| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Copyright (c) 2018-2024 Oracle. All Rights Reserved. |
| * Author: Darrick J. Wong <djwong@kernel.org> |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_shared.h" |
| #include "xfs_format.h" |
| #include "xfs_trans_resv.h" |
| #include "xfs_mount.h" |
| #include "xfs_defer.h" |
| #include "xfs_btree.h" |
| #include "xfs_btree_staging.h" |
| #include "xfs_buf_mem.h" |
| #include "xfs_btree_mem.h" |
| #include "xfs_bit.h" |
| #include "xfs_log_format.h" |
| #include "xfs_trans.h" |
| #include "xfs_sb.h" |
| #include "xfs_alloc.h" |
| #include "xfs_alloc_btree.h" |
| #include "xfs_ialloc.h" |
| #include "xfs_ialloc_btree.h" |
| #include "xfs_rmap.h" |
| #include "xfs_rmap_btree.h" |
| #include "xfs_inode.h" |
| #include "xfs_icache.h" |
| #include "xfs_bmap.h" |
| #include "xfs_bmap_btree.h" |
| #include "xfs_refcount.h" |
| #include "xfs_refcount_btree.h" |
| #include "xfs_ag.h" |
| #include "scrub/xfs_scrub.h" |
| #include "scrub/scrub.h" |
| #include "scrub/common.h" |
| #include "scrub/btree.h" |
| #include "scrub/trace.h" |
| #include "scrub/repair.h" |
| #include "scrub/bitmap.h" |
| #include "scrub/agb_bitmap.h" |
| #include "scrub/xfile.h" |
| #include "scrub/xfarray.h" |
| #include "scrub/iscan.h" |
| #include "scrub/newbt.h" |
| #include "scrub/reap.h" |
| |
| /* |
| * Reverse Mapping Btree Repair |
| * ============================ |
| * |
| * This is the most involved of all the AG space btree rebuilds. Everywhere |
| * else in XFS we lock inodes and then AG data structures, but generating the |
| * list of rmap records requires that we be able to scan both block mapping |
| * btrees of every inode in the filesystem to see if it owns any extents in |
| * this AG. We can't tolerate any inode updates while we do this, so we |
| * freeze the filesystem to lock everyone else out, and grant ourselves |
| * special privileges to run transactions with regular background reclamation |
| * turned off. |
| * |
| * We also have to be very careful not to allow inode reclaim to start a |
| * transaction because all transactions (other than our own) will block. |
| * Deferred inode inactivation helps us out there. |
| * |
| * I) Reverse mappings for all non-space metadata and file data are collected |
| * according to the following algorithm: |
| * |
| * 1. For each fork of each inode: |
| * 1.1. Create a bitmap BMBIT to track bmbt blocks if necessary. |
| * 1.2. If the incore extent map isn't loaded, walk the bmbt to accumulate |
| * bmaps into rmap records (see 1.1.4). Set bits in BMBIT for each btree |
| * block. |
| * 1.3. If the incore extent map is loaded but the fork is in btree format, |
| * just visit the bmbt blocks to set the corresponding BMBIT areas. |
| * 1.4. From the incore extent map, accumulate each bmap that falls into our |
| * target AG. Remember, multiple bmap records can map to a single rmap |
| * record, so we cannot simply emit rmap records 1:1. |
| * 1.5. Emit rmap records for each extent in BMBIT and free it. |
| * 2. Create bitmaps INOBIT and ICHUNKBIT. |
| * 3. For each record in the inobt, set the corresponding areas in ICHUNKBIT, |
| * and set bits in INOBIT for each btree block. If the inobt has no records |
| * at all, we must be careful to record its root in INOBIT. |
| * 4. For each block in the finobt, set the corresponding INOBIT area. |
| * 5. Emit rmap records for each extent in INOBIT and ICHUNKBIT and free them. |
| * 6. Create bitmaps REFCBIT and COWBIT. |
| * 7. For each CoW staging extent in the refcountbt, set the corresponding |
| * areas in COWBIT. |
| * 8. For each block in the refcountbt, set the corresponding REFCBIT area. |
| * 9. Emit rmap records for each extent in REFCBIT and COWBIT and free them. |
| * A. Emit rmap for the AG headers. |
| * B. Emit rmap for the log, if there is one. |
| * |
| * II) The rmapbt shape and space metadata rmaps are computed as follows: |
| * |
| * 1. Count the rmaps collected in the previous step. (= NR) |
| * 2. Estimate the number of rmapbt blocks needed to store NR records. (= RMB) |
| * 3. Reserve RMB blocks through the newbt using the allocator in normap mode. |
| * 4. Create bitmap AGBIT. |
| * 5. For each reservation in the newbt, set the corresponding areas in AGBIT. |
| * 6. For each block in the AGFL, bnobt, and cntbt, set the bits in AGBIT. |
| * 7. Count the extents in AGBIT. (= AGNR) |
| * 8. Estimate the number of rmapbt blocks needed for NR + AGNR rmaps. (= RMB') |
| * 9. If RMB' >= RMB, reserve RMB' - RMB more newbt blocks, set RMB = RMB', |
| * and clear AGBIT. Go to step 5. |
| * A. Emit rmaps for each extent in AGBIT. |
| * |
| * III) The rmapbt is constructed and set in place as follows: |
| * |
| * 1. Sort the rmap records. |
| * 2. Bulk load the rmaps. |
| * |
| * IV) Reap the old btree blocks. |
| * |
| * 1. Create a bitmap OLDRMBIT. |
| * 2. For each gap in the new rmapbt, set the corresponding areas of OLDRMBIT. |
| * 3. For each extent in the bnobt, clear the corresponding parts of OLDRMBIT. |
| * 4. Reap the extents corresponding to the set areas in OLDRMBIT. These are |
| * the parts of the AG that the rmap didn't find during its scan of the |
| * primary metadata and aren't known to be in the free space, which implies |
| * that they were the old rmapbt blocks. |
| * 5. Commit. |
| * |
| * We use the 'xrep_rmap' prefix for all the rmap functions. |
| */ |
| |
| /* Context for collecting rmaps */ |
| struct xrep_rmap { |
| /* new rmapbt information */ |
| struct xrep_newbt new_btree; |
| |
| /* lock for the xfbtree and xfile */ |
| struct mutex lock; |
| |
| /* rmap records generated from primary metadata */ |
| struct xfbtree rmap_btree; |
| |
| struct xfs_scrub *sc; |
| |
| /* in-memory btree cursor for the xfs_btree_bload iteration */ |
| struct xfs_btree_cur *mcur; |
| |
| /* Hooks into rmap update code. */ |
| struct xfs_rmap_hook rhook; |
| |
| /* inode scan cursor */ |
| struct xchk_iscan iscan; |
| |
| /* Number of non-freespace records found. */ |
| unsigned long long nr_records; |
| |
| /* bnobt/cntbt contribution to btreeblks */ |
| xfs_agblock_t freesp_btblocks; |
| |
| /* old agf_rmap_blocks counter */ |
| unsigned int old_rmapbt_fsbcount; |
| }; |
| |
| /* Set us up to repair reverse mapping btrees. */ |
| int |
| xrep_setup_ag_rmapbt( |
| struct xfs_scrub *sc) |
| { |
| struct xrep_rmap *rr; |
| char *descr; |
| int error; |
| |
| xchk_fsgates_enable(sc, XCHK_FSGATES_RMAP); |
| |
| descr = xchk_xfile_ag_descr(sc, "reverse mapping records"); |
| error = xrep_setup_xfbtree(sc, descr); |
| kfree(descr); |
| if (error) |
| return error; |
| |
| rr = kzalloc(sizeof(struct xrep_rmap), XCHK_GFP_FLAGS); |
| if (!rr) |
| return -ENOMEM; |
| |
| rr->sc = sc; |
| sc->buf = rr; |
| return 0; |
| } |
| |
| /* Make sure there's nothing funny about this mapping. */ |
| STATIC int |
| xrep_rmap_check_mapping( |
| struct xfs_scrub *sc, |
| const struct xfs_rmap_irec *rec) |
| { |
| enum xbtree_recpacking outcome; |
| int error; |
| |
| if (xfs_rmap_check_irec(sc->sa.pag, rec) != NULL) |
| return -EFSCORRUPTED; |
| |
| /* Make sure this isn't free space. */ |
| error = xfs_alloc_has_records(sc->sa.bno_cur, rec->rm_startblock, |
| rec->rm_blockcount, &outcome); |
| if (error) |
| return error; |
| if (outcome != XBTREE_RECPACKING_EMPTY) |
| return -EFSCORRUPTED; |
| |
| return 0; |
| } |
| |
| /* Store a reverse-mapping record. */ |
| static inline int |
| xrep_rmap_stash( |
| struct xrep_rmap *rr, |
| xfs_agblock_t startblock, |
| xfs_extlen_t blockcount, |
| uint64_t owner, |
| uint64_t offset, |
| unsigned int flags) |
| { |
| struct xfs_rmap_irec rmap = { |
| .rm_startblock = startblock, |
| .rm_blockcount = blockcount, |
| .rm_owner = owner, |
| .rm_offset = offset, |
| .rm_flags = flags, |
| }; |
| struct xfs_scrub *sc = rr->sc; |
| struct xfs_btree_cur *mcur; |
| int error = 0; |
| |
| if (xchk_should_terminate(sc, &error)) |
| return error; |
| |
| if (xchk_iscan_aborted(&rr->iscan)) |
| return -EFSCORRUPTED; |
| |
| trace_xrep_rmap_found(sc->mp, sc->sa.pag->pag_agno, &rmap); |
| |
| mutex_lock(&rr->lock); |
| mcur = xfs_rmapbt_mem_cursor(sc->sa.pag, sc->tp, &rr->rmap_btree); |
| error = xfs_rmap_map_raw(mcur, &rmap); |
| xfs_btree_del_cursor(mcur, error); |
| if (error) |
| goto out_cancel; |
| |
| error = xfbtree_trans_commit(&rr->rmap_btree, sc->tp); |
| if (error) |
| goto out_abort; |
| |
| mutex_unlock(&rr->lock); |
| return 0; |
| |
| out_cancel: |
| xfbtree_trans_cancel(&rr->rmap_btree, sc->tp); |
| out_abort: |
| xchk_iscan_abort(&rr->iscan); |
| mutex_unlock(&rr->lock); |
| return error; |
| } |
| |
| struct xrep_rmap_stash_run { |
| struct xrep_rmap *rr; |
| uint64_t owner; |
| unsigned int rmap_flags; |
| }; |
| |
| static int |
| xrep_rmap_stash_run( |
| uint32_t start, |
| uint32_t len, |
| void *priv) |
| { |
| struct xrep_rmap_stash_run *rsr = priv; |
| struct xrep_rmap *rr = rsr->rr; |
| |
| return xrep_rmap_stash(rr, start, len, rsr->owner, 0, rsr->rmap_flags); |
| } |
| |
| /* |
| * Emit rmaps for every extent of bits set in the bitmap. Caller must ensure |
| * that the ranges are in units of FS blocks. |
| */ |
| STATIC int |
| xrep_rmap_stash_bitmap( |
| struct xrep_rmap *rr, |
| struct xagb_bitmap *bitmap, |
| const struct xfs_owner_info *oinfo) |
| { |
| struct xrep_rmap_stash_run rsr = { |
| .rr = rr, |
| .owner = oinfo->oi_owner, |
| .rmap_flags = 0, |
| }; |
| |
| if (oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK) |
| rsr.rmap_flags |= XFS_RMAP_ATTR_FORK; |
| if (oinfo->oi_flags & XFS_OWNER_INFO_BMBT_BLOCK) |
| rsr.rmap_flags |= XFS_RMAP_BMBT_BLOCK; |
| |
| return xagb_bitmap_walk(bitmap, xrep_rmap_stash_run, &rsr); |
| } |
| |
| /* Section (I): Finding all file and bmbt extents. */ |
| |
| /* Context for accumulating rmaps for an inode fork. */ |
| struct xrep_rmap_ifork { |
| /* |
| * Accumulate rmap data here to turn multiple adjacent bmaps into a |
| * single rmap. |
| */ |
| struct xfs_rmap_irec accum; |
| |
| /* Bitmap of bmbt blocks in this AG. */ |
| struct xagb_bitmap bmbt_blocks; |
| |
| struct xrep_rmap *rr; |
| |
| /* Which inode fork? */ |
| int whichfork; |
| }; |
| |
| /* Stash an rmap that we accumulated while walking an inode fork. */ |
| STATIC int |
| xrep_rmap_stash_accumulated( |
| struct xrep_rmap_ifork *rf) |
| { |
| if (rf->accum.rm_blockcount == 0) |
| return 0; |
| |
| return xrep_rmap_stash(rf->rr, rf->accum.rm_startblock, |
| rf->accum.rm_blockcount, rf->accum.rm_owner, |
| rf->accum.rm_offset, rf->accum.rm_flags); |
| } |
| |
| /* Accumulate a bmbt record. */ |
| STATIC int |
| xrep_rmap_visit_bmbt( |
| struct xfs_btree_cur *cur, |
| struct xfs_bmbt_irec *rec, |
| void *priv) |
| { |
| struct xrep_rmap_ifork *rf = priv; |
| struct xfs_mount *mp = rf->rr->sc->mp; |
| struct xfs_rmap_irec *accum = &rf->accum; |
| xfs_agblock_t agbno; |
| unsigned int rmap_flags = 0; |
| int error; |
| |
| if (XFS_FSB_TO_AGNO(mp, rec->br_startblock) != |
| rf->rr->sc->sa.pag->pag_agno) |
| return 0; |
| |
| agbno = XFS_FSB_TO_AGBNO(mp, rec->br_startblock); |
| if (rf->whichfork == XFS_ATTR_FORK) |
| rmap_flags |= XFS_RMAP_ATTR_FORK; |
| if (rec->br_state == XFS_EXT_UNWRITTEN) |
| rmap_flags |= XFS_RMAP_UNWRITTEN; |
| |
| /* If this bmap is adjacent to the previous one, just add it. */ |
| if (accum->rm_blockcount > 0 && |
| rec->br_startoff == accum->rm_offset + accum->rm_blockcount && |
| agbno == accum->rm_startblock + accum->rm_blockcount && |
| rmap_flags == accum->rm_flags) { |
| accum->rm_blockcount += rec->br_blockcount; |
| return 0; |
| } |
| |
| /* Otherwise stash the old rmap and start accumulating a new one. */ |
| error = xrep_rmap_stash_accumulated(rf); |
| if (error) |
| return error; |
| |
| accum->rm_startblock = agbno; |
| accum->rm_blockcount = rec->br_blockcount; |
| accum->rm_offset = rec->br_startoff; |
| accum->rm_flags = rmap_flags; |
| return 0; |
| } |
| |
| /* Add a btree block to the bitmap. */ |
| STATIC int |
| xrep_rmap_visit_iroot_btree_block( |
| struct xfs_btree_cur *cur, |
| int level, |
| void *priv) |
| { |
| struct xrep_rmap_ifork *rf = priv; |
| struct xfs_buf *bp; |
| xfs_fsblock_t fsbno; |
| xfs_agblock_t agbno; |
| |
| xfs_btree_get_block(cur, level, &bp); |
| if (!bp) |
| return 0; |
| |
| fsbno = XFS_DADDR_TO_FSB(cur->bc_mp, xfs_buf_daddr(bp)); |
| if (XFS_FSB_TO_AGNO(cur->bc_mp, fsbno) != rf->rr->sc->sa.pag->pag_agno) |
| return 0; |
| |
| agbno = XFS_FSB_TO_AGBNO(cur->bc_mp, fsbno); |
| return xagb_bitmap_set(&rf->bmbt_blocks, agbno, 1); |
| } |
| |
| /* |
| * Iterate a metadata btree rooted in an inode to collect rmap records for |
| * anything in this fork that matches the AG. |
| */ |
| STATIC int |
| xrep_rmap_scan_iroot_btree( |
| struct xrep_rmap_ifork *rf, |
| struct xfs_btree_cur *cur) |
| { |
| struct xfs_owner_info oinfo; |
| struct xrep_rmap *rr = rf->rr; |
| int error; |
| |
| xagb_bitmap_init(&rf->bmbt_blocks); |
| |
| /* Record all the blocks in the btree itself. */ |
| error = xfs_btree_visit_blocks(cur, xrep_rmap_visit_iroot_btree_block, |
| XFS_BTREE_VISIT_ALL, rf); |
| if (error) |
| goto out; |
| |
| /* Emit rmaps for the btree blocks. */ |
| xfs_rmap_ino_bmbt_owner(&oinfo, rf->accum.rm_owner, rf->whichfork); |
| error = xrep_rmap_stash_bitmap(rr, &rf->bmbt_blocks, &oinfo); |
| if (error) |
| goto out; |
| |
| /* Stash any remaining accumulated rmaps. */ |
| error = xrep_rmap_stash_accumulated(rf); |
| out: |
| xagb_bitmap_destroy(&rf->bmbt_blocks); |
| return error; |
| } |
| |
| static inline bool |
| is_rt_data_fork( |
| struct xfs_inode *ip, |
| int whichfork) |
| { |
| return XFS_IS_REALTIME_INODE(ip) && whichfork == XFS_DATA_FORK; |
| } |
| |
| /* |
| * Iterate the block mapping btree to collect rmap records for anything in this |
| * fork that matches the AG. Sets @mappings_done to true if we've scanned the |
| * block mappings in this fork. |
| */ |
| STATIC int |
| xrep_rmap_scan_bmbt( |
| struct xrep_rmap_ifork *rf, |
| struct xfs_inode *ip, |
| bool *mappings_done) |
| { |
| struct xrep_rmap *rr = rf->rr; |
| struct xfs_btree_cur *cur; |
| struct xfs_ifork *ifp; |
| int error; |
| |
| *mappings_done = false; |
| ifp = xfs_ifork_ptr(ip, rf->whichfork); |
| cur = xfs_bmbt_init_cursor(rr->sc->mp, rr->sc->tp, ip, rf->whichfork); |
| |
| if (!xfs_ifork_is_realtime(ip, rf->whichfork) && |
| xfs_need_iread_extents(ifp)) { |
| /* |
| * If the incore extent cache isn't loaded, scan the bmbt for |
| * mapping records. This avoids loading the incore extent |
| * tree, which will increase memory pressure at a time when |
| * we're trying to run as quickly as we possibly can. Ignore |
| * realtime extents. |
| */ |
| error = xfs_bmap_query_all(cur, xrep_rmap_visit_bmbt, rf); |
| if (error) |
| goto out_cur; |
| |
| *mappings_done = true; |
| } |
| |
| /* Scan for the bmbt blocks, which always live on the data device. */ |
| error = xrep_rmap_scan_iroot_btree(rf, cur); |
| out_cur: |
| xfs_btree_del_cursor(cur, error); |
| return error; |
| } |
| |
| /* |
| * Iterate the in-core extent cache to collect rmap records for anything in |
| * this fork that matches the AG. |
| */ |
| STATIC int |
| xrep_rmap_scan_iext( |
| struct xrep_rmap_ifork *rf, |
| struct xfs_ifork *ifp) |
| { |
| struct xfs_bmbt_irec rec; |
| struct xfs_iext_cursor icur; |
| int error; |
| |
| for_each_xfs_iext(ifp, &icur, &rec) { |
| if (isnullstartblock(rec.br_startblock)) |
| continue; |
| error = xrep_rmap_visit_bmbt(NULL, &rec, rf); |
| if (error) |
| return error; |
| } |
| |
| return xrep_rmap_stash_accumulated(rf); |
| } |
| |
| /* Find all the extents from a given AG in an inode fork. */ |
| STATIC int |
| xrep_rmap_scan_ifork( |
| struct xrep_rmap *rr, |
| struct xfs_inode *ip, |
| int whichfork) |
| { |
| struct xrep_rmap_ifork rf = { |
| .accum = { .rm_owner = ip->i_ino, }, |
| .rr = rr, |
| .whichfork = whichfork, |
| }; |
| struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); |
| int error = 0; |
| |
| if (!ifp) |
| return 0; |
| |
| if (ifp->if_format == XFS_DINODE_FMT_BTREE) { |
| bool mappings_done; |
| |
| /* |
| * Scan the bmap btree for data device mappings. This includes |
| * the btree blocks themselves, even if this is a realtime |
| * file. |
| */ |
| error = xrep_rmap_scan_bmbt(&rf, ip, &mappings_done); |
| if (error || mappings_done) |
| return error; |
| } else if (ifp->if_format != XFS_DINODE_FMT_EXTENTS) { |
| return 0; |
| } |
| |
| /* Scan incore extent cache if this isn't a realtime file. */ |
| if (xfs_ifork_is_realtime(ip, whichfork)) |
| return 0; |
| |
| return xrep_rmap_scan_iext(&rf, ifp); |
| } |
| |
| /* |
| * Take ILOCK on a file that we want to scan. |
| * |
| * Select ILOCK_EXCL if the file has an unloaded data bmbt or has an unloaded |
| * attr bmbt. Otherwise, take ILOCK_SHARED. |
| */ |
| static inline unsigned int |
| xrep_rmap_scan_ilock( |
| struct xfs_inode *ip) |
| { |
| uint lock_mode = XFS_ILOCK_SHARED; |
| |
| if (xfs_need_iread_extents(&ip->i_df)) { |
| lock_mode = XFS_ILOCK_EXCL; |
| goto lock; |
| } |
| |
| if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af)) |
| lock_mode = XFS_ILOCK_EXCL; |
| |
| lock: |
| xfs_ilock(ip, lock_mode); |
| return lock_mode; |
| } |
| |
| /* Record reverse mappings for a file. */ |
| STATIC int |
| xrep_rmap_scan_inode( |
| struct xrep_rmap *rr, |
| struct xfs_inode *ip) |
| { |
| unsigned int lock_mode = 0; |
| int error; |
| |
| /* |
| * Directory updates (create/link/unlink/rename) drop the directory's |
| * ILOCK before finishing any rmapbt updates associated with directory |
| * shape changes. For this scan to coordinate correctly with the live |
| * update hook, we must take the only lock (i_rwsem) that is held all |
| * the way to dir op completion. This will get fixed by the parent |
| * pointer patchset. |
| */ |
| if (S_ISDIR(VFS_I(ip)->i_mode)) { |
| lock_mode = XFS_IOLOCK_SHARED; |
| xfs_ilock(ip, lock_mode); |
| } |
| lock_mode |= xrep_rmap_scan_ilock(ip); |
| |
| /* Check the data fork. */ |
| error = xrep_rmap_scan_ifork(rr, ip, XFS_DATA_FORK); |
| if (error) |
| goto out_unlock; |
| |
| /* Check the attr fork. */ |
| error = xrep_rmap_scan_ifork(rr, ip, XFS_ATTR_FORK); |
| if (error) |
| goto out_unlock; |
| |
| /* COW fork extents are "owned" by the refcount btree. */ |
| |
| xchk_iscan_mark_visited(&rr->iscan, ip); |
| out_unlock: |
| xfs_iunlock(ip, lock_mode); |
| return error; |
| } |
| |
| /* Section (I): Find all AG metadata extents except for free space metadata. */ |
| |
| struct xrep_rmap_inodes { |
| struct xrep_rmap *rr; |
| struct xagb_bitmap inobt_blocks; /* INOBIT */ |
| struct xagb_bitmap ichunk_blocks; /* ICHUNKBIT */ |
| }; |
| |
| /* Record inode btree rmaps. */ |
| STATIC int |
| xrep_rmap_walk_inobt( |
| struct xfs_btree_cur *cur, |
| const union xfs_btree_rec *rec, |
| void *priv) |
| { |
| struct xfs_inobt_rec_incore irec; |
| struct xrep_rmap_inodes *ri = priv; |
| struct xfs_mount *mp = cur->bc_mp; |
| xfs_agblock_t agbno; |
| xfs_extlen_t aglen; |
| xfs_agino_t agino; |
| xfs_agino_t iperhole; |
| unsigned int i; |
| int error; |
| |
| /* Record the inobt blocks. */ |
| error = xagb_bitmap_set_btcur_path(&ri->inobt_blocks, cur); |
| if (error) |
| return error; |
| |
| xfs_inobt_btrec_to_irec(mp, rec, &irec); |
| if (xfs_inobt_check_irec(cur->bc_ag.pag, &irec) != NULL) |
| return -EFSCORRUPTED; |
| |
| agino = irec.ir_startino; |
| |
| /* Record a non-sparse inode chunk. */ |
| if (!xfs_inobt_issparse(irec.ir_holemask)) { |
| agbno = XFS_AGINO_TO_AGBNO(mp, agino); |
| aglen = max_t(xfs_extlen_t, 1, |
| XFS_INODES_PER_CHUNK / mp->m_sb.sb_inopblock); |
| |
| return xagb_bitmap_set(&ri->ichunk_blocks, agbno, aglen); |
| } |
| |
| /* Iterate each chunk. */ |
| iperhole = max_t(xfs_agino_t, mp->m_sb.sb_inopblock, |
| XFS_INODES_PER_HOLEMASK_BIT); |
| aglen = iperhole / mp->m_sb.sb_inopblock; |
| for (i = 0, agino = irec.ir_startino; |
| i < XFS_INOBT_HOLEMASK_BITS; |
| i += iperhole / XFS_INODES_PER_HOLEMASK_BIT, agino += iperhole) { |
| /* Skip holes. */ |
| if (irec.ir_holemask & (1 << i)) |
| continue; |
| |
| /* Record the inode chunk otherwise. */ |
| agbno = XFS_AGINO_TO_AGBNO(mp, agino); |
| error = xagb_bitmap_set(&ri->ichunk_blocks, agbno, aglen); |
| if (error) |
| return error; |
| } |
| |
| return 0; |
| } |
| |
| /* Collect rmaps for the blocks containing inode btrees and the inode chunks. */ |
| STATIC int |
| xrep_rmap_find_inode_rmaps( |
| struct xrep_rmap *rr) |
| { |
| struct xrep_rmap_inodes ri = { |
| .rr = rr, |
| }; |
| struct xfs_scrub *sc = rr->sc; |
| int error; |
| |
| xagb_bitmap_init(&ri.inobt_blocks); |
| xagb_bitmap_init(&ri.ichunk_blocks); |
| |
| /* |
| * Iterate every record in the inobt so we can capture all the inode |
| * chunks and the blocks in the inobt itself. |
| */ |
| error = xfs_btree_query_all(sc->sa.ino_cur, xrep_rmap_walk_inobt, &ri); |
| if (error) |
| goto out_bitmap; |
| |
| /* |
| * Note that if there are zero records in the inobt then query_all does |
| * nothing and we have to account the empty inobt root manually. |
| */ |
| if (xagb_bitmap_empty(&ri.ichunk_blocks)) { |
| struct xfs_agi *agi = sc->sa.agi_bp->b_addr; |
| |
| error = xagb_bitmap_set(&ri.inobt_blocks, |
| be32_to_cpu(agi->agi_root), 1); |
| if (error) |
| goto out_bitmap; |
| } |
| |
| /* Scan the finobt too. */ |
| if (xfs_has_finobt(sc->mp)) { |
| error = xagb_bitmap_set_btblocks(&ri.inobt_blocks, |
| sc->sa.fino_cur); |
| if (error) |
| goto out_bitmap; |
| } |
| |
| /* Generate rmaps for everything. */ |
| error = xrep_rmap_stash_bitmap(rr, &ri.inobt_blocks, |
| &XFS_RMAP_OINFO_INOBT); |
| if (error) |
| goto out_bitmap; |
| error = xrep_rmap_stash_bitmap(rr, &ri.ichunk_blocks, |
| &XFS_RMAP_OINFO_INODES); |
| |
| out_bitmap: |
| xagb_bitmap_destroy(&ri.inobt_blocks); |
| xagb_bitmap_destroy(&ri.ichunk_blocks); |
| return error; |
| } |
| |
| /* Record a CoW staging extent. */ |
| STATIC int |
| xrep_rmap_walk_cowblocks( |
| struct xfs_btree_cur *cur, |
| const struct xfs_refcount_irec *irec, |
| void *priv) |
| { |
| struct xagb_bitmap *bitmap = priv; |
| |
| if (!xfs_refcount_check_domain(irec) || |
| irec->rc_domain != XFS_REFC_DOMAIN_COW) |
| return -EFSCORRUPTED; |
| |
| return xagb_bitmap_set(bitmap, irec->rc_startblock, irec->rc_blockcount); |
| } |
| |
| /* |
| * Collect rmaps for the blocks containing the refcount btree, and all CoW |
| * staging extents. |
| */ |
| STATIC int |
| xrep_rmap_find_refcount_rmaps( |
| struct xrep_rmap *rr) |
| { |
| struct xagb_bitmap refcountbt_blocks; /* REFCBIT */ |
| struct xagb_bitmap cow_blocks; /* COWBIT */ |
| struct xfs_refcount_irec low = { |
| .rc_startblock = 0, |
| .rc_domain = XFS_REFC_DOMAIN_COW, |
| }; |
| struct xfs_refcount_irec high = { |
| .rc_startblock = -1U, |
| .rc_domain = XFS_REFC_DOMAIN_COW, |
| }; |
| struct xfs_scrub *sc = rr->sc; |
| int error; |
| |
| if (!xfs_has_reflink(sc->mp)) |
| return 0; |
| |
| xagb_bitmap_init(&refcountbt_blocks); |
| xagb_bitmap_init(&cow_blocks); |
| |
| /* refcountbt */ |
| error = xagb_bitmap_set_btblocks(&refcountbt_blocks, sc->sa.refc_cur); |
| if (error) |
| goto out_bitmap; |
| |
| /* Collect rmaps for CoW staging extents. */ |
| error = xfs_refcount_query_range(sc->sa.refc_cur, &low, &high, |
| xrep_rmap_walk_cowblocks, &cow_blocks); |
| if (error) |
| goto out_bitmap; |
| |
| /* Generate rmaps for everything. */ |
| error = xrep_rmap_stash_bitmap(rr, &cow_blocks, &XFS_RMAP_OINFO_COW); |
| if (error) |
| goto out_bitmap; |
| error = xrep_rmap_stash_bitmap(rr, &refcountbt_blocks, |
| &XFS_RMAP_OINFO_REFC); |
| |
| out_bitmap: |
| xagb_bitmap_destroy(&cow_blocks); |
| xagb_bitmap_destroy(&refcountbt_blocks); |
| return error; |
| } |
| |
| /* Generate rmaps for the AG headers (AGI/AGF/AGFL) */ |
| STATIC int |
| xrep_rmap_find_agheader_rmaps( |
| struct xrep_rmap *rr) |
| { |
| struct xfs_scrub *sc = rr->sc; |
| |
| /* Create a record for the AG sb->agfl. */ |
| return xrep_rmap_stash(rr, XFS_SB_BLOCK(sc->mp), |
| XFS_AGFL_BLOCK(sc->mp) - XFS_SB_BLOCK(sc->mp) + 1, |
| XFS_RMAP_OWN_FS, 0, 0); |
| } |
| |
| /* Generate rmaps for the log, if it's in this AG. */ |
| STATIC int |
| xrep_rmap_find_log_rmaps( |
| struct xrep_rmap *rr) |
| { |
| struct xfs_scrub *sc = rr->sc; |
| |
| if (!xfs_ag_contains_log(sc->mp, sc->sa.pag->pag_agno)) |
| return 0; |
| |
| return xrep_rmap_stash(rr, |
| XFS_FSB_TO_AGBNO(sc->mp, sc->mp->m_sb.sb_logstart), |
| sc->mp->m_sb.sb_logblocks, XFS_RMAP_OWN_LOG, 0, 0); |
| } |
| |
| /* Check and count all the records that we gathered. */ |
| STATIC int |
| xrep_rmap_check_record( |
| struct xfs_btree_cur *cur, |
| const struct xfs_rmap_irec *rec, |
| void *priv) |
| { |
| struct xrep_rmap *rr = priv; |
| int error; |
| |
| error = xrep_rmap_check_mapping(rr->sc, rec); |
| if (error) |
| return error; |
| |
| rr->nr_records++; |
| return 0; |
| } |
| |
| /* |
| * Generate all the reverse-mappings for this AG, a list of the old rmapbt |
| * blocks, and the new btreeblks count. Figure out if we have enough free |
| * space to reconstruct the inode btrees. The caller must clean up the lists |
| * if anything goes wrong. This implements section (I) above. |
| */ |
| STATIC int |
| xrep_rmap_find_rmaps( |
| struct xrep_rmap *rr) |
| { |
| struct xfs_scrub *sc = rr->sc; |
| struct xchk_ag *sa = &sc->sa; |
| struct xfs_inode *ip; |
| struct xfs_btree_cur *mcur; |
| int error; |
| |
| /* Find all the per-AG metadata. */ |
| xrep_ag_btcur_init(sc, &sc->sa); |
| |
| error = xrep_rmap_find_inode_rmaps(rr); |
| if (error) |
| goto end_agscan; |
| |
| error = xrep_rmap_find_refcount_rmaps(rr); |
| if (error) |
| goto end_agscan; |
| |
| error = xrep_rmap_find_agheader_rmaps(rr); |
| if (error) |
| goto end_agscan; |
| |
| error = xrep_rmap_find_log_rmaps(rr); |
| end_agscan: |
| xchk_ag_btcur_free(&sc->sa); |
| if (error) |
| return error; |
| |
| /* |
| * Set up for a potentially lengthy filesystem scan by reducing our |
| * transaction resource usage for the duration. Specifically: |
| * |
| * Unlock the AG header buffers and cancel the transaction to release |
| * the log grant space while we scan the filesystem. |
| * |
| * Create a new empty transaction to eliminate the possibility of the |
| * inode scan deadlocking on cyclical metadata. |
| * |
| * We pass the empty transaction to the file scanning function to avoid |
| * repeatedly cycling empty transactions. This can be done even though |
| * we take the IOLOCK to quiesce the file because empty transactions |
| * do not take sb_internal. |
| */ |
| sa->agf_bp = NULL; |
| sa->agi_bp = NULL; |
| xchk_trans_cancel(sc); |
| error = xchk_trans_alloc_empty(sc); |
| if (error) |
| return error; |
| |
| /* Iterate all AGs for inodes rmaps. */ |
| while ((error = xchk_iscan_iter(&rr->iscan, &ip)) == 1) { |
| error = xrep_rmap_scan_inode(rr, ip); |
| xchk_irele(sc, ip); |
| if (error) |
| break; |
| |
| if (xchk_should_terminate(sc, &error)) |
| break; |
| } |
| xchk_iscan_iter_finish(&rr->iscan); |
| if (error) |
| return error; |
| |
| /* |
| * Switch out for a real transaction and lock the AG headers in |
| * preparation for building a new tree. |
| */ |
| xchk_trans_cancel(sc); |
| error = xchk_setup_fs(sc); |
| if (error) |
| return error; |
| error = xchk_perag_drain_and_lock(sc); |
| if (error) |
| return error; |
| |
| /* |
| * If a hook failed to update the in-memory btree, we lack the data to |
| * continue the repair. |
| */ |
| if (xchk_iscan_aborted(&rr->iscan)) |
| return -EFSCORRUPTED; |
| |
| /* |
| * Now that we have everything locked again, we need to count the |
| * number of rmap records stashed in the btree. This should reflect |
| * all actively-owned space in the filesystem. At the same time, check |
| * all our records before we start building a new btree, which requires |
| * a bnobt cursor. |
| */ |
| mcur = xfs_rmapbt_mem_cursor(rr->sc->sa.pag, NULL, &rr->rmap_btree); |
| sc->sa.bno_cur = xfs_bnobt_init_cursor(sc->mp, sc->tp, sc->sa.agf_bp, |
| sc->sa.pag); |
| |
| rr->nr_records = 0; |
| error = xfs_rmap_query_all(mcur, xrep_rmap_check_record, rr); |
| |
| xfs_btree_del_cursor(sc->sa.bno_cur, error); |
| sc->sa.bno_cur = NULL; |
| xfs_btree_del_cursor(mcur, error); |
| |
| return error; |
| } |
| |
| /* Section (II): Reserving space for new rmapbt and setting free space bitmap */ |
| |
| struct xrep_rmap_agfl { |
| struct xagb_bitmap *bitmap; |
| xfs_agnumber_t agno; |
| }; |
| |
| /* Add an AGFL block to the rmap list. */ |
| STATIC int |
| xrep_rmap_walk_agfl( |
| struct xfs_mount *mp, |
| xfs_agblock_t agbno, |
| void *priv) |
| { |
| struct xrep_rmap_agfl *ra = priv; |
| |
| return xagb_bitmap_set(ra->bitmap, agbno, 1); |
| } |
| |
| /* |
| * Run one round of reserving space for the new rmapbt and recomputing the |
| * number of blocks needed to store the previously observed rmapbt records and |
| * the ones we'll create for the free space metadata. When we don't need more |
| * blocks, return a bitmap of OWN_AG extents in @freesp_blocks and set @done to |
| * true. |
| */ |
| STATIC int |
| xrep_rmap_try_reserve( |
| struct xrep_rmap *rr, |
| struct xfs_btree_cur *rmap_cur, |
| struct xagb_bitmap *freesp_blocks, |
| uint64_t *blocks_reserved, |
| bool *done) |
| { |
| struct xrep_rmap_agfl ra = { |
| .bitmap = freesp_blocks, |
| .agno = rr->sc->sa.pag->pag_agno, |
| }; |
| struct xfs_scrub *sc = rr->sc; |
| struct xrep_newbt_resv *resv, *n; |
| struct xfs_agf *agf = sc->sa.agf_bp->b_addr; |
| struct xfs_buf *agfl_bp; |
| uint64_t nr_blocks; /* RMB */ |
| uint64_t freesp_records; |
| int error; |
| |
| /* |
| * We're going to recompute new_btree.bload.nr_blocks at the end of |
| * this function to reflect however many btree blocks we need to store |
| * all the rmap records (including the ones that reflect the changes we |
| * made to support the new rmapbt blocks), so we save the old value |
| * here so we can decide if we've reserved enough blocks. |
| */ |
| nr_blocks = rr->new_btree.bload.nr_blocks; |
| |
| /* |
| * Make sure we've reserved enough space for the new btree. This can |
| * change the shape of the free space btrees, which can cause secondary |
| * interactions with the rmap records because all three space btrees |
| * have the same rmap owner. We'll account for all that below. |
| */ |
| error = xrep_newbt_alloc_blocks(&rr->new_btree, |
| nr_blocks - *blocks_reserved); |
| if (error) |
| return error; |
| |
| *blocks_reserved = rr->new_btree.bload.nr_blocks; |
| |
| /* Clear everything in the bitmap. */ |
| xagb_bitmap_destroy(freesp_blocks); |
| |
| /* Set all the bnobt blocks in the bitmap. */ |
| sc->sa.bno_cur = xfs_bnobt_init_cursor(sc->mp, sc->tp, sc->sa.agf_bp, |
| sc->sa.pag); |
| error = xagb_bitmap_set_btblocks(freesp_blocks, sc->sa.bno_cur); |
| xfs_btree_del_cursor(sc->sa.bno_cur, error); |
| sc->sa.bno_cur = NULL; |
| if (error) |
| return error; |
| |
| /* Set all the cntbt blocks in the bitmap. */ |
| sc->sa.cnt_cur = xfs_cntbt_init_cursor(sc->mp, sc->tp, sc->sa.agf_bp, |
| sc->sa.pag); |
| error = xagb_bitmap_set_btblocks(freesp_blocks, sc->sa.cnt_cur); |
| xfs_btree_del_cursor(sc->sa.cnt_cur, error); |
| sc->sa.cnt_cur = NULL; |
| if (error) |
| return error; |
| |
| /* Record our new btreeblks value. */ |
| rr->freesp_btblocks = xagb_bitmap_hweight(freesp_blocks) - 2; |
| |
| /* Set all the new rmapbt blocks in the bitmap. */ |
| list_for_each_entry_safe(resv, n, &rr->new_btree.resv_list, list) { |
| error = xagb_bitmap_set(freesp_blocks, resv->agbno, resv->len); |
| if (error) |
| return error; |
| } |
| |
| /* Set all the AGFL blocks in the bitmap. */ |
| error = xfs_alloc_read_agfl(sc->sa.pag, sc->tp, &agfl_bp); |
| if (error) |
| return error; |
| |
| error = xfs_agfl_walk(sc->mp, agf, agfl_bp, xrep_rmap_walk_agfl, &ra); |
| if (error) |
| return error; |
| |
| /* Count the extents in the bitmap. */ |
| freesp_records = xagb_bitmap_count_set_regions(freesp_blocks); |
| |
| /* Compute how many blocks we'll need for all the rmaps. */ |
| error = xfs_btree_bload_compute_geometry(rmap_cur, |
| &rr->new_btree.bload, rr->nr_records + freesp_records); |
| if (error) |
| return error; |
| |
| /* We're done when we don't need more blocks. */ |
| *done = nr_blocks >= rr->new_btree.bload.nr_blocks; |
| return 0; |
| } |
| |
| /* |
| * Iteratively reserve space for rmap btree while recording OWN_AG rmaps for |
| * the free space metadata. This implements section (II) above. |
| */ |
| STATIC int |
| xrep_rmap_reserve_space( |
| struct xrep_rmap *rr, |
| struct xfs_btree_cur *rmap_cur) |
| { |
| struct xagb_bitmap freesp_blocks; /* AGBIT */ |
| uint64_t blocks_reserved = 0; |
| bool done = false; |
| int error; |
| |
| /* Compute how many blocks we'll need for the rmaps collected so far. */ |
| error = xfs_btree_bload_compute_geometry(rmap_cur, |
| &rr->new_btree.bload, rr->nr_records); |
| if (error) |
| return error; |
| |
| /* Last chance to abort before we start committing fixes. */ |
| if (xchk_should_terminate(rr->sc, &error)) |
| return error; |
| |
| xagb_bitmap_init(&freesp_blocks); |
| |
| /* |
| * Iteratively reserve space for the new rmapbt and recompute the |
| * number of blocks needed to store the previously observed rmapbt |
| * records and the ones we'll create for the free space metadata. |
| * Finish when we don't need more blocks. |
| */ |
| do { |
| error = xrep_rmap_try_reserve(rr, rmap_cur, &freesp_blocks, |
| &blocks_reserved, &done); |
| if (error) |
| goto out_bitmap; |
| } while (!done); |
| |
| /* Emit rmaps for everything in the free space bitmap. */ |
| xrep_ag_btcur_init(rr->sc, &rr->sc->sa); |
| error = xrep_rmap_stash_bitmap(rr, &freesp_blocks, &XFS_RMAP_OINFO_AG); |
| xchk_ag_btcur_free(&rr->sc->sa); |
| |
| out_bitmap: |
| xagb_bitmap_destroy(&freesp_blocks); |
| return error; |
| } |
| |
| /* Section (III): Building the new rmap btree. */ |
| |
| /* Update the AGF counters. */ |
| STATIC int |
| xrep_rmap_reset_counters( |
| struct xrep_rmap *rr) |
| { |
| struct xfs_scrub *sc = rr->sc; |
| struct xfs_perag *pag = sc->sa.pag; |
| struct xfs_agf *agf = sc->sa.agf_bp->b_addr; |
| xfs_agblock_t rmap_btblocks; |
| |
| /* |
| * The AGF header contains extra information related to the reverse |
| * mapping btree, so we must update those fields here. |
| */ |
| rmap_btblocks = rr->new_btree.afake.af_blocks - 1; |
| agf->agf_btreeblks = cpu_to_be32(rr->freesp_btblocks + rmap_btblocks); |
| xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_BTREEBLKS); |
| |
| /* |
| * After we commit the new btree to disk, it is possible that the |
| * process to reap the old btree blocks will race with the AIL trying |
| * to checkpoint the old btree blocks into the filesystem. If the new |
| * tree is shorter than the old one, the rmapbt write verifier will |
| * fail and the AIL will shut down the filesystem. |
| * |
| * To avoid this, save the old incore btree height values as the alt |
| * height values before re-initializing the perag info from the updated |
| * AGF to capture all the new values. |
| */ |
| pag->pagf_repair_rmap_level = pag->pagf_rmap_level; |
| |
| /* Reinitialize with the values we just logged. */ |
| return xrep_reinit_pagf(sc); |
| } |
| |
| /* Retrieve rmapbt data for bulk load. */ |
| STATIC int |
| xrep_rmap_get_records( |
| struct xfs_btree_cur *cur, |
| unsigned int idx, |
| struct xfs_btree_block *block, |
| unsigned int nr_wanted, |
| void *priv) |
| { |
| struct xrep_rmap *rr = priv; |
| union xfs_btree_rec *block_rec; |
| unsigned int loaded; |
| int error; |
| |
| for (loaded = 0; loaded < nr_wanted; loaded++, idx++) { |
| int stat = 0; |
| |
| error = xfs_btree_increment(rr->mcur, 0, &stat); |
| if (error) |
| return error; |
| if (!stat) |
| return -EFSCORRUPTED; |
| |
| error = xfs_rmap_get_rec(rr->mcur, &cur->bc_rec.r, &stat); |
| if (error) |
| return error; |
| if (!stat) |
| return -EFSCORRUPTED; |
| |
| block_rec = xfs_btree_rec_addr(cur, idx, block); |
| cur->bc_ops->init_rec_from_cur(cur, block_rec); |
| } |
| |
| return loaded; |
| } |
| |
| /* Feed one of the new btree blocks to the bulk loader. */ |
| STATIC int |
| xrep_rmap_claim_block( |
| struct xfs_btree_cur *cur, |
| union xfs_btree_ptr *ptr, |
| void *priv) |
| { |
| struct xrep_rmap *rr = priv; |
| |
| return xrep_newbt_claim_block(cur, &rr->new_btree, ptr); |
| } |
| |
| /* Custom allocation function for new rmap btrees. */ |
| STATIC int |
| xrep_rmap_alloc_vextent( |
| struct xfs_scrub *sc, |
| struct xfs_alloc_arg *args, |
| xfs_fsblock_t alloc_hint) |
| { |
| int error; |
| |
| /* |
| * We don't want an rmap update on the allocation, since we iteratively |
| * compute the OWN_AG records /after/ allocating blocks for the records |
| * that we already know we need to store. Therefore, fix the freelist |
| * with the NORMAP flag set so that we don't also try to create an rmap |
| * for new AGFL blocks. |
| */ |
| error = xrep_fix_freelist(sc, XFS_ALLOC_FLAG_NORMAP); |
| if (error) |
| return error; |
| |
| /* |
| * If xrep_fix_freelist fixed the freelist by moving blocks from the |
| * free space btrees or by removing blocks from the AGFL and queueing |
| * an EFI to free the block, the transaction will be dirty. This |
| * second case is of interest to us. |
| * |
| * Later on, we will need to compare gaps in the new recordset against |
| * the block usage of all OWN_AG owners in order to free the old |
| * btree's blocks, which means that we can't have EFIs for former AGFL |
| * blocks attached to the repair transaction when we commit the new |
| * btree. |
| * |
| * xrep_newbt_alloc_blocks guarantees this for us by calling |
| * xrep_defer_finish to commit anything that fix_freelist may have |
| * added to the transaction. |
| */ |
| return xfs_alloc_vextent_near_bno(args, alloc_hint); |
| } |
| |
| |
| /* Count the records in this btree. */ |
| STATIC int |
| xrep_rmap_count_records( |
| struct xfs_btree_cur *cur, |
| unsigned long long *nr) |
| { |
| int running = 1; |
| int error; |
| |
| *nr = 0; |
| |
| error = xfs_btree_goto_left_edge(cur); |
| if (error) |
| return error; |
| |
| while (running && !(error = xfs_btree_increment(cur, 0, &running))) { |
| if (running) |
| (*nr)++; |
| } |
| |
| return error; |
| } |
| /* |
| * Use the collected rmap information to stage a new rmap btree. If this is |
| * successful we'll return with the new btree root information logged to the |
| * repair transaction but not yet committed. This implements section (III) |
| * above. |
| */ |
| STATIC int |
| xrep_rmap_build_new_tree( |
| struct xrep_rmap *rr) |
| { |
| struct xfs_scrub *sc = rr->sc; |
| struct xfs_perag *pag = sc->sa.pag; |
| struct xfs_agf *agf = sc->sa.agf_bp->b_addr; |
| struct xfs_btree_cur *rmap_cur; |
| xfs_fsblock_t fsbno; |
| int error; |
| |
| /* |
| * Preserve the old rmapbt block count so that we can adjust the |
| * per-AG rmapbt reservation after we commit the new btree root and |
| * want to dispose of the old btree blocks. |
| */ |
| rr->old_rmapbt_fsbcount = be32_to_cpu(agf->agf_rmap_blocks); |
| |
| /* |
| * Prepare to construct the new btree by reserving disk space for the |
| * new btree and setting up all the accounting information we'll need |
| * to root the new btree while it's under construction and before we |
| * attach it to the AG header. The new blocks are accounted to the |
| * rmapbt per-AG reservation, which we will adjust further after |
| * committing the new btree. |
| */ |
| fsbno = XFS_AGB_TO_FSB(sc->mp, pag->pag_agno, XFS_RMAP_BLOCK(sc->mp)); |
| xrep_newbt_init_ag(&rr->new_btree, sc, &XFS_RMAP_OINFO_SKIP_UPDATE, |
| fsbno, XFS_AG_RESV_RMAPBT); |
| rr->new_btree.bload.get_records = xrep_rmap_get_records; |
| rr->new_btree.bload.claim_block = xrep_rmap_claim_block; |
| rr->new_btree.alloc_vextent = xrep_rmap_alloc_vextent; |
| rmap_cur = xfs_rmapbt_init_cursor(sc->mp, NULL, NULL, pag); |
| xfs_btree_stage_afakeroot(rmap_cur, &rr->new_btree.afake); |
| |
| /* |
| * Initialize @rr->new_btree, reserve space for the new rmapbt, |
| * and compute OWN_AG rmaps. |
| */ |
| error = xrep_rmap_reserve_space(rr, rmap_cur); |
| if (error) |
| goto err_cur; |
| |
| /* |
| * Count the rmapbt records again, because the space reservation |
| * for the rmapbt itself probably added more records to the btree. |
| */ |
| rr->mcur = xfs_rmapbt_mem_cursor(rr->sc->sa.pag, NULL, |
| &rr->rmap_btree); |
| |
| error = xrep_rmap_count_records(rr->mcur, &rr->nr_records); |
| if (error) |
| goto err_mcur; |
| |
| /* |
| * Due to btree slack factors, it's possible for a new btree to be one |
| * level taller than the old btree. Update the incore btree height so |
| * that we don't trip the verifiers when writing the new btree blocks |
| * to disk. |
| */ |
| pag->pagf_repair_rmap_level = rr->new_btree.bload.btree_height; |
| |
| /* |
| * Move the cursor to the left edge of the tree so that the first |
| * increment in ->get_records positions us at the first record. |
| */ |
| error = xfs_btree_goto_left_edge(rr->mcur); |
| if (error) |
| goto err_level; |
| |
| /* Add all observed rmap records. */ |
| error = xfs_btree_bload(rmap_cur, &rr->new_btree.bload, rr); |
| if (error) |
| goto err_level; |
| |
| /* |
| * Install the new btree in the AG header. After this point the old |
| * btree is no longer accessible and the new tree is live. |
| */ |
| xfs_rmapbt_commit_staged_btree(rmap_cur, sc->tp, sc->sa.agf_bp); |
| xfs_btree_del_cursor(rmap_cur, 0); |
| xfs_btree_del_cursor(rr->mcur, 0); |
| rr->mcur = NULL; |
| |
| /* |
| * Now that we've written the new btree to disk, we don't need to keep |
| * updating the in-memory btree. Abort the scan to stop live updates. |
| */ |
| xchk_iscan_abort(&rr->iscan); |
| |
| /* |
| * The newly committed rmap recordset includes mappings for the blocks |
| * that we reserved to build the new btree. If there is excess space |
| * reservation to be freed, the corresponding rmap records must also be |
| * removed. |
| */ |
| rr->new_btree.oinfo = XFS_RMAP_OINFO_AG; |
| |
| /* Reset the AGF counters now that we've changed the btree shape. */ |
| error = xrep_rmap_reset_counters(rr); |
| if (error) |
| goto err_newbt; |
| |
| /* Dispose of any unused blocks and the accounting information. */ |
| error = xrep_newbt_commit(&rr->new_btree); |
| if (error) |
| return error; |
| |
| return xrep_roll_ag_trans(sc); |
| |
| err_level: |
| pag->pagf_repair_rmap_level = 0; |
| err_mcur: |
| xfs_btree_del_cursor(rr->mcur, error); |
| err_cur: |
| xfs_btree_del_cursor(rmap_cur, error); |
| err_newbt: |
| xrep_newbt_cancel(&rr->new_btree); |
| return error; |
| } |
| |
| /* Section (IV): Reaping the old btree. */ |
| |
| struct xrep_rmap_find_gaps { |
| struct xagb_bitmap rmap_gaps; |
| xfs_agblock_t next_agbno; |
| }; |
| |
| /* Subtract each free extent in the bnobt from the rmap gaps. */ |
| STATIC int |
| xrep_rmap_find_freesp( |
| struct xfs_btree_cur *cur, |
| const struct xfs_alloc_rec_incore *rec, |
| void *priv) |
| { |
| struct xrep_rmap_find_gaps *rfg = priv; |
| |
| return xagb_bitmap_clear(&rfg->rmap_gaps, rec->ar_startblock, |
| rec->ar_blockcount); |
| } |
| |
| /* Record the free space we find, as part of cleaning out the btree. */ |
| STATIC int |
| xrep_rmap_find_gaps( |
| struct xfs_btree_cur *cur, |
| const struct xfs_rmap_irec *rec, |
| void *priv) |
| { |
| struct xrep_rmap_find_gaps *rfg = priv; |
| int error; |
| |
| if (rec->rm_startblock > rfg->next_agbno) { |
| error = xagb_bitmap_set(&rfg->rmap_gaps, rfg->next_agbno, |
| rec->rm_startblock - rfg->next_agbno); |
| if (error) |
| return error; |
| } |
| |
| rfg->next_agbno = max_t(xfs_agblock_t, rfg->next_agbno, |
| rec->rm_startblock + rec->rm_blockcount); |
| return 0; |
| } |
| |
| /* |
| * Reap the old rmapbt blocks. Now that the rmapbt is fully rebuilt, we make |
| * a list of gaps in the rmap records and a list of the extents mentioned in |
| * the bnobt. Any block that's in the new rmapbt gap list but not mentioned |
| * in the bnobt is a block from the old rmapbt and can be removed. |
| */ |
| STATIC int |
| xrep_rmap_remove_old_tree( |
| struct xrep_rmap *rr) |
| { |
| struct xrep_rmap_find_gaps rfg = { |
| .next_agbno = 0, |
| }; |
| struct xfs_scrub *sc = rr->sc; |
| struct xfs_agf *agf = sc->sa.agf_bp->b_addr; |
| struct xfs_perag *pag = sc->sa.pag; |
| struct xfs_btree_cur *mcur; |
| xfs_agblock_t agend; |
| int error; |
| |
| xagb_bitmap_init(&rfg.rmap_gaps); |
| |
| /* Compute free space from the new rmapbt. */ |
| mcur = xfs_rmapbt_mem_cursor(rr->sc->sa.pag, NULL, &rr->rmap_btree); |
| |
| error = xfs_rmap_query_all(mcur, xrep_rmap_find_gaps, &rfg); |
| xfs_btree_del_cursor(mcur, error); |
| if (error) |
| goto out_bitmap; |
| |
| /* Insert a record for space between the last rmap and EOAG. */ |
| agend = be32_to_cpu(agf->agf_length); |
| if (rfg.next_agbno < agend) { |
| error = xagb_bitmap_set(&rfg.rmap_gaps, rfg.next_agbno, |
| agend - rfg.next_agbno); |
| if (error) |
| goto out_bitmap; |
| } |
| |
| /* Compute free space from the existing bnobt. */ |
| sc->sa.bno_cur = xfs_bnobt_init_cursor(sc->mp, sc->tp, sc->sa.agf_bp, |
| sc->sa.pag); |
| error = xfs_alloc_query_all(sc->sa.bno_cur, xrep_rmap_find_freesp, |
| &rfg); |
| xfs_btree_del_cursor(sc->sa.bno_cur, error); |
| sc->sa.bno_cur = NULL; |
| if (error) |
| goto out_bitmap; |
| |
| /* |
| * Free the "free" blocks that the new rmapbt knows about but the bnobt |
| * doesn't--these are the old rmapbt blocks. Credit the old rmapbt |
| * block usage count back to the per-AG rmapbt reservation (and not |
| * fdblocks, since the rmap btree lives in free space) to keep the |
| * reservation and free space accounting correct. |
| */ |
| error = xrep_reap_agblocks(sc, &rfg.rmap_gaps, |
| &XFS_RMAP_OINFO_ANY_OWNER, XFS_AG_RESV_RMAPBT); |
| if (error) |
| goto out_bitmap; |
| |
| /* |
| * Now that we've zapped all the old rmapbt blocks we can turn off |
| * the alternate height mechanism and reset the per-AG space |
| * reservation. |
| */ |
| pag->pagf_repair_rmap_level = 0; |
| sc->flags |= XREP_RESET_PERAG_RESV; |
| out_bitmap: |
| xagb_bitmap_destroy(&rfg.rmap_gaps); |
| return error; |
| } |
| |
| static inline bool |
| xrep_rmapbt_want_live_update( |
| struct xchk_iscan *iscan, |
| const struct xfs_owner_info *oi) |
| { |
| if (xchk_iscan_aborted(iscan)) |
| return false; |
| |
| /* |
| * Before unlocking the AG header to perform the inode scan, we |
| * recorded reverse mappings for all AG metadata except for the OWN_AG |
| * metadata. IOWs, the in-memory btree knows about the AG headers, the |
| * two inode btrees, the CoW staging extents, and the refcount btrees. |
| * For these types of metadata, we need to record the live updates in |
| * the in-memory rmap btree. |
| * |
| * However, we do not scan the free space btrees or the AGFL until we |
| * have re-locked the AGF and are ready to reserve space for the new |
| * rmap btree, so we do not want live updates for OWN_AG metadata. |
| */ |
| if (XFS_RMAP_NON_INODE_OWNER(oi->oi_owner)) |
| return oi->oi_owner != XFS_RMAP_OWN_AG; |
| |
| /* Ignore updates to files that the scanner hasn't visited yet. */ |
| return xchk_iscan_want_live_update(iscan, oi->oi_owner); |
| } |
| |
| /* |
| * Apply a rmapbt update from the regular filesystem into our shadow btree. |
| * We're running from the thread that owns the AGF buffer and is generating |
| * the update, so we must be careful about which parts of the struct xrep_rmap |
| * that we change. |
| */ |
| static int |
| xrep_rmapbt_live_update( |
| struct notifier_block *nb, |
| unsigned long action, |
| void *data) |
| { |
| struct xfs_rmap_update_params *p = data; |
| struct xrep_rmap *rr; |
| struct xfs_mount *mp; |
| struct xfs_btree_cur *mcur; |
| struct xfs_trans *tp; |
| void *txcookie; |
| int error; |
| |
| rr = container_of(nb, struct xrep_rmap, rhook.rmap_hook.nb); |
| mp = rr->sc->mp; |
| |
| if (!xrep_rmapbt_want_live_update(&rr->iscan, &p->oinfo)) |
| goto out_unlock; |
| |
| trace_xrep_rmap_live_update(mp, rr->sc->sa.pag->pag_agno, action, p); |
| |
| error = xrep_trans_alloc_hook_dummy(mp, &txcookie, &tp); |
| if (error) |
| goto out_abort; |
| |
| mutex_lock(&rr->lock); |
| mcur = xfs_rmapbt_mem_cursor(rr->sc->sa.pag, tp, &rr->rmap_btree); |
| error = __xfs_rmap_finish_intent(mcur, action, p->startblock, |
| p->blockcount, &p->oinfo, p->unwritten); |
| xfs_btree_del_cursor(mcur, error); |
| if (error) |
| goto out_cancel; |
| |
| error = xfbtree_trans_commit(&rr->rmap_btree, tp); |
| if (error) |
| goto out_cancel; |
| |
| xrep_trans_cancel_hook_dummy(&txcookie, tp); |
| mutex_unlock(&rr->lock); |
| return NOTIFY_DONE; |
| |
| out_cancel: |
| xfbtree_trans_cancel(&rr->rmap_btree, tp); |
| xrep_trans_cancel_hook_dummy(&txcookie, tp); |
| out_abort: |
| mutex_unlock(&rr->lock); |
| xchk_iscan_abort(&rr->iscan); |
| out_unlock: |
| return NOTIFY_DONE; |
| } |
| |
| /* Set up the filesystem scan components. */ |
| STATIC int |
| xrep_rmap_setup_scan( |
| struct xrep_rmap *rr) |
| { |
| struct xfs_scrub *sc = rr->sc; |
| int error; |
| |
| mutex_init(&rr->lock); |
| |
| /* Set up in-memory rmap btree */ |
| error = xfs_rmapbt_mem_init(sc->mp, &rr->rmap_btree, sc->xmbtp, |
| sc->sa.pag->pag_agno); |
| if (error) |
| goto out_mutex; |
| |
| /* Retry iget every tenth of a second for up to 30 seconds. */ |
| xchk_iscan_start(sc, 30000, 100, &rr->iscan); |
| |
| /* |
| * Hook into live rmap operations so that we can update our in-memory |
| * btree to reflect live changes on the filesystem. Since we drop the |
| * AGF buffer to scan all the inodes, we need this piece to avoid |
| * installing a stale btree. |
| */ |
| ASSERT(sc->flags & XCHK_FSGATES_RMAP); |
| xfs_rmap_hook_setup(&rr->rhook, xrep_rmapbt_live_update); |
| error = xfs_rmap_hook_add(sc->sa.pag, &rr->rhook); |
| if (error) |
| goto out_iscan; |
| return 0; |
| |
| out_iscan: |
| xchk_iscan_teardown(&rr->iscan); |
| xfbtree_destroy(&rr->rmap_btree); |
| out_mutex: |
| mutex_destroy(&rr->lock); |
| return error; |
| } |
| |
| /* Tear down scan components. */ |
| STATIC void |
| xrep_rmap_teardown( |
| struct xrep_rmap *rr) |
| { |
| struct xfs_scrub *sc = rr->sc; |
| |
| xchk_iscan_abort(&rr->iscan); |
| xfs_rmap_hook_del(sc->sa.pag, &rr->rhook); |
| xchk_iscan_teardown(&rr->iscan); |
| xfbtree_destroy(&rr->rmap_btree); |
| mutex_destroy(&rr->lock); |
| } |
| |
| /* Repair the rmap btree for some AG. */ |
| int |
| xrep_rmapbt( |
| struct xfs_scrub *sc) |
| { |
| struct xrep_rmap *rr = sc->buf; |
| int error; |
| |
| error = xrep_rmap_setup_scan(rr); |
| if (error) |
| return error; |
| |
| /* |
| * Collect rmaps for everything in this AG that isn't space metadata. |
| * These rmaps won't change even as we try to allocate blocks. |
| */ |
| error = xrep_rmap_find_rmaps(rr); |
| if (error) |
| goto out_records; |
| |
| /* Rebuild the rmap information. */ |
| error = xrep_rmap_build_new_tree(rr); |
| if (error) |
| goto out_records; |
| |
| /* Kill the old tree. */ |
| error = xrep_rmap_remove_old_tree(rr); |
| if (error) |
| goto out_records; |
| |
| out_records: |
| xrep_rmap_teardown(rr); |
| return error; |
| } |