| // SPDX-License-Identifier: GPL-2.0+ |
| |
| /* |
| * Multifunction core driver for Zodiac Inflight Innovations RAVE |
| * Supervisory Processor(SP) MCU that is connected via dedicated UART |
| * port |
| * |
| * Copyright (C) 2017 Zodiac Inflight Innovations |
| */ |
| |
| #include <linux/atomic.h> |
| #include <linux/crc-itu-t.h> |
| #include <linux/delay.h> |
| #include <linux/export.h> |
| #include <linux/init.h> |
| #include <linux/slab.h> |
| #include <linux/kernel.h> |
| #include <linux/mfd/rave-sp.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/of_platform.h> |
| #include <linux/sched.h> |
| #include <linux/serdev.h> |
| #include <asm/unaligned.h> |
| |
| /* |
| * UART protocol using following entities: |
| * - message to MCU => ACK response |
| * - event from MCU => event ACK |
| * |
| * Frame structure: |
| * <STX> <DATA> <CHECKSUM> <ETX> |
| * Where: |
| * - STX - is start of transmission character |
| * - ETX - end of transmission |
| * - DATA - payload |
| * - CHECKSUM - checksum calculated on <DATA> |
| * |
| * If <DATA> or <CHECKSUM> contain one of control characters, then it is |
| * escaped using <DLE> control code. Added <DLE> does not participate in |
| * checksum calculation. |
| */ |
| #define RAVE_SP_STX 0x02 |
| #define RAVE_SP_ETX 0x03 |
| #define RAVE_SP_DLE 0x10 |
| |
| #define RAVE_SP_MAX_DATA_SIZE 64 |
| #define RAVE_SP_CHECKSUM_8B2C 1 |
| #define RAVE_SP_CHECKSUM_CCITT 2 |
| #define RAVE_SP_CHECKSUM_SIZE RAVE_SP_CHECKSUM_CCITT |
| /* |
| * We don't store STX, ETX and unescaped bytes, so Rx is only |
| * DATA + CSUM |
| */ |
| #define RAVE_SP_RX_BUFFER_SIZE \ |
| (RAVE_SP_MAX_DATA_SIZE + RAVE_SP_CHECKSUM_SIZE) |
| |
| #define RAVE_SP_STX_ETX_SIZE 2 |
| /* |
| * For Tx we have to have space for everything, STX, EXT and |
| * potentially stuffed DATA + CSUM data + csum |
| */ |
| #define RAVE_SP_TX_BUFFER_SIZE \ |
| (RAVE_SP_STX_ETX_SIZE + 2 * RAVE_SP_RX_BUFFER_SIZE) |
| |
| /** |
| * enum rave_sp_deframer_state - Possible state for de-framer |
| * |
| * @RAVE_SP_EXPECT_SOF: Scanning input for start-of-frame marker |
| * @RAVE_SP_EXPECT_DATA: Got start of frame marker, collecting frame |
| * @RAVE_SP_EXPECT_ESCAPED_DATA: Got escape character, collecting escaped byte |
| */ |
| enum rave_sp_deframer_state { |
| RAVE_SP_EXPECT_SOF, |
| RAVE_SP_EXPECT_DATA, |
| RAVE_SP_EXPECT_ESCAPED_DATA, |
| }; |
| |
| /** |
| * struct rave_sp_deframer - Device protocol deframer |
| * |
| * @state: Current state of the deframer |
| * @data: Buffer used to collect deframed data |
| * @length: Number of bytes de-framed so far |
| */ |
| struct rave_sp_deframer { |
| enum rave_sp_deframer_state state; |
| unsigned char data[RAVE_SP_RX_BUFFER_SIZE]; |
| size_t length; |
| }; |
| |
| /** |
| * struct rave_sp_reply - Reply as per RAVE device protocol |
| * |
| * @length: Expected reply length |
| * @data: Buffer to store reply payload in |
| * @code: Expected reply code |
| * @ackid: Expected reply ACK ID |
| * @received: Successful reply reception completion |
| */ |
| struct rave_sp_reply { |
| size_t length; |
| void *data; |
| u8 code; |
| u8 ackid; |
| struct completion received; |
| }; |
| |
| /** |
| * struct rave_sp_checksum - Variant specific checksum implementation details |
| * |
| * @length: Calculated checksum length |
| * @subroutine: Utilized checksum algorithm implementation |
| */ |
| struct rave_sp_checksum { |
| size_t length; |
| void (*subroutine)(const u8 *, size_t, u8 *); |
| }; |
| |
| struct rave_sp_version { |
| u8 hardware; |
| __le16 major; |
| u8 minor; |
| u8 letter[2]; |
| } __packed; |
| |
| struct rave_sp_status { |
| struct rave_sp_version bootloader_version; |
| struct rave_sp_version firmware_version; |
| u16 rdu_eeprom_flag; |
| u16 dds_eeprom_flag; |
| u8 pic_flag; |
| u8 orientation; |
| u32 etc; |
| s16 temp[2]; |
| u8 backlight_current[3]; |
| u8 dip_switch; |
| u8 host_interrupt; |
| u16 voltage_28; |
| u8 i2c_device_status; |
| u8 power_status; |
| u8 general_status; |
| u8 deprecated1; |
| u8 power_led_status; |
| u8 deprecated2; |
| u8 periph_power_shutoff; |
| } __packed; |
| |
| /** |
| * struct rave_sp_variant_cmds - Variant specific command routines |
| * |
| * @translate: Generic to variant specific command mapping routine |
| * @get_status: Variant specific implementation of CMD_GET_STATUS |
| */ |
| struct rave_sp_variant_cmds { |
| int (*translate)(enum rave_sp_command); |
| int (*get_status)(struct rave_sp *sp, struct rave_sp_status *); |
| }; |
| |
| /** |
| * struct rave_sp_variant - RAVE supervisory processor core variant |
| * |
| * @checksum: Variant specific checksum implementation |
| * @cmd: Variant specific command pointer table |
| * |
| */ |
| struct rave_sp_variant { |
| const struct rave_sp_checksum *checksum; |
| struct rave_sp_variant_cmds cmd; |
| }; |
| |
| /** |
| * struct rave_sp - RAVE supervisory processor core |
| * |
| * @serdev: Pointer to underlying serdev |
| * @deframer: Stored state of the protocol deframer |
| * @ackid: ACK ID used in last reply sent to the device |
| * @bus_lock: Lock to serialize access to the device |
| * @reply_lock: Lock protecting @reply |
| * @reply: Pointer to memory to store reply payload |
| * |
| * @variant: Device variant specific information |
| * @event_notifier_list: Input event notification chain |
| * |
| * @part_number_firmware: Firmware version |
| * @part_number_bootloader: Bootloader version |
| */ |
| struct rave_sp { |
| struct serdev_device *serdev; |
| struct rave_sp_deframer deframer; |
| atomic_t ackid; |
| struct mutex bus_lock; |
| struct mutex reply_lock; |
| struct rave_sp_reply *reply; |
| |
| const struct rave_sp_variant *variant; |
| struct blocking_notifier_head event_notifier_list; |
| |
| const char *part_number_firmware; |
| const char *part_number_bootloader; |
| }; |
| |
| static bool rave_sp_id_is_event(u8 code) |
| { |
| return (code & 0xF0) == RAVE_SP_EVNT_BASE; |
| } |
| |
| static void rave_sp_unregister_event_notifier(struct device *dev, void *res) |
| { |
| struct rave_sp *sp = dev_get_drvdata(dev->parent); |
| struct notifier_block *nb = *(struct notifier_block **)res; |
| struct blocking_notifier_head *bnh = &sp->event_notifier_list; |
| |
| WARN_ON(blocking_notifier_chain_unregister(bnh, nb)); |
| } |
| |
| int devm_rave_sp_register_event_notifier(struct device *dev, |
| struct notifier_block *nb) |
| { |
| struct rave_sp *sp = dev_get_drvdata(dev->parent); |
| struct notifier_block **rcnb; |
| int ret; |
| |
| rcnb = devres_alloc(rave_sp_unregister_event_notifier, |
| sizeof(*rcnb), GFP_KERNEL); |
| if (!rcnb) |
| return -ENOMEM; |
| |
| ret = blocking_notifier_chain_register(&sp->event_notifier_list, nb); |
| if (!ret) { |
| *rcnb = nb; |
| devres_add(dev, rcnb); |
| } else { |
| devres_free(rcnb); |
| } |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(devm_rave_sp_register_event_notifier); |
| |
| static void csum_8b2c(const u8 *buf, size_t size, u8 *crc) |
| { |
| *crc = *buf++; |
| size--; |
| |
| while (size--) |
| *crc += *buf++; |
| |
| *crc = 1 + ~(*crc); |
| } |
| |
| static void csum_ccitt(const u8 *buf, size_t size, u8 *crc) |
| { |
| const u16 calculated = crc_itu_t(0xffff, buf, size); |
| |
| /* |
| * While the rest of the wire protocol is little-endian, |
| * CCITT-16 CRC in RDU2 device is sent out in big-endian order. |
| */ |
| put_unaligned_be16(calculated, crc); |
| } |
| |
| static void *stuff(unsigned char *dest, const unsigned char *src, size_t n) |
| { |
| while (n--) { |
| const unsigned char byte = *src++; |
| |
| switch (byte) { |
| case RAVE_SP_STX: |
| case RAVE_SP_ETX: |
| case RAVE_SP_DLE: |
| *dest++ = RAVE_SP_DLE; |
| fallthrough; |
| default: |
| *dest++ = byte; |
| } |
| } |
| |
| return dest; |
| } |
| |
| static int rave_sp_write(struct rave_sp *sp, const u8 *data, u8 data_size) |
| { |
| const size_t checksum_length = sp->variant->checksum->length; |
| unsigned char frame[RAVE_SP_TX_BUFFER_SIZE]; |
| unsigned char crc[RAVE_SP_CHECKSUM_SIZE]; |
| unsigned char *dest = frame; |
| size_t length; |
| |
| if (WARN_ON(checksum_length > sizeof(crc))) |
| return -ENOMEM; |
| |
| if (WARN_ON(data_size > sizeof(frame))) |
| return -ENOMEM; |
| |
| sp->variant->checksum->subroutine(data, data_size, crc); |
| |
| *dest++ = RAVE_SP_STX; |
| dest = stuff(dest, data, data_size); |
| dest = stuff(dest, crc, checksum_length); |
| *dest++ = RAVE_SP_ETX; |
| |
| length = dest - frame; |
| |
| print_hex_dump_debug("rave-sp tx: ", DUMP_PREFIX_NONE, |
| 16, 1, frame, length, false); |
| |
| return serdev_device_write(sp->serdev, frame, length, HZ); |
| } |
| |
| static u8 rave_sp_reply_code(u8 command) |
| { |
| /* |
| * There isn't a single rule that describes command code -> |
| * ACK code transformation, but, going through various |
| * versions of ICDs, there appear to be three distinct groups |
| * that can be described by simple transformation. |
| */ |
| switch (command) { |
| case 0xA0 ... 0xBE: |
| /* |
| * Commands implemented by firmware found in RDU1 and |
| * older devices all seem to obey the following rule |
| */ |
| return command + 0x20; |
| case 0xE0 ... 0xEF: |
| /* |
| * Events emitted by all versions of the firmare use |
| * least significant bit to get an ACK code |
| */ |
| return command | 0x01; |
| default: |
| /* |
| * Commands implemented by firmware found in RDU2 are |
| * similar to "old" commands, but they use slightly |
| * different offset |
| */ |
| return command + 0x40; |
| } |
| } |
| |
| int rave_sp_exec(struct rave_sp *sp, |
| void *__data, size_t data_size, |
| void *reply_data, size_t reply_data_size) |
| { |
| struct rave_sp_reply reply = { |
| .data = reply_data, |
| .length = reply_data_size, |
| .received = COMPLETION_INITIALIZER_ONSTACK(reply.received), |
| }; |
| unsigned char *data = __data; |
| int command, ret = 0; |
| u8 ackid; |
| |
| command = sp->variant->cmd.translate(data[0]); |
| if (command < 0) |
| return command; |
| |
| ackid = atomic_inc_return(&sp->ackid); |
| reply.ackid = ackid; |
| reply.code = rave_sp_reply_code((u8)command); |
| |
| mutex_lock(&sp->bus_lock); |
| |
| mutex_lock(&sp->reply_lock); |
| sp->reply = &reply; |
| mutex_unlock(&sp->reply_lock); |
| |
| data[0] = command; |
| data[1] = ackid; |
| |
| rave_sp_write(sp, data, data_size); |
| |
| if (!wait_for_completion_timeout(&reply.received, HZ)) { |
| dev_err(&sp->serdev->dev, "Command timeout\n"); |
| ret = -ETIMEDOUT; |
| |
| mutex_lock(&sp->reply_lock); |
| sp->reply = NULL; |
| mutex_unlock(&sp->reply_lock); |
| } |
| |
| mutex_unlock(&sp->bus_lock); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(rave_sp_exec); |
| |
| static void rave_sp_receive_event(struct rave_sp *sp, |
| const unsigned char *data, size_t length) |
| { |
| u8 cmd[] = { |
| [0] = rave_sp_reply_code(data[0]), |
| [1] = data[1], |
| }; |
| |
| rave_sp_write(sp, cmd, sizeof(cmd)); |
| |
| blocking_notifier_call_chain(&sp->event_notifier_list, |
| rave_sp_action_pack(data[0], data[2]), |
| NULL); |
| } |
| |
| static void rave_sp_receive_reply(struct rave_sp *sp, |
| const unsigned char *data, size_t length) |
| { |
| struct device *dev = &sp->serdev->dev; |
| struct rave_sp_reply *reply; |
| const size_t payload_length = length - 2; |
| |
| mutex_lock(&sp->reply_lock); |
| reply = sp->reply; |
| |
| if (reply) { |
| if (reply->code == data[0] && reply->ackid == data[1] && |
| payload_length >= reply->length) { |
| /* |
| * We are relying on memcpy(dst, src, 0) to be a no-op |
| * when handling commands that have a no-payload reply |
| */ |
| memcpy(reply->data, &data[2], reply->length); |
| complete(&reply->received); |
| sp->reply = NULL; |
| } else { |
| dev_err(dev, "Ignoring incorrect reply\n"); |
| dev_dbg(dev, "Code: expected = 0x%08x received = 0x%08x\n", |
| reply->code, data[0]); |
| dev_dbg(dev, "ACK ID: expected = 0x%08x received = 0x%08x\n", |
| reply->ackid, data[1]); |
| dev_dbg(dev, "Length: expected = %zu received = %zu\n", |
| reply->length, payload_length); |
| } |
| } |
| |
| mutex_unlock(&sp->reply_lock); |
| } |
| |
| static void rave_sp_receive_frame(struct rave_sp *sp, |
| const unsigned char *data, |
| size_t length) |
| { |
| const size_t checksum_length = sp->variant->checksum->length; |
| const size_t payload_length = length - checksum_length; |
| const u8 *crc_reported = &data[payload_length]; |
| struct device *dev = &sp->serdev->dev; |
| u8 crc_calculated[RAVE_SP_CHECKSUM_SIZE]; |
| |
| if (unlikely(checksum_length > sizeof(crc_calculated))) { |
| dev_warn(dev, "Checksum too long, dropping\n"); |
| return; |
| } |
| |
| print_hex_dump_debug("rave-sp rx: ", DUMP_PREFIX_NONE, |
| 16, 1, data, length, false); |
| |
| if (unlikely(length <= checksum_length)) { |
| dev_warn(dev, "Dropping short frame\n"); |
| return; |
| } |
| |
| sp->variant->checksum->subroutine(data, payload_length, |
| crc_calculated); |
| |
| if (memcmp(crc_calculated, crc_reported, checksum_length)) { |
| dev_warn(dev, "Dropping bad frame\n"); |
| return; |
| } |
| |
| if (rave_sp_id_is_event(data[0])) |
| rave_sp_receive_event(sp, data, length); |
| else |
| rave_sp_receive_reply(sp, data, length); |
| } |
| |
| static ssize_t rave_sp_receive_buf(struct serdev_device *serdev, |
| const u8 *buf, size_t size) |
| { |
| struct device *dev = &serdev->dev; |
| struct rave_sp *sp = dev_get_drvdata(dev); |
| struct rave_sp_deframer *deframer = &sp->deframer; |
| const u8 *src = buf; |
| const u8 *end = buf + size; |
| |
| while (src < end) { |
| const u8 byte = *src++; |
| |
| switch (deframer->state) { |
| case RAVE_SP_EXPECT_SOF: |
| if (byte == RAVE_SP_STX) |
| deframer->state = RAVE_SP_EXPECT_DATA; |
| break; |
| |
| case RAVE_SP_EXPECT_DATA: |
| /* |
| * Treat special byte values first |
| */ |
| switch (byte) { |
| case RAVE_SP_ETX: |
| rave_sp_receive_frame(sp, |
| deframer->data, |
| deframer->length); |
| /* |
| * Once we extracted a complete frame |
| * out of a stream, we call it done |
| * and proceed to bailing out while |
| * resetting the framer to initial |
| * state, regardless if we've consumed |
| * all of the stream or not. |
| */ |
| goto reset_framer; |
| case RAVE_SP_STX: |
| dev_warn(dev, "Bad frame: STX before ETX\n"); |
| /* |
| * If we encounter second "start of |
| * the frame" marker before seeing |
| * corresponding "end of frame", we |
| * reset the framer and ignore both: |
| * frame started by first SOF and |
| * frame started by current SOF. |
| * |
| * NOTE: The above means that only the |
| * frame started by third SOF, sent |
| * after this one will have a chance |
| * to get throught. |
| */ |
| goto reset_framer; |
| case RAVE_SP_DLE: |
| deframer->state = RAVE_SP_EXPECT_ESCAPED_DATA; |
| /* |
| * If we encounter escape sequence we |
| * need to skip it and collect the |
| * byte that follows. We do it by |
| * forcing the next iteration of the |
| * encompassing while loop. |
| */ |
| continue; |
| } |
| /* |
| * For the rest of the bytes, that are not |
| * speical snoflakes, we do the same thing |
| * that we do to escaped data - collect it in |
| * deframer buffer |
| */ |
| |
| fallthrough; |
| |
| case RAVE_SP_EXPECT_ESCAPED_DATA: |
| if (deframer->length == sizeof(deframer->data)) { |
| dev_warn(dev, "Bad frame: Too long\n"); |
| /* |
| * If the amount of data we've |
| * accumulated for current frame so |
| * far starts to exceed the capacity |
| * of deframer's buffer, there's |
| * nothing else we can do but to |
| * discard that data and start |
| * assemblying a new frame again |
| */ |
| goto reset_framer; |
| } |
| |
| deframer->data[deframer->length++] = byte; |
| |
| /* |
| * We've extracted out special byte, now we |
| * can go back to regular data collecting |
| */ |
| deframer->state = RAVE_SP_EXPECT_DATA; |
| break; |
| } |
| } |
| |
| /* |
| * The only way to get out of the above loop and end up here |
| * is throught consuming all of the supplied data, so here we |
| * report that we processed it all. |
| */ |
| return size; |
| |
| reset_framer: |
| /* |
| * NOTE: A number of codepaths that will drop us here will do |
| * so before consuming all 'size' bytes of the data passed by |
| * serdev layer. We rely on the fact that serdev layer will |
| * re-execute this handler with the remainder of the Rx bytes |
| * once we report actual number of bytes that we processed. |
| */ |
| deframer->state = RAVE_SP_EXPECT_SOF; |
| deframer->length = 0; |
| |
| return src - buf; |
| } |
| |
| static int rave_sp_rdu1_cmd_translate(enum rave_sp_command command) |
| { |
| if (command >= RAVE_SP_CMD_STATUS && |
| command <= RAVE_SP_CMD_CONTROL_EVENTS) |
| return command; |
| |
| return -EINVAL; |
| } |
| |
| static int rave_sp_rdu2_cmd_translate(enum rave_sp_command command) |
| { |
| if (command >= RAVE_SP_CMD_GET_FIRMWARE_VERSION && |
| command <= RAVE_SP_CMD_GET_GPIO_STATE) |
| return command; |
| |
| if (command == RAVE_SP_CMD_REQ_COPPER_REV) { |
| /* |
| * As per RDU2 ICD 3.4.47 CMD_GET_COPPER_REV code is |
| * different from that for RDU1 and it is set to 0x28. |
| */ |
| return 0x28; |
| } |
| |
| return rave_sp_rdu1_cmd_translate(command); |
| } |
| |
| static int rave_sp_default_cmd_translate(enum rave_sp_command command) |
| { |
| /* |
| * All of the following command codes were taken from "Table : |
| * Communications Protocol Message Types" in section 3.3 |
| * "MESSAGE TYPES" of Rave PIC24 ICD. |
| */ |
| switch (command) { |
| case RAVE_SP_CMD_GET_FIRMWARE_VERSION: |
| return 0x11; |
| case RAVE_SP_CMD_GET_BOOTLOADER_VERSION: |
| return 0x12; |
| case RAVE_SP_CMD_BOOT_SOURCE: |
| return 0x14; |
| case RAVE_SP_CMD_SW_WDT: |
| return 0x1C; |
| case RAVE_SP_CMD_PET_WDT: |
| return 0x1D; |
| case RAVE_SP_CMD_RESET: |
| return 0x1E; |
| case RAVE_SP_CMD_RESET_REASON: |
| return 0x1F; |
| case RAVE_SP_CMD_RMB_EEPROM: |
| return 0x20; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static const char *devm_rave_sp_version(struct device *dev, |
| struct rave_sp_version *version) |
| { |
| /* |
| * NOTE: The format string below uses %02d to display u16 |
| * intentionally for the sake of backwards compatibility with |
| * legacy software. |
| */ |
| return devm_kasprintf(dev, GFP_KERNEL, "%02d%02d%02d.%c%c\n", |
| version->hardware, |
| le16_to_cpu(version->major), |
| version->minor, |
| version->letter[0], |
| version->letter[1]); |
| } |
| |
| static int rave_sp_rdu1_get_status(struct rave_sp *sp, |
| struct rave_sp_status *status) |
| { |
| u8 cmd[] = { |
| [0] = RAVE_SP_CMD_STATUS, |
| [1] = 0 |
| }; |
| |
| return rave_sp_exec(sp, cmd, sizeof(cmd), status, sizeof(*status)); |
| } |
| |
| static int rave_sp_emulated_get_status(struct rave_sp *sp, |
| struct rave_sp_status *status) |
| { |
| u8 cmd[] = { |
| [0] = RAVE_SP_CMD_GET_FIRMWARE_VERSION, |
| [1] = 0, |
| }; |
| int ret; |
| |
| ret = rave_sp_exec(sp, cmd, sizeof(cmd), &status->firmware_version, |
| sizeof(status->firmware_version)); |
| if (ret) |
| return ret; |
| |
| cmd[0] = RAVE_SP_CMD_GET_BOOTLOADER_VERSION; |
| return rave_sp_exec(sp, cmd, sizeof(cmd), &status->bootloader_version, |
| sizeof(status->bootloader_version)); |
| } |
| |
| static int rave_sp_get_status(struct rave_sp *sp) |
| { |
| struct device *dev = &sp->serdev->dev; |
| struct rave_sp_status status; |
| const char *version; |
| int ret; |
| |
| ret = sp->variant->cmd.get_status(sp, &status); |
| if (ret) |
| return ret; |
| |
| version = devm_rave_sp_version(dev, &status.firmware_version); |
| if (!version) |
| return -ENOMEM; |
| |
| sp->part_number_firmware = version; |
| |
| version = devm_rave_sp_version(dev, &status.bootloader_version); |
| if (!version) |
| return -ENOMEM; |
| |
| sp->part_number_bootloader = version; |
| |
| return 0; |
| } |
| |
| static const struct rave_sp_checksum rave_sp_checksum_8b2c = { |
| .length = 1, |
| .subroutine = csum_8b2c, |
| }; |
| |
| static const struct rave_sp_checksum rave_sp_checksum_ccitt = { |
| .length = 2, |
| .subroutine = csum_ccitt, |
| }; |
| |
| static const struct rave_sp_variant rave_sp_legacy = { |
| .checksum = &rave_sp_checksum_ccitt, |
| .cmd = { |
| .translate = rave_sp_default_cmd_translate, |
| .get_status = rave_sp_emulated_get_status, |
| }, |
| }; |
| |
| static const struct rave_sp_variant rave_sp_rdu1 = { |
| .checksum = &rave_sp_checksum_8b2c, |
| .cmd = { |
| .translate = rave_sp_rdu1_cmd_translate, |
| .get_status = rave_sp_rdu1_get_status, |
| }, |
| }; |
| |
| static const struct rave_sp_variant rave_sp_rdu2 = { |
| .checksum = &rave_sp_checksum_ccitt, |
| .cmd = { |
| .translate = rave_sp_rdu2_cmd_translate, |
| .get_status = rave_sp_emulated_get_status, |
| }, |
| }; |
| |
| static const struct of_device_id rave_sp_dt_ids[] = { |
| { .compatible = "zii,rave-sp-niu", .data = &rave_sp_legacy }, |
| { .compatible = "zii,rave-sp-mezz", .data = &rave_sp_legacy }, |
| { .compatible = "zii,rave-sp-esb", .data = &rave_sp_legacy }, |
| { .compatible = "zii,rave-sp-rdu1", .data = &rave_sp_rdu1 }, |
| { .compatible = "zii,rave-sp-rdu2", .data = &rave_sp_rdu2 }, |
| { /* sentinel */ } |
| }; |
| |
| static const struct serdev_device_ops rave_sp_serdev_device_ops = { |
| .receive_buf = rave_sp_receive_buf, |
| .write_wakeup = serdev_device_write_wakeup, |
| }; |
| |
| static int rave_sp_probe(struct serdev_device *serdev) |
| { |
| struct device *dev = &serdev->dev; |
| const char *unknown = "unknown\n"; |
| struct rave_sp *sp; |
| u32 baud; |
| int ret; |
| |
| if (of_property_read_u32(dev->of_node, "current-speed", &baud)) { |
| dev_err(dev, |
| "'current-speed' is not specified in device node\n"); |
| return -EINVAL; |
| } |
| |
| sp = devm_kzalloc(dev, sizeof(*sp), GFP_KERNEL); |
| if (!sp) |
| return -ENOMEM; |
| |
| sp->serdev = serdev; |
| dev_set_drvdata(dev, sp); |
| |
| sp->variant = of_device_get_match_data(dev); |
| if (!sp->variant) |
| return -ENODEV; |
| |
| mutex_init(&sp->bus_lock); |
| mutex_init(&sp->reply_lock); |
| BLOCKING_INIT_NOTIFIER_HEAD(&sp->event_notifier_list); |
| |
| serdev_device_set_client_ops(serdev, &rave_sp_serdev_device_ops); |
| ret = devm_serdev_device_open(dev, serdev); |
| if (ret) |
| return ret; |
| |
| serdev_device_set_baudrate(serdev, baud); |
| serdev_device_set_flow_control(serdev, false); |
| |
| ret = serdev_device_set_parity(serdev, SERDEV_PARITY_NONE); |
| if (ret) { |
| dev_err(dev, "Failed to set parity\n"); |
| return ret; |
| } |
| |
| ret = rave_sp_get_status(sp); |
| if (ret) { |
| dev_warn(dev, "Failed to get firmware status: %d\n", ret); |
| sp->part_number_firmware = unknown; |
| sp->part_number_bootloader = unknown; |
| } |
| |
| /* |
| * Those strings already have a \n embedded, so there's no |
| * need to have one in format string. |
| */ |
| dev_info(dev, "Firmware version: %s", sp->part_number_firmware); |
| dev_info(dev, "Bootloader version: %s", sp->part_number_bootloader); |
| |
| return devm_of_platform_populate(dev); |
| } |
| |
| MODULE_DEVICE_TABLE(of, rave_sp_dt_ids); |
| |
| static struct serdev_device_driver rave_sp_drv = { |
| .probe = rave_sp_probe, |
| .driver = { |
| .name = "rave-sp", |
| .of_match_table = rave_sp_dt_ids, |
| }, |
| }; |
| module_serdev_device_driver(rave_sp_drv); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Andrey Vostrikov <andrey.vostrikov@cogentembedded.com>"); |
| MODULE_AUTHOR("Nikita Yushchenko <nikita.yoush@cogentembedded.com>"); |
| MODULE_AUTHOR("Andrey Smirnov <andrew.smirnov@gmail.com>"); |
| MODULE_DESCRIPTION("RAVE SP core driver"); |