS_CDEM, 0x7f, 0x80); |
| } |
| return 0; |
| } |
| |
| static int ks0127_status(struct v4l2_subdev *sd, u32 *pstatus, v4l2_std_id *pstd) |
| { |
| int stat = V4L2_IN_ST_NO_SIGNAL; |
| u8 status; |
| v4l2_std_id std = pstd ? *pstd : V4L2_STD_ALL; |
| |
| status = ks0127_read(sd, KS_STAT); |
| if (!(status & 0x20)) /* NOVID not set */ |
| stat = 0; |
| if (!(status & 0x01)) { /* CLOCK set */ |
| stat |= V4L2_IN_ST_NO_COLOR; |
| std = V4L2_STD_UNKNOWN; |
| } else { |
| if ((status & 0x08)) /* PALDET set */ |
| std &= V4L2_STD_PAL; |
| else |
| std &= V4L2_STD_NTSC; |
| } |
| if ((status & 0x10)) /* PALDET set */ |
| std &= V4L2_STD_525_60; |
| else |
| std &= V4L2_STD_625_50; |
| if (pstd) |
| *pstd = std; |
| if (pstatus) |
| *pstatus = stat; |
| return 0; |
| } |
| |
| static int ks0127_querystd(struct v4l2_subdev *sd, v4l2_std_id *std) |
| { |
| v4l2_dbg(1, debug, sd, "querystd\n"); |
| return ks0127_status(sd, NULL, std); |
| } |
| |
| static int ks0127_g_input_status(struct v4l2_subdev *sd, u32 *status) |
| { |
| v4l2_dbg(1, debug, sd, "g_input_status\n"); |
| return ks0127_status(sd, status, NULL); |
| } |
| |
| /* ----------------------------------------------------------------------- */ |
| |
| static const struct v4l2_subdev_video_ops ks0127_video_ops = { |
| .s_std = ks0127_s_std, |
| .s_routing = ks0127_s_routing, |
| .s_stream = ks0127_s_stream, |
| .querystd = ks0127_querystd, |
| .g_input_status = ks0127_g_input_status, |
| }; |
| |
| static const struct v4l2_subdev_ops ks0127_ops = { |
| .video = &ks0127_video_ops, |
| }; |
| |
| /* ----------------------------------------------------------------------- */ |
| |
| |
| static int ks0127_probe(struct i2c_client *client) |
| { |
| struct ks0127 *ks; |
| struct v4l2_subdev *sd; |
| |
| v4l_info(client, "%s chip found @ 0x%x (%s)\n", |
| client->addr == (I2C_KS0127_ADDON >> 1) ? "addon" : "on-board", |
| client->addr << 1, client->adapter->name); |
| |
| ks = devm_kzalloc(&client->dev, sizeof(*ks), GFP_KERNEL); |
| if (ks == NULL) |
| return -ENOMEM; |
| sd = &ks->sd; |
| v4l2_i2c_subdev_init(sd, client, &ks0127_ops); |
| |
| /* power up */ |
| init_reg_defaults(); |
| ks0127_write(sd, KS_CMDA, 0x2c); |
| mdelay(10); |
| |
| /* reset the device */ |
| ks0127_init(sd); |
| return 0; |
| } |
| |
| static void ks0127_remove(struct i2c_client *client) |
| { |
| struct v4l2_subdev *sd = i2c_get_clientdata(client); |
| |
| v4l2_device_unregister_subdev(sd); |
| ks0127_write(sd, KS_OFMTA, 0x20); /* tristate */ |
| ks0127_write(sd, KS_CMDA, 0x2c | 0x80); /* power down */ |
| } |
| |
| static const struct i2c_device_id ks0127_id[] = { |
| { "ks0127", 0 }, |
| { "ks0127b", 0 }, |
| { "ks0122s", 0 }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(i2c, ks0127_id); |
| |
| static struct i2c_driver ks0127_driver = { |
| .driver = { |
| .name = "ks0127", |
| }, |
| .probe = ks0127_probe, |
| .remove = ks0127_remove, |
| .id_table = ks0127_id, |
| }; |
| |
| module_i2c_driver(ks0127_driver); |