| // SPDX-License-Identifier: GPL-2.0 |
| |
| #include "bcachefs.h" |
| #include "alloc_foreground.h" |
| #include "bkey_methods.h" |
| #include "btree_cache.h" |
| #include "btree_gc.h" |
| #include "btree_update.h" |
| #include "btree_update_interior.h" |
| #include "btree_io.h" |
| #include "btree_iter.h" |
| #include "btree_locking.h" |
| #include "buckets.h" |
| #include "extents.h" |
| #include "journal.h" |
| #include "journal_reclaim.h" |
| #include "keylist.h" |
| #include "replicas.h" |
| #include "super-io.h" |
| #include "trace.h" |
| |
| #include <linux/random.h> |
| |
| static void btree_node_will_make_reachable(struct btree_update *, |
| struct btree *); |
| static void btree_update_drop_new_node(struct bch_fs *, struct btree *); |
| static void bch2_btree_set_root_ondisk(struct bch_fs *, struct btree *, int); |
| |
| /* Debug code: */ |
| |
| static void btree_node_interior_verify(struct btree *b) |
| { |
| struct btree_node_iter iter; |
| struct bkey_packed *k; |
| |
| BUG_ON(!b->level); |
| |
| bch2_btree_node_iter_init(&iter, b, &b->key.k.p); |
| #if 1 |
| BUG_ON(!(k = bch2_btree_node_iter_peek(&iter, b)) || |
| bkey_cmp_left_packed(b, k, &b->key.k.p)); |
| |
| BUG_ON((bch2_btree_node_iter_advance(&iter, b), |
| !bch2_btree_node_iter_end(&iter))); |
| #else |
| const char *msg; |
| |
| msg = "not found"; |
| k = bch2_btree_node_iter_peek(&iter, b); |
| if (!k) |
| goto err; |
| |
| msg = "isn't what it should be"; |
| if (bkey_cmp_left_packed(b, k, &b->key.k.p)) |
| goto err; |
| |
| bch2_btree_node_iter_advance(&iter, b); |
| |
| msg = "isn't last key"; |
| if (!bch2_btree_node_iter_end(&iter)) |
| goto err; |
| return; |
| err: |
| bch2_dump_btree_node(b); |
| printk(KERN_ERR "last key %llu:%llu %s\n", b->key.k.p.inode, |
| b->key.k.p.offset, msg); |
| BUG(); |
| #endif |
| } |
| |
| /* Calculate ideal packed bkey format for new btree nodes: */ |
| |
| void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b) |
| { |
| struct bkey_packed *k; |
| struct bset_tree *t; |
| struct bkey uk; |
| |
| bch2_bkey_format_add_pos(s, b->data->min_key); |
| |
| for_each_bset(b, t) |
| for (k = btree_bkey_first(b, t); |
| k != btree_bkey_last(b, t); |
| k = bkey_next(k)) |
| if (!bkey_whiteout(k)) { |
| uk = bkey_unpack_key(b, k); |
| bch2_bkey_format_add_key(s, &uk); |
| } |
| } |
| |
| static struct bkey_format bch2_btree_calc_format(struct btree *b) |
| { |
| struct bkey_format_state s; |
| |
| bch2_bkey_format_init(&s); |
| __bch2_btree_calc_format(&s, b); |
| |
| return bch2_bkey_format_done(&s); |
| } |
| |
| static size_t btree_node_u64s_with_format(struct btree *b, |
| struct bkey_format *new_f) |
| { |
| struct bkey_format *old_f = &b->format; |
| |
| /* stupid integer promotion rules */ |
| ssize_t delta = |
| (((int) new_f->key_u64s - old_f->key_u64s) * |
| (int) b->nr.packed_keys) + |
| (((int) new_f->key_u64s - BKEY_U64s) * |
| (int) b->nr.unpacked_keys); |
| |
| BUG_ON(delta + b->nr.live_u64s < 0); |
| |
| return b->nr.live_u64s + delta; |
| } |
| |
| /** |
| * btree_node_format_fits - check if we could rewrite node with a new format |
| * |
| * This assumes all keys can pack with the new format -- it just checks if |
| * the re-packed keys would fit inside the node itself. |
| */ |
| bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b, |
| struct bkey_format *new_f) |
| { |
| size_t u64s = btree_node_u64s_with_format(b, new_f); |
| |
| return __vstruct_bytes(struct btree_node, u64s) < btree_bytes(c); |
| } |
| |
| /* Btree node freeing/allocation: */ |
| |
| static bool btree_key_matches(struct bch_fs *c, |
| struct bkey_s_c_extent l, |
| struct bkey_s_c_extent r) |
| { |
| const struct bch_extent_ptr *ptr1, *ptr2; |
| |
| extent_for_each_ptr(l, ptr1) |
| extent_for_each_ptr(r, ptr2) |
| if (ptr1->dev == ptr2->dev && |
| ptr1->gen == ptr2->gen && |
| ptr1->offset == ptr2->offset) |
| return true; |
| |
| return false; |
| } |
| |
| /* |
| * We're doing the index update that makes @b unreachable, update stuff to |
| * reflect that: |
| * |
| * Must be called _before_ btree_update_updated_root() or |
| * btree_update_updated_node: |
| */ |
| static void bch2_btree_node_free_index(struct btree_update *as, struct btree *b, |
| struct bkey_s_c k, |
| struct bch_fs_usage *stats) |
| { |
| struct bch_fs *c = as->c; |
| struct pending_btree_node_free *d; |
| unsigned replicas; |
| |
| /* |
| * btree_update lock is only needed here to avoid racing with |
| * gc: |
| */ |
| mutex_lock(&c->btree_interior_update_lock); |
| |
| for (d = as->pending; d < as->pending + as->nr_pending; d++) |
| if (!bkey_cmp(k.k->p, d->key.k.p) && |
| btree_key_matches(c, bkey_s_c_to_extent(k), |
| bkey_i_to_s_c_extent(&d->key))) |
| goto found; |
| BUG(); |
| found: |
| BUG_ON(d->index_update_done); |
| d->index_update_done = true; |
| |
| /* |
| * Btree nodes are accounted as freed in bch_alloc_stats when they're |
| * freed from the index: |
| */ |
| replicas = bch2_extent_nr_dirty_ptrs(k); |
| if (replicas) |
| stats->replicas[replicas - 1].data[BCH_DATA_BTREE] -= |
| c->opts.btree_node_size * replicas; |
| |
| /* |
| * We're dropping @k from the btree, but it's still live until the |
| * index update is persistent so we need to keep a reference around for |
| * mark and sweep to find - that's primarily what the |
| * btree_node_pending_free list is for. |
| * |
| * So here (when we set index_update_done = true), we're moving an |
| * existing reference to a different part of the larger "gc keyspace" - |
| * and the new position comes after the old position, since GC marks |
| * the pending free list after it walks the btree. |
| * |
| * If we move the reference while mark and sweep is _between_ the old |
| * and the new position, mark and sweep will see the reference twice |
| * and it'll get double accounted - so check for that here and subtract |
| * to cancel out one of mark and sweep's markings if necessary: |
| */ |
| |
| /* |
| * bch2_mark_key() compares the current gc pos to the pos we're |
| * moving this reference from, hence one comparison here: |
| */ |
| if (gc_pos_cmp(c->gc_pos, gc_phase(GC_PHASE_PENDING_DELETE)) < 0) { |
| struct bch_fs_usage tmp = { 0 }; |
| |
| bch2_mark_key(c, BKEY_TYPE_BTREE, |
| bkey_i_to_s_c(&d->key), |
| false, 0, b |
| ? gc_pos_btree_node(b) |
| : gc_pos_btree_root(as->btree_id), |
| &tmp, 0, 0); |
| /* |
| * Don't apply tmp - pending deletes aren't tracked in |
| * bch_alloc_stats: |
| */ |
| } |
| |
| mutex_unlock(&c->btree_interior_update_lock); |
| } |
| |
| static void __btree_node_free(struct bch_fs *c, struct btree *b) |
| { |
| trace_btree_node_free(c, b); |
| |
| BUG_ON(btree_node_dirty(b)); |
| BUG_ON(btree_node_need_write(b)); |
| BUG_ON(b == btree_node_root(c, b)); |
| BUG_ON(b->ob.nr); |
| BUG_ON(!list_empty(&b->write_blocked)); |
| BUG_ON(b->will_make_reachable); |
| |
| clear_btree_node_noevict(b); |
| |
| bch2_btree_node_hash_remove(&c->btree_cache, b); |
| |
| mutex_lock(&c->btree_cache.lock); |
| list_move(&b->list, &c->btree_cache.freeable); |
| mutex_unlock(&c->btree_cache.lock); |
| } |
| |
| void bch2_btree_node_free_never_inserted(struct bch_fs *c, struct btree *b) |
| { |
| struct open_buckets ob = b->ob; |
| |
| btree_update_drop_new_node(c, b); |
| |
| b->ob.nr = 0; |
| |
| clear_btree_node_dirty(b); |
| |
| btree_node_lock_type(c, b, SIX_LOCK_write); |
| __btree_node_free(c, b); |
| six_unlock_write(&b->lock); |
| |
| bch2_open_buckets_put(c, &ob); |
| } |
| |
| void bch2_btree_node_free_inmem(struct bch_fs *c, struct btree *b, |
| struct btree_iter *iter) |
| { |
| /* |
| * Is this a node that isn't reachable on disk yet? |
| * |
| * Nodes that aren't reachable yet have writes blocked until they're |
| * reachable - now that we've cancelled any pending writes and moved |
| * things waiting on that write to wait on this update, we can drop this |
| * node from the list of nodes that the other update is making |
| * reachable, prior to freeing it: |
| */ |
| btree_update_drop_new_node(c, b); |
| |
| __bch2_btree_node_lock_write(b, iter); |
| __btree_node_free(c, b); |
| six_unlock_write(&b->lock); |
| |
| bch2_btree_iter_node_drop(iter, b); |
| } |
| |
| static void bch2_btree_node_free_ondisk(struct bch_fs *c, |
| struct pending_btree_node_free *pending) |
| { |
| struct bch_fs_usage stats = { 0 }; |
| |
| BUG_ON(!pending->index_update_done); |
| |
| bch2_mark_key(c, BKEY_TYPE_BTREE, |
| bkey_i_to_s_c(&pending->key), |
| false, 0, |
| gc_phase(GC_PHASE_PENDING_DELETE), |
| &stats, 0, 0); |
| /* |
| * Don't apply stats - pending deletes aren't tracked in |
| * bch_alloc_stats: |
| */ |
| } |
| |
| static struct btree *__bch2_btree_node_alloc(struct bch_fs *c, |
| struct disk_reservation *res, |
| struct closure *cl, |
| unsigned flags) |
| { |
| struct write_point *wp; |
| struct btree *b; |
| BKEY_PADDED(k) tmp; |
| struct bkey_i_extent *e; |
| struct open_buckets ob = { .nr = 0 }; |
| struct bch_devs_list devs_have = (struct bch_devs_list) { 0 }; |
| unsigned nr_reserve; |
| enum alloc_reserve alloc_reserve; |
| |
| if (flags & BTREE_INSERT_USE_ALLOC_RESERVE) { |
| nr_reserve = 0; |
| alloc_reserve = RESERVE_ALLOC; |
| } else if (flags & BTREE_INSERT_USE_RESERVE) { |
| nr_reserve = BTREE_NODE_RESERVE / 2; |
| alloc_reserve = RESERVE_BTREE; |
| } else { |
| nr_reserve = BTREE_NODE_RESERVE; |
| alloc_reserve = RESERVE_NONE; |
| } |
| |
| mutex_lock(&c->btree_reserve_cache_lock); |
| if (c->btree_reserve_cache_nr > nr_reserve) { |
| struct btree_alloc *a = |
| &c->btree_reserve_cache[--c->btree_reserve_cache_nr]; |
| |
| ob = a->ob; |
| bkey_copy(&tmp.k, &a->k); |
| mutex_unlock(&c->btree_reserve_cache_lock); |
| goto mem_alloc; |
| } |
| mutex_unlock(&c->btree_reserve_cache_lock); |
| |
| retry: |
| wp = bch2_alloc_sectors_start(c, c->opts.foreground_target, |
| writepoint_ptr(&c->btree_write_point), |
| &devs_have, |
| res->nr_replicas, |
| c->opts.metadata_replicas_required, |
| alloc_reserve, 0, cl); |
| if (IS_ERR(wp)) |
| return ERR_CAST(wp); |
| |
| if (wp->sectors_free < c->opts.btree_node_size) { |
| struct open_bucket *ob; |
| unsigned i; |
| |
| open_bucket_for_each(c, &wp->ptrs, ob, i) |
| if (ob->sectors_free < c->opts.btree_node_size) |
| ob->sectors_free = 0; |
| |
| bch2_alloc_sectors_done(c, wp); |
| goto retry; |
| } |
| |
| e = bkey_extent_init(&tmp.k); |
| bch2_alloc_sectors_append_ptrs(c, wp, e, c->opts.btree_node_size); |
| |
| bch2_open_bucket_get(c, wp, &ob); |
| bch2_alloc_sectors_done(c, wp); |
| mem_alloc: |
| b = bch2_btree_node_mem_alloc(c); |
| |
| /* we hold cannibalize_lock: */ |
| BUG_ON(IS_ERR(b)); |
| BUG_ON(b->ob.nr); |
| |
| bkey_copy(&b->key, &tmp.k); |
| b->ob = ob; |
| |
| return b; |
| } |
| |
| static struct btree *bch2_btree_node_alloc(struct btree_update *as, unsigned level) |
| { |
| struct bch_fs *c = as->c; |
| struct btree *b; |
| |
| BUG_ON(level >= BTREE_MAX_DEPTH); |
| BUG_ON(!as->reserve->nr); |
| |
| b = as->reserve->b[--as->reserve->nr]; |
| |
| BUG_ON(bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id)); |
| |
| set_btree_node_accessed(b); |
| set_btree_node_dirty(b); |
| |
| bch2_bset_init_first(b, &b->data->keys); |
| memset(&b->nr, 0, sizeof(b->nr)); |
| b->data->magic = cpu_to_le64(bset_magic(c)); |
| b->data->flags = 0; |
| SET_BTREE_NODE_ID(b->data, as->btree_id); |
| SET_BTREE_NODE_LEVEL(b->data, level); |
| b->data->ptr = bkey_i_to_extent(&b->key)->v.start->ptr; |
| |
| bch2_btree_build_aux_trees(b); |
| |
| btree_node_will_make_reachable(as, b); |
| |
| trace_btree_node_alloc(c, b); |
| return b; |
| } |
| |
| struct btree *__bch2_btree_node_alloc_replacement(struct btree_update *as, |
| struct btree *b, |
| struct bkey_format format) |
| { |
| struct btree *n; |
| |
| n = bch2_btree_node_alloc(as, b->level); |
| |
| n->data->min_key = b->data->min_key; |
| n->data->max_key = b->data->max_key; |
| n->data->format = format; |
| SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1); |
| |
| btree_node_set_format(n, format); |
| |
| bch2_btree_sort_into(as->c, n, b); |
| |
| btree_node_reset_sib_u64s(n); |
| |
| n->key.k.p = b->key.k.p; |
| return n; |
| } |
| |
| static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as, |
| struct btree *b) |
| { |
| struct bkey_format new_f = bch2_btree_calc_format(b); |
| |
| /* |
| * The keys might expand with the new format - if they wouldn't fit in |
| * the btree node anymore, use the old format for now: |
| */ |
| if (!bch2_btree_node_format_fits(as->c, b, &new_f)) |
| new_f = b->format; |
| |
| return __bch2_btree_node_alloc_replacement(as, b, new_f); |
| } |
| |
| static struct btree *__btree_root_alloc(struct btree_update *as, unsigned level) |
| { |
| struct btree *b = bch2_btree_node_alloc(as, level); |
| |
| b->data->min_key = POS_MIN; |
| b->data->max_key = POS_MAX; |
| b->data->format = bch2_btree_calc_format(b); |
| b->key.k.p = POS_MAX; |
| |
| btree_node_set_format(b, b->data->format); |
| bch2_btree_build_aux_trees(b); |
| |
| six_unlock_write(&b->lock); |
| |
| return b; |
| } |
| |
| static void bch2_btree_reserve_put(struct bch_fs *c, struct btree_reserve *reserve) |
| { |
| bch2_disk_reservation_put(c, &reserve->disk_res); |
| |
| mutex_lock(&c->btree_reserve_cache_lock); |
| |
| while (reserve->nr) { |
| struct btree *b = reserve->b[--reserve->nr]; |
| |
| six_unlock_write(&b->lock); |
| |
| if (c->btree_reserve_cache_nr < |
| ARRAY_SIZE(c->btree_reserve_cache)) { |
| struct btree_alloc *a = |
| &c->btree_reserve_cache[c->btree_reserve_cache_nr++]; |
| |
| a->ob = b->ob; |
| b->ob.nr = 0; |
| bkey_copy(&a->k, &b->key); |
| } else { |
| bch2_open_buckets_put(c, &b->ob); |
| } |
| |
| btree_node_lock_type(c, b, SIX_LOCK_write); |
| __btree_node_free(c, b); |
| six_unlock_write(&b->lock); |
| |
| six_unlock_intent(&b->lock); |
| } |
| |
| mutex_unlock(&c->btree_reserve_cache_lock); |
| |
| mempool_free(reserve, &c->btree_reserve_pool); |
| } |
| |
| static struct btree_reserve *bch2_btree_reserve_get(struct bch_fs *c, |
| unsigned nr_nodes, |
| unsigned flags, |
| struct closure *cl) |
| { |
| struct btree_reserve *reserve; |
| struct btree *b; |
| struct disk_reservation disk_res = { 0, 0 }; |
| unsigned sectors = nr_nodes * c->opts.btree_node_size; |
| int ret, disk_res_flags = BCH_DISK_RESERVATION_GC_LOCK_HELD; |
| |
| if (flags & BTREE_INSERT_NOFAIL) |
| disk_res_flags |= BCH_DISK_RESERVATION_NOFAIL; |
| |
| /* |
| * This check isn't necessary for correctness - it's just to potentially |
| * prevent us from doing a lot of work that'll end up being wasted: |
| */ |
| ret = bch2_journal_error(&c->journal); |
| if (ret) |
| return ERR_PTR(ret); |
| |
| if (bch2_disk_reservation_get(c, &disk_res, sectors, |
| c->opts.metadata_replicas, |
| disk_res_flags)) |
| return ERR_PTR(-ENOSPC); |
| |
| BUG_ON(nr_nodes > BTREE_RESERVE_MAX); |
| |
| /* |
| * Protects reaping from the btree node cache and using the btree node |
| * open bucket reserve: |
| */ |
| ret = bch2_btree_cache_cannibalize_lock(c, cl); |
| if (ret) { |
| bch2_disk_reservation_put(c, &disk_res); |
| return ERR_PTR(ret); |
| } |
| |
| reserve = mempool_alloc(&c->btree_reserve_pool, GFP_NOIO); |
| |
| reserve->disk_res = disk_res; |
| reserve->nr = 0; |
| |
| while (reserve->nr < nr_nodes) { |
| b = __bch2_btree_node_alloc(c, &disk_res, |
| flags & BTREE_INSERT_NOWAIT |
| ? NULL : cl, flags); |
| if (IS_ERR(b)) { |
| ret = PTR_ERR(b); |
| goto err_free; |
| } |
| |
| ret = bch2_mark_bkey_replicas(c, BKEY_TYPE_BTREE, |
| bkey_i_to_s_c(&b->key)); |
| if (ret) |
| goto err_free; |
| |
| reserve->b[reserve->nr++] = b; |
| } |
| |
| bch2_btree_cache_cannibalize_unlock(c); |
| return reserve; |
| err_free: |
| bch2_btree_reserve_put(c, reserve); |
| bch2_btree_cache_cannibalize_unlock(c); |
| trace_btree_reserve_get_fail(c, nr_nodes, cl); |
| return ERR_PTR(ret); |
| } |
| |
| /* Asynchronous interior node update machinery */ |
| |
| static void bch2_btree_update_free(struct btree_update *as) |
| { |
| struct bch_fs *c = as->c; |
| |
| bch2_journal_pin_flush(&c->journal, &as->journal); |
| |
| BUG_ON(as->nr_new_nodes); |
| BUG_ON(as->nr_pending); |
| |
| if (as->reserve) |
| bch2_btree_reserve_put(c, as->reserve); |
| |
| mutex_lock(&c->btree_interior_update_lock); |
| list_del(&as->list); |
| |
| closure_debug_destroy(&as->cl); |
| mempool_free(as, &c->btree_interior_update_pool); |
| percpu_ref_put(&c->writes); |
| |
| closure_wake_up(&c->btree_interior_update_wait); |
| mutex_unlock(&c->btree_interior_update_lock); |
| } |
| |
| static void btree_update_nodes_reachable(struct closure *cl) |
| { |
| struct btree_update *as = container_of(cl, struct btree_update, cl); |
| struct bch_fs *c = as->c; |
| |
| bch2_journal_pin_drop(&c->journal, &as->journal); |
| |
| mutex_lock(&c->btree_interior_update_lock); |
| |
| while (as->nr_new_nodes) { |
| struct btree *b = as->new_nodes[--as->nr_new_nodes]; |
| |
| BUG_ON(b->will_make_reachable != (unsigned long) as); |
| b->will_make_reachable = 0; |
| mutex_unlock(&c->btree_interior_update_lock); |
| |
| /* |
| * b->will_make_reachable prevented it from being written, so |
| * write it now if it needs to be written: |
| */ |
| btree_node_lock_type(c, b, SIX_LOCK_read); |
| bch2_btree_node_write_cond(c, b, btree_node_need_write(b)); |
| six_unlock_read(&b->lock); |
| mutex_lock(&c->btree_interior_update_lock); |
| } |
| |
| while (as->nr_pending) |
| bch2_btree_node_free_ondisk(c, &as->pending[--as->nr_pending]); |
| |
| mutex_unlock(&c->btree_interior_update_lock); |
| |
| closure_wake_up(&as->wait); |
| |
| bch2_btree_update_free(as); |
| } |
| |
| static void btree_update_wait_on_journal(struct closure *cl) |
| { |
| struct btree_update *as = container_of(cl, struct btree_update, cl); |
| struct bch_fs *c = as->c; |
| int ret; |
| |
| ret = bch2_journal_open_seq_async(&c->journal, as->journal_seq, cl); |
| if (ret < 0) |
| goto err; |
| if (!ret) { |
| continue_at(cl, btree_update_wait_on_journal, system_wq); |
| return; |
| } |
| |
| bch2_journal_flush_seq_async(&c->journal, as->journal_seq, cl); |
| err: |
| continue_at(cl, btree_update_nodes_reachable, system_wq); |
| } |
| |
| static void btree_update_nodes_written(struct closure *cl) |
| { |
| struct btree_update *as = container_of(cl, struct btree_update, cl); |
| struct bch_fs *c = as->c; |
| struct btree *b; |
| |
| /* |
| * We did an update to a parent node where the pointers we added pointed |
| * to child nodes that weren't written yet: now, the child nodes have |
| * been written so we can write out the update to the interior node. |
| */ |
| retry: |
| mutex_lock(&c->btree_interior_update_lock); |
| as->nodes_written = true; |
| |
| switch (as->mode) { |
| case BTREE_INTERIOR_NO_UPDATE: |
| BUG(); |
| case BTREE_INTERIOR_UPDATING_NODE: |
| /* The usual case: */ |
| b = READ_ONCE(as->b); |
| |
| if (!six_trylock_read(&b->lock)) { |
| mutex_unlock(&c->btree_interior_update_lock); |
| btree_node_lock_type(c, b, SIX_LOCK_read); |
| six_unlock_read(&b->lock); |
| goto retry; |
| } |
| |
| BUG_ON(!btree_node_dirty(b)); |
| closure_wait(&btree_current_write(b)->wait, cl); |
| |
| list_del(&as->write_blocked_list); |
| mutex_unlock(&c->btree_interior_update_lock); |
| |
| /* |
| * b->write_blocked prevented it from being written, so |
| * write it now if it needs to be written: |
| */ |
| bch2_btree_node_write_cond(c, b, true); |
| six_unlock_read(&b->lock); |
| break; |
| |
| case BTREE_INTERIOR_UPDATING_AS: |
| /* |
| * The btree node we originally updated has been freed and is |
| * being rewritten - so we need to write anything here, we just |
| * need to signal to that btree_update that it's ok to make the |
| * new replacement node visible: |
| */ |
| closure_put(&as->parent_as->cl); |
| |
| /* |
| * and then we have to wait on that btree_update to finish: |
| */ |
| closure_wait(&as->parent_as->wait, cl); |
| mutex_unlock(&c->btree_interior_update_lock); |
| break; |
| |
| case BTREE_INTERIOR_UPDATING_ROOT: |
| /* b is the new btree root: */ |
| b = READ_ONCE(as->b); |
| |
| if (!six_trylock_read(&b->lock)) { |
| mutex_unlock(&c->btree_interior_update_lock); |
| btree_node_lock_type(c, b, SIX_LOCK_read); |
| six_unlock_read(&b->lock); |
| goto retry; |
| } |
| |
| BUG_ON(c->btree_roots[b->btree_id].as != as); |
| c->btree_roots[b->btree_id].as = NULL; |
| |
| bch2_btree_set_root_ondisk(c, b, WRITE); |
| |
| /* |
| * We don't have to wait anything anything here (before |
| * btree_update_nodes_reachable frees the old nodes |
| * ondisk) - we've ensured that the very next journal write will |
| * have the pointer to the new root, and before the allocator |
| * can reuse the old nodes it'll have to do a journal commit: |
| */ |
| six_unlock_read(&b->lock); |
| mutex_unlock(&c->btree_interior_update_lock); |
| |
| /* |
| * Bit of funny circularity going on here we have to break: |
| * |
| * We have to drop our journal pin before writing the journal |
| * entry that points to the new btree root: else, we could |
| * deadlock if the journal currently happens to be full. |
| * |
| * This mean we're dropping the journal pin _before_ the new |
| * nodes are technically reachable - but this is safe, because |
| * after the bch2_btree_set_root_ondisk() call above they will |
| * be reachable as of the very next journal write: |
| */ |
| bch2_journal_pin_drop(&c->journal, &as->journal); |
| |
| as->journal_seq = bch2_journal_last_unwritten_seq(&c->journal); |
| |
| btree_update_wait_on_journal(cl); |
| return; |
| } |
| |
| continue_at(cl, btree_update_nodes_reachable, system_wq); |
| } |
| |
| /* |
| * We're updating @b with pointers to nodes that haven't finished writing yet: |
| * block @b from being written until @as completes |
| */ |
| static void btree_update_updated_node(struct btree_update *as, struct btree *b) |
| { |
| struct bch_fs *c = as->c; |
| |
| mutex_lock(&c->btree_interior_update_lock); |
| |
| BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE); |
| BUG_ON(!btree_node_dirty(b)); |
| |
| as->mode = BTREE_INTERIOR_UPDATING_NODE; |
| as->b = b; |
| list_add(&as->write_blocked_list, &b->write_blocked); |
| |
| mutex_unlock(&c->btree_interior_update_lock); |
| |
| /* |
| * In general, when you're staging things in a journal that will later |
| * be written elsewhere, and you also want to guarantee ordering: that |
| * is, if you have updates a, b, c, after a crash you should never see c |
| * and not a or b - there's a problem: |
| * |
| * If the final destination of the update(s) (i.e. btree node) can be |
| * written/flushed _before_ the relevant journal entry - oops, that |
| * breaks ordering, since the various leaf nodes can be written in any |
| * order. |
| * |
| * Normally we use bset->journal_seq to deal with this - if during |
| * recovery we find a btree node write that's newer than the newest |
| * journal entry, we just ignore it - we don't need it, anything we're |
| * supposed to have (that we reported as completed via fsync()) will |
| * still be in the journal, and as far as the state of the journal is |
| * concerned that btree node write never happened. |
| * |
| * That breaks when we're rewriting/splitting/merging nodes, since we're |
| * mixing btree node writes that haven't happened yet with previously |
| * written data that has been reported as completed to the journal. |
| * |
| * Thus, before making the new nodes reachable, we have to wait the |
| * newest journal sequence number we have data for to be written (if it |
| * hasn't been yet). |
| */ |
| bch2_journal_wait_on_seq(&c->journal, as->journal_seq, &as->cl); |
| } |
| |
| static void interior_update_flush(struct journal *j, |
| struct journal_entry_pin *pin, u64 seq) |
| { |
| struct btree_update *as = |
| container_of(pin, struct btree_update, journal); |
| |
| bch2_journal_flush_seq_async(j, as->journal_seq, NULL); |
| } |
| |
| static void btree_update_reparent(struct btree_update *as, |
| struct btree_update *child) |
| { |
| struct bch_fs *c = as->c; |
| |
| child->b = NULL; |
| child->mode = BTREE_INTERIOR_UPDATING_AS; |
| child->parent_as = as; |
| closure_get(&as->cl); |
| |
| /* |
| * When we write a new btree root, we have to drop our journal pin |
| * _before_ the new nodes are technically reachable; see |
| * btree_update_nodes_written(). |
| * |
| * This goes for journal pins that are recursively blocked on us - so, |
| * just transfer the journal pin to the new interior update so |
| * btree_update_nodes_written() can drop it. |
| */ |
| bch2_journal_pin_add_if_older(&c->journal, &child->journal, |
| &as->journal, interior_update_flush); |
| bch2_journal_pin_drop(&c->journal, &child->journal); |
| |
| as->journal_seq = max(as->journal_seq, child->journal_seq); |
| } |
| |
| static void btree_update_updated_root(struct btree_update *as) |
| { |
| struct bch_fs *c = as->c; |
| struct btree_root *r = &c->btree_roots[as->btree_id]; |
| |
| mutex_lock(&c->btree_interior_update_lock); |
| |
| BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE); |
| |
| /* |
| * Old root might not be persistent yet - if so, redirect its |
| * btree_update operation to point to us: |
| */ |
| if (r->as) |
| btree_update_reparent(as, r->as); |
| |
| as->mode = BTREE_INTERIOR_UPDATING_ROOT; |
| as->b = r->b; |
| r->as = as; |
| |
| mutex_unlock(&c->btree_interior_update_lock); |
| |
| /* |
| * When we're rewriting nodes and updating interior nodes, there's an |
| * issue with updates that haven't been written in the journal getting |
| * mixed together with older data - see btree_update_updated_node() |
| * for the explanation. |
| * |
| * However, this doesn't affect us when we're writing a new btree root - |
| * because to make that new root reachable we have to write out a new |
| * journal entry, which must necessarily be newer than as->journal_seq. |
| */ |
| } |
| |
| static void btree_node_will_make_reachable(struct btree_update *as, |
| struct btree *b) |
| { |
| struct bch_fs *c = as->c; |
| |
| mutex_lock(&c->btree_interior_update_lock); |
| BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes)); |
| BUG_ON(b->will_make_reachable); |
| |
| as->new_nodes[as->nr_new_nodes++] = b; |
| b->will_make_reachable = 1UL|(unsigned long) as; |
| |
| closure_get(&as->cl); |
| mutex_unlock(&c->btree_interior_update_lock); |
| } |
| |
| static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b) |
| { |
| struct btree_update *as; |
| unsigned long v; |
| unsigned i; |
| |
| mutex_lock(&c->btree_interior_update_lock); |
| v = xchg(&b->will_make_reachable, 0); |
| as = (struct btree_update *) (v & ~1UL); |
| |
| if (!as) { |
| mutex_unlock(&c->btree_interior_update_lock); |
| return; |
| } |
| |
| for (i = 0; i < as->nr_new_nodes; i++) |
| if (as->new_nodes[i] == b) |
| goto found; |
| |
| BUG(); |
| found: |
| array_remove_item(as->new_nodes, as->nr_new_nodes, i); |
| mutex_unlock(&c->btree_interior_update_lock); |
| |
| if (v & 1) |
| closure_put(&as->cl); |
| } |
| |
| static void btree_interior_update_add_node_reference(struct btree_update *as, |
| struct btree *b) |
| { |
| struct bch_fs *c = as->c; |
| struct pending_btree_node_free *d; |
| |
| mutex_lock(&c->btree_interior_update_lock); |
| |
| /* Add this node to the list of nodes being freed: */ |
| BUG_ON(as->nr_pending >= ARRAY_SIZE(as->pending)); |
| |
| d = &as->pending[as->nr_pending++]; |
| d->index_update_done = false; |
| d->seq = b->data->keys.seq; |
| d->btree_id = b->btree_id; |
| d->level = b->level; |
| bkey_copy(&d->key, &b->key); |
| |
| mutex_unlock(&c->btree_interior_update_lock); |
| } |
| |
| /* |
| * @b is being split/rewritten: it may have pointers to not-yet-written btree |
| * nodes and thus outstanding btree_updates - redirect @b's |
| * btree_updates to point to this btree_update: |
| */ |
| void bch2_btree_interior_update_will_free_node(struct btree_update *as, |
| struct btree *b) |
| { |
| struct bch_fs *c = as->c; |
| struct closure *cl, *cl_n; |
| struct btree_update *p, *n; |
| struct btree_write *w; |
| struct bset_tree *t; |
| |
| set_btree_node_dying(b); |
| |
| if (btree_node_fake(b)) |
| return; |
| |
| btree_interior_update_add_node_reference(as, b); |
| |
| /* |
| * Does this node have data that hasn't been written in the journal? |
| * |
| * If so, we have to wait for the corresponding journal entry to be |
| * written before making the new nodes reachable - we can't just carry |
| * over the bset->journal_seq tracking, since we'll be mixing those keys |
| * in with keys that aren't in the journal anymore: |
| */ |
| for_each_bset(b, t) |
| as->journal_seq = max(as->journal_seq, |
| le64_to_cpu(bset(b, t)->journal_seq)); |
| |
| mutex_lock(&c->btree_interior_update_lock); |
| |
| /* |
| * Does this node have any btree_update operations preventing |
| * it from being written? |
| * |
| * If so, redirect them to point to this btree_update: we can |
| * write out our new nodes, but we won't make them visible until those |
| * operations complete |
| */ |
| list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) { |
| list_del(&p->write_blocked_list); |
| btree_update_reparent(as, p); |
| } |
| |
| clear_btree_node_dirty(b); |
| clear_btree_node_need_write(b); |
| w = btree_current_write(b); |
| |
| /* |
| * Does this node have any btree_update operations waiting on this node |
| * to be written? |
| * |
| * If so, wake them up when this btree_update operation is reachable: |
| */ |
| llist_for_each_entry_safe(cl, cl_n, llist_del_all(&w->wait.list), list) |
| llist_add(&cl->list, &as->wait.list); |
| |
| /* |
| * Does this node have unwritten data that has a pin on the journal? |
| * |
| * If so, transfer that pin to the btree_update operation - |
| * note that if we're freeing multiple nodes, we only need to keep the |
| * oldest pin of any of the nodes we're freeing. We'll release the pin |
| * when the new nodes are persistent and reachable on disk: |
| */ |
| bch2_journal_pin_add_if_older(&c->journal, &w->journal, |
| &as->journal, interior_update_flush); |
| bch2_journal_pin_drop(&c->journal, &w->journal); |
| |
| w = btree_prev_write(b); |
| bch2_journal_pin_add_if_older(&c->journal, &w->journal, |
| &as->journal, interior_update_flush); |
| bch2_journal_pin_drop(&c->journal, &w->journal); |
| |
| mutex_unlock(&c->btree_interior_update_lock); |
| } |
| |
| void bch2_btree_update_done(struct btree_update *as) |
| { |
| BUG_ON(as->mode == BTREE_INTERIOR_NO_UPDATE); |
| |
| bch2_btree_reserve_put(as->c, as->reserve); |
| as->reserve = NULL; |
| |
| continue_at(&as->cl, btree_update_nodes_written, system_freezable_wq); |
| } |
| |
| struct btree_update * |
| bch2_btree_update_start(struct bch_fs *c, enum btree_id id, |
| unsigned nr_nodes, unsigned flags, |
| struct closure *cl) |
| { |
| struct btree_reserve *reserve; |
| struct btree_update *as; |
| |
| if (unlikely(!percpu_ref_tryget(&c->writes))) |
| return ERR_PTR(-EROFS); |
| |
| reserve = bch2_btree_reserve_get(c, nr_nodes, flags, cl); |
| if (IS_ERR(reserve)) { |
| percpu_ref_put(&c->writes); |
| return ERR_CAST(reserve); |
| } |
| |
| as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOIO); |
| memset(as, 0, sizeof(*as)); |
| closure_init(&as->cl, NULL); |
| as->c = c; |
| as->mode = BTREE_INTERIOR_NO_UPDATE; |
| as->btree_id = id; |
| as->reserve = reserve; |
| INIT_LIST_HEAD(&as->write_blocked_list); |
| |
| bch2_keylist_init(&as->parent_keys, as->inline_keys); |
| |
| mutex_lock(&c->btree_interior_update_lock); |
| list_add_tail(&as->list, &c->btree_interior_update_list); |
| mutex_unlock(&c->btree_interior_update_lock); |
| |
| return as; |
| } |
| |
| /* Btree root updates: */ |
| |
| static void __bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b) |
| { |
| /* Root nodes cannot be reaped */ |
| mutex_lock(&c->btree_cache.lock); |
| list_del_init(&b->list); |
| mutex_unlock(&c->btree_cache.lock); |
| |
| mutex_lock(&c->btree_root_lock); |
| BUG_ON(btree_node_root(c, b) && |
| (b->level < btree_node_root(c, b)->level || |
| !btree_node_dying(btree_node_root(c, b)))); |
| |
| btree_node_root(c, b) = b; |
| mutex_unlock(&c->btree_root_lock); |
| |
| bch2_recalc_btree_reserve(c); |
| } |
| |
| static void bch2_btree_set_root_inmem(struct btree_update *as, struct btree *b) |
| { |
| struct bch_fs *c = as->c; |
| struct btree *old = btree_node_root(c, b); |
| struct bch_fs_usage stats = { 0 }; |
| |
| __bch2_btree_set_root_inmem(c, b); |
| |
| bch2_mark_key(c, BKEY_TYPE_BTREE, |
| bkey_i_to_s_c(&b->key), |
| true, 0, |
| gc_pos_btree_root(b->btree_id), |
| &stats, 0, 0); |
| |
| if (old && !btree_node_fake(old)) |
| bch2_btree_node_free_index(as, NULL, |
| bkey_i_to_s_c(&old->key), |
| &stats); |
| bch2_fs_usage_apply(c, &stats, &as->reserve->disk_res, |
| gc_pos_btree_root(b->btree_id)); |
| } |
| |
| static void bch2_btree_set_root_ondisk(struct bch_fs *c, struct btree *b, int rw) |
| { |
| struct btree_root *r = &c->btree_roots[b->btree_id]; |
| |
| mutex_lock(&c->btree_root_lock); |
| |
| BUG_ON(b != r->b); |
| bkey_copy(&r->key, &b->key); |
| r->level = b->level; |
| r->alive = true; |
| if (rw == WRITE) |
| c->btree_roots_dirty = true; |
| |
| mutex_unlock(&c->btree_root_lock); |
| } |
| |
| /** |
| * bch_btree_set_root - update the root in memory and on disk |
| * |
| * To ensure forward progress, the current task must not be holding any |
| * btree node write locks. However, you must hold an intent lock on the |
| * old root. |
| * |
| * Note: This allocates a journal entry but doesn't add any keys to |
| * it. All the btree roots are part of every journal write, so there |
| * is nothing new to be done. This just guarantees that there is a |
| * journal write. |
| */ |
| static void bch2_btree_set_root(struct btree_update *as, struct btree *b, |
| struct btree_iter *iter) |
| { |
| struct bch_fs *c = as->c; |
| struct btree *old; |
| |
| trace_btree_set_root(c, b); |
| BUG_ON(!b->written && |
| !test_bit(BCH_FS_HOLD_BTREE_WRITES, &c->flags)); |
| |
| old = btree_node_root(c, b); |
| |
| /* |
| * Ensure no one is using the old root while we switch to the |
| * new root: |
| */ |
| bch2_btree_node_lock_write(old, iter); |
| |
| bch2_btree_set_root_inmem(as, b); |
| |
| btree_update_updated_root(as); |
| |
| /* |
| * Unlock old root after new root is visible: |
| * |
| * The new root isn't persistent, but that's ok: we still have |
| * an intent lock on the new root, and any updates that would |
| * depend on the new root would have to update the new root. |
| */ |
| bch2_btree_node_unlock_write(old, iter); |
| } |
| |
| /* Interior node updates: */ |
| |
| static void bch2_insert_fixup_btree_ptr(struct btree_update *as, struct btree *b, |
| struct btree_iter *iter, |
| struct bkey_i *insert, |
| struct btree_node_iter *node_iter) |
| { |
| struct bch_fs *c = as->c; |
| struct bch_fs_usage stats = { 0 }; |
| struct bkey_packed *k; |
| struct bkey tmp; |
| |
| BUG_ON(insert->k.u64s > bch_btree_keys_u64s_remaining(c, b)); |
| |
| if (bkey_extent_is_data(&insert->k)) |
| bch2_mark_key(c, BKEY_TYPE_BTREE, |
| bkey_i_to_s_c(insert), |
| true, 0, |
| gc_pos_btree_node(b), &stats, 0, 0); |
| |
| while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) && |
| bkey_iter_pos_cmp(b, &insert->k.p, k) > 0) |
| bch2_btree_node_iter_advance(node_iter, b); |
| |
| /* |
| * If we're overwriting, look up pending delete and mark so that gc |
| * marks it on the pending delete list: |
| */ |
| if (k && !bkey_cmp_packed(b, k, &insert->k)) |
| bch2_btree_node_free_index(as, b, |
| bkey_disassemble(b, k, &tmp), |
| &stats); |
| |
| bch2_fs_usage_apply(c, &stats, &as->reserve->disk_res, |
| gc_pos_btree_node(b)); |
| |
| bch2_btree_bset_insert_key(iter, b, node_iter, insert); |
| set_btree_node_dirty(b); |
| set_btree_node_need_write(b); |
| } |
| |
| /* |
| * Move keys from n1 (original replacement node, now lower node) to n2 (higher |
| * node) |
| */ |
| static struct btree *__btree_split_node(struct btree_update *as, |
| struct btree *n1, |
| struct btree_iter *iter) |
| { |
| size_t nr_packed = 0, nr_unpacked = 0; |
| struct btree *n2; |
| struct bset *set1, *set2; |
| struct bkey_packed *k, *prev = NULL; |
| |
| n2 = bch2_btree_node_alloc(as, n1->level); |
| |
| n2->data->max_key = n1->data->max_key; |
| n2->data->format = n1->format; |
| SET_BTREE_NODE_SEQ(n2->data, BTREE_NODE_SEQ(n1->data)); |
| n2->key.k.p = n1->key.k.p; |
| |
| btree_node_set_format(n2, n2->data->format); |
| |
| set1 = btree_bset_first(n1); |
| set2 = btree_bset_first(n2); |
| |
| /* |
| * Has to be a linear search because we don't have an auxiliary |
| * search tree yet |
| */ |
| k = set1->start; |
| while (1) { |
| if (bkey_next(k) == vstruct_last(set1)) |
| break; |
| if (k->_data - set1->_data >= (le16_to_cpu(set1->u64s) * 3) / 5) |
| break; |
| |
| if (bkey_packed(k)) |
| nr_packed++; |
| else |
| nr_unpacked++; |
| |
| prev = k; |
| k = bkey_next(k); |
| } |
| |
| BUG_ON(!prev); |
| |
| n1->key.k.p = bkey_unpack_pos(n1, prev); |
| n1->data->max_key = n1->key.k.p; |
| n2->data->min_key = |
| btree_type_successor(n1->btree_id, n1->key.k.p); |
| |
| set2->u64s = cpu_to_le16((u64 *) vstruct_end(set1) - (u64 *) k); |
| set1->u64s = cpu_to_le16(le16_to_cpu(set1->u64s) - le16_to_cpu(set2->u64s)); |
| |
| set_btree_bset_end(n1, n1->set); |
| set_btree_bset_end(n2, n2->set); |
| |
| n2->nr.live_u64s = le16_to_cpu(set2->u64s); |
| n2->nr.bset_u64s[0] = le16_to_cpu(set2->u64s); |
| n2->nr.packed_keys = n1->nr.packed_keys - nr_packed; |
| n2->nr.unpacked_keys = n1->nr.unpacked_keys - nr_unpacked; |
| |
| n1->nr.live_u64s = le16_to_cpu(set1->u64s); |
| n1->nr.bset_u64s[0] = le16_to_cpu(set1->u64s); |
| n1->nr.packed_keys = nr_packed; |
| n1->nr.unpacked_keys = nr_unpacked; |
| |
| BUG_ON(!set1->u64s); |
| BUG_ON(!set2->u64s); |
| |
| memcpy_u64s(set2->start, |
| vstruct_end(set1), |
| le16_to_cpu(set2->u64s)); |
| |
| btree_node_reset_sib_u64s(n1); |
| btree_node_reset_sib_u64s(n2); |
| |
| bch2_verify_btree_nr_keys(n1); |
| bch2_verify_btree_nr_keys(n2); |
| |
| if (n1->level) { |
| btree_node_interior_verify(n1); |
| btree_node_interior_verify(n2); |
| } |
| |
| return n2; |
| } |
| |
| /* |
| * For updates to interior nodes, we've got to do the insert before we split |
| * because the stuff we're inserting has to be inserted atomically. Post split, |
| * the keys might have to go in different nodes and the split would no longer be |
| * atomic. |
| * |
| * Worse, if the insert is from btree node coalescing, if we do the insert after |
| * we do the split (and pick the pivot) - the pivot we pick might be between |
| * nodes that were coalesced, and thus in the middle of a child node post |
| * coalescing: |
| */ |
| static void btree_split_insert_keys(struct btree_update *as, struct btree *b, |
| struct btree_iter *iter, |
| struct keylist *keys) |
| { |
| struct btree_node_iter node_iter; |
| struct bkey_i *k = bch2_keylist_front(keys); |
| struct bkey_packed *p; |
| struct bset *i; |
| |
| BUG_ON(btree_node_type(b) != BKEY_TYPE_BTREE); |
| |
| bch2_btree_node_iter_init(&node_iter, b, &k->k.p); |
| |
| while (!bch2_keylist_empty(keys)) { |
| k = bch2_keylist_front(keys); |
| |
| BUG_ON(bch_keylist_u64s(keys) > |
| bch_btree_keys_u64s_remaining(as->c, b)); |
| BUG_ON(bkey_cmp(k->k.p, b->data->min_key) < 0); |
| BUG_ON(bkey_cmp(k->k.p, b->data->max_key) > 0); |
| |
| bch2_insert_fixup_btree_ptr(as, b, iter, k, &node_iter); |
| bch2_keylist_pop_front(keys); |
| } |
| |
| /* |
| * We can't tolerate whiteouts here - with whiteouts there can be |
| * duplicate keys, and it would be rather bad if we picked a duplicate |
| * for the pivot: |
| */ |
| i = btree_bset_first(b); |
| p = i->start; |
| while (p != vstruct_last(i)) |
| if (bkey_deleted(p)) { |
| le16_add_cpu(&i->u64s, -p->u64s); |
| set_btree_bset_end(b, b->set); |
| memmove_u64s_down(p, bkey_next(p), |
| (u64 *) vstruct_last(i) - |
| (u64 *) p); |
| } else |
| p = bkey_next(p); |
| |
| BUG_ON(b->nsets != 1 || |
| b->nr.live_u64s != le16_to_cpu(btree_bset_first(b)->u64s)); |
| |
| btree_node_interior_verify(b); |
| } |
| |
| static void btree_split(struct btree_update *as, struct btree *b, |
| struct btree_iter *iter, struct keylist *keys, |
| unsigned flags) |
| { |
| struct bch_fs *c = as->c; |
| struct btree *parent = btree_node_parent(iter, b); |
| struct btree *n1, *n2 = NULL, *n3 = NULL; |
| u64 start_time = local_clock(); |
| |
| BUG_ON(!parent && (b != btree_node_root(c, b))); |
| BUG_ON(!btree_node_intent_locked(iter, btree_node_root(c, b)->level)); |
| |
| bch2_btree_interior_update_will_free_node(as, b); |
| |
| n1 = bch2_btree_node_alloc_replacement(as, b); |
| |
| if (keys) |
| btree_split_insert_keys(as, n1, iter, keys); |
| |
| if (vstruct_blocks(n1->data, c->block_bits) > BTREE_SPLIT_THRESHOLD(c)) { |
| trace_btree_split(c, b); |
| |
| n2 = __btree_split_node(as, n1, iter); |
| |
| bch2_btree_build_aux_trees(n2); |
| bch2_btree_build_aux_trees(n1); |
| six_unlock_write(&n2->lock); |
| six_unlock_write(&n1->lock); |
| |
| bch2_btree_node_write(c, n2, SIX_LOCK_intent); |
| |
| /* |
| * Note that on recursive parent_keys == keys, so we |
| * can't start adding new keys to parent_keys before emptying it |
| * out (which we did with btree_split_insert_keys() above) |
| */ |
| bch2_keylist_add(&as->parent_keys, &n1->key); |
| bch2_keylist_add(&as->parent_keys, &n2->key); |
| |
| if (!parent) { |
| /* Depth increases, make a new root */ |
| n3 = __btree_root_alloc(as, b->level + 1); |
| |
| n3->sib_u64s[0] = U16_MAX; |
| n3->sib_u64s[1] = U16_MAX; |
| |
| btree_split_insert_keys(as, n3, iter, &as->parent_keys); |
| |
| bch2_btree_node_write(c, n3, SIX_LOCK_intent); |
| } |
| } else { |
| trace_btree_compact(c, b); |
| |
| bch2_btree_build_aux_trees(n1); |
| six_unlock_write(&n1->lock); |
| |
| bch2_keylist_add(&as->parent_keys, &n1->key); |
| } |
| |
| bch2_btree_node_write(c, n1, SIX_LOCK_intent); |
| |
| /* New nodes all written, now make them visible: */ |
| |
| if (parent) { |
| /* Split a non root node */ |
| bch2_btree_insert_node(as, parent, iter, &as->parent_keys, flags); |
| } else if (n3) { |
| bch2_btree_set_root(as, n3, iter); |
| } else { |
| /* Root filled up but didn't need to be split */ |
| bch2_btree_set_root(as, n1, iter); |
| } |
| |
| bch2_open_buckets_put(c, &n1->ob); |
| if (n2) |
| bch2_open_buckets_put(c, &n2->ob); |
| if (n3) |
| bch2_open_buckets_put(c, &n3->ob); |
| |
| /* |
| * Note - at this point other linked iterators could still have @b read |
| * locked; we're depending on the bch2_btree_iter_node_replace() calls |
| * below removing all references to @b so we don't return with other |
| * iterators pointing to a node they have locked that's been freed. |
| * |
| * We have to free the node first because the bch2_iter_node_replace() |
| * calls will drop _our_ iterator's reference - and intent lock - to @b. |
| */ |
| bch2_btree_node_free_inmem(c, b, iter); |
| |
| /* Successful split, update the iterator to point to the new nodes: */ |
| |
| if (n3) |
| bch2_btree_iter_node_replace(iter, n3); |
| if (n2) |
| bch2_btree_iter_node_replace(iter, n2); |
| bch2_btree_iter_node_replace(iter, n1); |
| |
| bch2_time_stats_update(&c->times[BCH_TIME_btree_split], start_time); |
| } |
| |
| static void |
| bch2_btree_insert_keys_interior(struct btree_update *as, struct btree *b, |
| struct btree_iter *iter, struct keylist *keys) |
| { |
| struct btree_iter *linked; |
| struct btree_node_iter node_iter; |
| struct bkey_i *insert = bch2_keylist_front(keys); |
| struct bkey_packed *k; |
| |
| /* Don't screw up @iter's position: */ |
| node_iter = iter->l[b->level].iter; |
| |
| /* |
| * btree_split(), btree_gc_coalesce() will insert keys before |
| * the iterator's current position - they know the keys go in |
| * the node the iterator points to: |
| */ |
| while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) && |
| (bkey_cmp_packed(b, k, &insert->k) >= 0)) |
| ; |
| |
| while (!bch2_keylist_empty(keys)) { |
| insert = bch2_keylist_front(keys); |
| |
| bch2_insert_fixup_btree_ptr(as, b, iter, insert, &node_iter); |
| bch2_keylist_pop_front(keys); |
| } |
| |
| btree_update_updated_node(as, b); |
| |
| for_each_btree_iter_with_node(iter, b, linked) |
| bch2_btree_node_iter_peek(&linked->l[b->level].iter, b); |
| |
| bch2_btree_iter_verify(iter, b); |
| } |
| |
| /** |
| * bch_btree_insert_node - insert bkeys into a given btree node |
| * |
| * @iter: btree iterator |
| * @keys: list of keys to insert |
| * @hook: insert callback |
| * @persistent: if not null, @persistent will wait on journal write |
| * |
| * Inserts as many keys as it can into a given btree node, splitting it if full. |
| * If a split occurred, this function will return early. This can only happen |
| * for leaf nodes -- inserts into interior nodes have to be atomic. |
| */ |
| void bch2_btree_insert_node(struct btree_update *as, struct btree *b, |
| struct btree_iter *iter, struct keylist *keys, |
| unsigned flags) |
| { |
| struct bch_fs *c = as->c; |
| int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s); |
| int old_live_u64s = b->nr.live_u64s; |
| int live_u64s_added, u64s_added; |
| |
| BUG_ON(!btree_node_intent_locked(iter, btree_node_root(c, b)->level)); |
| BUG_ON(!b->level); |
| BUG_ON(!as || as->b); |
| bch2_verify_keylist_sorted(keys); |
| |
| if (as->must_rewrite) |
| goto split; |
| |
| bch2_btree_node_lock_for_insert(c, b, iter); |
| |
| if (!bch2_btree_node_insert_fits(c, b, bch_keylist_u64s(keys))) { |
| bch2_btree_node_unlock_write(b, iter); |
| goto split; |
| } |
| |
| bch2_btree_insert_keys_interior(as, b, iter, keys); |
| |
| live_u64s_added = (int) b->nr.live_u64s - old_live_u64s; |
| u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s; |
| |
| if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0) |
| b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added); |
| if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0) |
| b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added); |
| |
| if (u64s_added > live_u64s_added && |
| bch2_maybe_compact_whiteouts(c, b)) |
| bch2_btree_iter_reinit_node(iter, b); |
| |
| bch2_btree_node_unlock_write(b, iter); |
| |
| btree_node_interior_verify(b); |
| |
| /* |
| * when called from the btree_split path the new nodes aren't added to |
| * the btree iterator yet, so the merge path's unlock/wait/relock dance |
| * won't work: |
| */ |
| bch2_foreground_maybe_merge(c, iter, b->level, |
| flags|BTREE_INSERT_NOUNLOCK); |
| return; |
| split: |
| btree_split(as, b, iter, keys, flags); |
| } |
| |
| int bch2_btree_split_leaf(struct bch_fs *c, struct btree_iter *iter, |
| unsigned flags) |
| { |
| struct btree *b = iter->l[0].b; |
| struct btree_update *as; |
| struct closure cl; |
| int ret = 0; |
| struct btree_iter *linked; |
| |
| /* |
| * We already have a disk reservation and open buckets pinned; this |
| * allocation must not block: |
| */ |
| for_each_btree_iter(iter, linked) |
| if (linked->btree_id == BTREE_ID_EXTENTS) |
| flags |= BTREE_INSERT_USE_RESERVE; |
| |
| closure_init_stack(&cl); |
| |
| /* Hack, because gc and splitting nodes doesn't mix yet: */ |
| if (!down_read_trylock(&c->gc_lock)) { |
| if (flags & BTREE_INSERT_NOUNLOCK) |
| return -EINTR; |
| |
| bch2_btree_iter_unlock(iter); |
| down_read(&c->gc_lock); |
| |
| if (btree_iter_linked(iter)) |
| ret = -EINTR; |
| } |
| |
| /* |
| * XXX: figure out how far we might need to split, |
| * instead of locking/reserving all the way to the root: |
| */ |
| if (!bch2_btree_iter_upgrade(iter, U8_MAX, |
| !(flags & BTREE_INSERT_NOUNLOCK))) { |
| ret = -EINTR; |
| goto out; |
| } |
| |
| as = bch2_btree_update_start(c, iter->btree_id, |
| btree_update_reserve_required(c, b), flags, |
| !(flags & BTREE_INSERT_NOUNLOCK) ? &cl : NULL); |
| if (IS_ERR(as)) { |
| ret = PTR_ERR(as); |
| if (ret == -EAGAIN) { |
| BUG_ON(flags & BTREE_INSERT_NOUNLOCK); |
| bch2_btree_iter_unlock(iter); |
| ret = -EINTR; |
| } |
| goto out; |
| } |
| |
| btree_split(as, b, iter, NULL, flags); |
| bch2_btree_update_done(as); |
| |
| /* |
| * We haven't successfully inserted yet, so don't downgrade all the way |
| * back to read locks; |
| */ |
| __bch2_btree_iter_downgrade(iter, 1); |
| out: |
| up_read(&c->gc_lock); |
| closure_sync(&cl); |
| return ret; |
| } |
| |
| void __bch2_foreground_maybe_merge(struct bch_fs *c, |
| struct btree_iter *iter, |
| unsigned level, |
| unsigned flags, |
| enum btree_node_sibling sib) |
| { |
| struct btree_update *as; |
| struct bkey_format_state new_s; |
| struct bkey_format new_f; |
| struct bkey_i delete; |
| struct btree *b, *m, *n, *prev, *next, *parent; |
| struct closure cl; |
| size_t sib_u64s; |
| int ret = 0; |
| |
| closure_init_stack(&cl); |
| retry: |
| BUG_ON(!btree_node_locked(iter, level)); |
| |
| b = iter->l[level].b; |
| |
| parent = btree_node_parent(iter, b); |
| if (!parent) |
| goto out; |
| |
| if (b->sib_u64s[sib] > BTREE_FOREGROUND_MERGE_THRESHOLD(c)) |
| goto out; |
| |
| /* XXX: can't be holding read locks */ |
| m = bch2_btree_node_get_sibling(c, iter, b, |
| !(flags & BTREE_INSERT_NOUNLOCK), sib); |
| if (IS_ERR(m)) { |
| ret = PTR_ERR(m); |
| goto err; |
| } |
| |
| /* NULL means no sibling: */ |
| if (!m) { |
| b->sib_u64s[sib] = U16_MAX; |
| goto out; |
| } |
| |
| if (sib == btree_prev_sib) { |
| prev = m; |
| next = b; |
| } else { |
| prev = b; |
| next = m; |
| } |
| |
| bch2_bkey_format_init(&new_s); |
| __bch2_btree_calc_format(&new_s, b); |
| __bch2_btree_calc_format(&new_s, m); |
| new_f = bch2_bkey_format_done(&new_s); |
| |
| sib_u64s = btree_node_u64s_with_format(b, &new_f) + |
| btree_node_u64s_with_format(m, &new_f); |
| |
| if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) { |
| sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c); |
| sib_u64s /= 2; |
| sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c); |
| } |
| |
| sib_u64s = min(sib_u64s, btree_max_u64s(c)); |
| b->sib_u64s[sib] = sib_u64s; |
| |
| if (b->sib_u64s[sib] > BTREE_FOREGROUND_MERGE_THRESHOLD(c)) { |
| six_unlock_intent(&m->lock); |
| goto out; |
| } |
| |
| /* We're changing btree topology, doesn't mix with gc: */ |
| if (!down_read_trylock(&c->gc_lock)) |
| goto err_cycle_gc_lock; |
| |
| if (!bch2_btree_iter_upgrade(iter, U8_MAX, |
| !(flags & BTREE_INSERT_NOUNLOCK))) { |
| ret = -EINTR; |
| goto err_unlock; |
| } |
| |
| as = bch2_btree_update_start(c, iter->btree_id, |
| btree_update_reserve_required(c, parent) + 1, |
| BTREE_INSERT_NOFAIL| |
| BTREE_INSERT_USE_RESERVE, |
| !(flags & BTREE_INSERT_NOUNLOCK) ? &cl : NULL); |
| if (IS_ERR(as)) { |
| ret = PTR_ERR(as); |
| goto err_unlock; |
| } |
| |
| trace_btree_merge(c, b); |
| |
| bch2_btree_interior_update_will_free_node(as, b); |
| bch2_btree_interior_update_will_free_node(as, m); |
| |
| n = bch2_btree_node_alloc(as, b->level); |
| |
| n->data->min_key = prev->data->min_key; |
| n->data->max_key = next->data->max_key; |
| n->data->format = new_f; |
| n->key.k.p = next->key.k.p; |
| |
| btree_node_set_format(n, new_f); |
| |
| bch2_btree_sort_into(c, n, prev); |
| bch2_btree_sort_into(c, n, next); |
| |
| bch2_btree_build_aux_trees(n); |
| six_unlock_write(&n->lock); |
| |
| bkey_init(&delete.k); |
| delete.k.p = prev->key.k.p; |
| bch2_keylist_add(&as->parent_keys, &delete); |
| bch2_keylist_add(&as->parent_keys, &n->key); |
| |
| bch2_btree_node_write(c, n, SIX_LOCK_intent); |
| |
| bch2_btree_insert_node(as, parent, iter, &as->parent_keys, flags); |
| |
| bch2_open_buckets_put(c, &n->ob); |
| bch2_btree_node_free_inmem(c, b, iter); |
| bch2_btree_node_free_inmem(c, m, iter); |
| bch2_btree_iter_node_replace(iter, n); |
| |
| bch2_btree_iter_verify(iter, n); |
| |
| bch2_btree_update_done(as); |
| |
| six_unlock_intent(&m->lock); |
| up_read(&c->gc_lock); |
| out: |
| /* |
| * Don't downgrade locks here: we're called after successful insert, |
| * and the caller will downgrade locks after a successful insert |
| * anyways (in case e.g. a split was required first) |
| * |
| * And we're also called when inserting into interior nodes in the |
| * split path, and downgrading to read locks in there is potentially |
| * confusing: |
| */ |
| closure_sync(&cl); |
| return; |
| |
| err_cycle_gc_lock: |
| six_unlock_intent(&m->lock); |
| |
| if (flags & BTREE_INSERT_NOUNLOCK) |
| goto out; |
| |
| bch2_btree_iter_unlock(iter); |
| |
| down_read(&c->gc_lock); |
| up_read(&c->gc_lock); |
| ret = -EINTR; |
| goto err; |
| |
| err_unlock: |
| six_unlock_intent(&m->lock); |
| up_read(&c->gc_lock); |
| err: |
| BUG_ON(ret == -EAGAIN && (flags & BTREE_INSERT_NOUNLOCK)); |
| |
| if ((ret == -EAGAIN || ret == -EINTR) && |
| !(flags & BTREE_INSERT_NOUNLOCK)) { |
| bch2_btree_iter_unlock(iter); |
| closure_sync(&cl); |
| ret = bch2_btree_iter_traverse(iter); |
| if (ret) |
| goto out; |
| |
| goto retry; |
| } |
| |
| goto out; |
| } |
| |
| static int __btree_node_rewrite(struct bch_fs *c, struct btree_iter *iter, |
| struct btree *b, unsigned flags, |
| struct closure *cl) |
| { |
| struct btree *n, *parent = btree_node_parent(iter, b); |
| struct btree_update *as; |
| |
| as = bch2_btree_update_start(c, iter->btree_id, |
| (parent |
| ? btree_update_reserve_required(c, parent) |
| : 0) + 1, |
| flags, cl); |
| if (IS_ERR(as)) { |
| trace_btree_gc_rewrite_node_fail(c, b); |
| return PTR_ERR(as); |
| } |
| |
| bch2_btree_interior_update_will_free_node(as, b); |
| |
| n = bch2_btree_node_alloc_replacement(as, b); |
| |
| bch2_btree_build_aux_trees(n); |
| six_unlock_write(&n->lock); |
| |
| trace_btree_gc_rewrite_node(c, b); |
| |
| bch2_btree_node_write(c, n, SIX_LOCK_intent); |
| |
| if (parent) { |
| bch2_keylist_add(&as->parent_keys, &n->key); |
| bch2_btree_insert_node(as, parent, iter, &as->parent_keys, flags); |
| } else { |
| bch2_btree_set_root(as, n, iter); |
| } |
| |
| bch2_open_buckets_put(c, &n->ob); |
| |
| bch2_btree_node_free_inmem(c, b, iter); |
| |
| bch2_btree_iter_node_replace(iter, n); |
| |
| bch2_btree_update_done(as); |
| return 0; |
| } |
| |
| /** |
| * bch_btree_node_rewrite - Rewrite/move a btree node |
| * |
| * Returns 0 on success, -EINTR or -EAGAIN on failure (i.e. |
| * btree_check_reserve() has to wait) |
| */ |
| int bch2_btree_node_rewrite(struct bch_fs *c, struct btree_iter *iter, |
| __le64 seq, unsigned flags) |
| { |
| struct closure cl; |
| struct btree *b; |
| int ret; |
| |
| flags |= BTREE_INSERT_NOFAIL; |
| |
| closure_init_stack(&cl); |
| |
| bch2_btree_iter_upgrade(iter, U8_MAX, true); |
| |
| if (!(flags & BTREE_INSERT_GC_LOCK_HELD)) { |
| if (!down_read_trylock(&c->gc_lock)) { |
| bch2_btree_iter_unlock(iter); |
| down_read(&c->gc_lock); |
| } |
| } |
| |
| while (1) { |
| ret = bch2_btree_iter_traverse(iter); |
| if (ret) |
| break; |
| |
| b = bch2_btree_iter_peek_node(iter); |
| if (!b || b->data->keys.seq != seq) |
| break; |
| |
| ret = __btree_node_rewrite(c, iter, b, flags, &cl); |
| if (ret != -EAGAIN && |
| ret != -EINTR) |
| break; |
| |
| bch2_btree_iter_unlock(iter); |
| closure_sync(&cl); |
| } |
| |
| bch2_btree_iter_downgrade(iter); |
| |
| if (!(flags & BTREE_INSERT_GC_LOCK_HELD)) |
| up_read(&c->gc_lock); |
| |
| closure_sync(&cl); |
| return ret; |
| } |
| |
| static void __bch2_btree_node_update_key(struct bch_fs *c, |
| struct btree_update *as, |
| struct btree_iter *iter, |
| struct btree *b, struct btree *new_hash, |
| struct bkey_i_extent *new_key) |
| { |
| struct btree *parent; |
| int ret; |
| |
| /* |
| * Two corner cases that need to be thought about here: |
| * |
| * @b may not be reachable yet - there might be another interior update |
| * operation waiting on @b to be written, and we're gonna deliver the |
| * write completion to that interior update operation _before_ |
| * persisting the new_key update |
| * |
| * That ends up working without us having to do anything special here: |
| * the reason is, we do kick off (and do the in memory updates) for the |
| * update for @new_key before we return, creating a new interior_update |
| * operation here. |
| * |
| * The new interior update operation here will in effect override the |
| * previous one. The previous one was going to terminate - make @b |
| * reachable - in one of two ways: |
| * - updating the btree root pointer |
| * In that case, |
| * no, this doesn't work. argh. |
| */ |
| |
| if (b->will_make_reachable) |
| as->must_rewrite = true; |
| |
| btree_interior_update_add_node_reference(as, b); |
| |
| parent = btree_node_parent(iter, b); |
| if (parent) { |
| if (new_hash) { |
| bkey_copy(&new_hash->key, &new_key->k_i); |
| ret = bch2_btree_node_hash_insert(&c->btree_cache, |
| new_hash, b->level, b->btree_id); |
| BUG_ON(ret); |
| } |
| |
| bch2_keylist_add(&as->parent_keys, &new_key->k_i); |
| bch2_btree_insert_node(as, parent, iter, &as->parent_keys, 0); |
| |
| if (new_hash) { |
| mutex_lock(&c->btree_cache.lock); |
| bch2_btree_node_hash_remove(&c->btree_cache, new_hash); |
| |
| bch2_btree_node_hash_remove(&c->btree_cache, b); |
| |
| bkey_copy(&b->key, &new_key->k_i); |
| ret = __bch2_btree_node_hash_insert(&c->btree_cache, b); |
| BUG_ON(ret); |
| mutex_unlock(&c->btree_cache.lock); |
| } else { |
| bkey_copy(&b->key, &new_key->k_i); |
| } |
| } else { |
| struct bch_fs_usage stats = { 0 }; |
| |
| BUG_ON(btree_node_root(c, b) != b); |
| |
| bch2_btree_node_lock_write(b, iter); |
| |
| bch2_mark_key(c, BKEY_TYPE_BTREE, |
| bkey_i_to_s_c(&new_key->k_i), |
| true, 0, |
| gc_pos_btree_root(b->btree_id), |
| &stats, 0, 0); |
| bch2_btree_node_free_index(as, NULL, |
| bkey_i_to_s_c(&b->key), |
| &stats); |
| bch2_fs_usage_apply(c, &stats, &as->reserve->disk_res, |
| gc_pos_btree_root(b->btree_id)); |
| |
| if (PTR_HASH(&new_key->k_i) != PTR_HASH(&b->key)) { |
| mutex_lock(&c->btree_cache.lock); |
| bch2_btree_node_hash_remove(&c->btree_cache, b); |
| |
| bkey_copy(&b->key, &new_key->k_i); |
| ret = __bch2_btree_node_hash_insert(&c->btree_cache, b); |
| BUG_ON(ret); |
| mutex_unlock(&c->btree_cache.lock); |
| } else { |
| bkey_copy(&b->key, &new_key->k_i); |
| } |
| |
| btree_update_updated_root(as); |
| bch2_btree_node_unlock_write(b, iter); |
| } |
| |
| bch2_btree_update_done(as); |
| } |
| |
| int bch2_btree_node_update_key(struct bch_fs *c, struct btree_iter *iter, |
| struct btree *b, struct bkey_i_extent *new_key) |
| { |
| struct btree *parent = btree_node_parent(iter, b); |
| struct btree_update *as = NULL; |
| struct btree *new_hash = NULL; |
| struct closure cl; |
| int ret; |
| |
| closure_init_stack(&cl); |
| |
| if (!bch2_btree_iter_upgrade(iter, U8_MAX, true)) |
| return -EINTR; |
| |
| if (!down_read_trylock(&c->gc_lock)) { |
| bch2_btree_iter_unlock(iter); |
| down_read(&c->gc_lock); |
| |
| if (!bch2_btree_iter_relock(iter)) { |
| ret = -EINTR; |
| goto err; |
| } |
| } |
| |
| /* check PTR_HASH() after @b is locked by btree_iter_traverse(): */ |
| if (PTR_HASH(&new_key->k_i) != PTR_HASH(&b->key)) { |
| /* bch2_btree_reserve_get will unlock */ |
| ret = bch2_btree_cache_cannibalize_lock(c, &cl); |
| if (ret) { |
| ret = -EINTR; |
| |
| bch2_btree_iter_unlock(iter); |
| up_read(&c->gc_lock); |
| closure_sync(&cl); |
| down_read(&c->gc_lock); |
| |
| if (!bch2_btree_iter_relock(iter)) |
| goto err; |
| } |
| |
| new_hash = bch2_btree_node_mem_alloc(c); |
| } |
| |
| as = bch2_btree_update_start(c, iter->btree_id, |
| parent ? btree_update_reserve_required(c, parent) : 0, |
| BTREE_INSERT_NOFAIL| |
| BTREE_INSERT_USE_RESERVE| |
| BTREE_INSERT_USE_ALLOC_RESERVE, |
| &cl); |
| |
| if (IS_ERR(as)) { |
| ret = PTR_ERR(as); |
| if (ret == -EAGAIN) |
| ret = -EINTR; |
| |
| if (ret != -EINTR) |
| goto err; |
| |
| bch2_btree_iter_unlock(iter); |
| up_read(&c->gc_lock); |
| closure_sync(&cl); |
| down_read(&c->gc_lock); |
| |
| if (!bch2_btree_iter_relock(iter)) |
| goto err; |
| } |
| |
| ret = bch2_mark_bkey_replicas(c, BKEY_TYPE_BTREE, |
| extent_i_to_s_c(new_key).s_c); |
| if (ret) |
| goto err_free_update; |
| |
| __bch2_btree_node_update_key(c, as, iter, b, new_hash, new_key); |
| |
| bch2_btree_iter_downgrade(iter); |
| err: |
| if (new_hash) { |
| mutex_lock(&c->btree_cache.lock); |
| list_move(&new_hash->list, &c->btree_cache.freeable); |
| mutex_unlock(&c->btree_cache.lock); |
| |
| six_unlock_write(&new_hash->lock); |
| six_unlock_intent(&new_hash->lock); |
| } |
| up_read(&c->gc_lock); |
| closure_sync(&cl); |
| return ret; |
| err_free_update: |
| bch2_btree_update_free(as); |
| goto err; |
| } |
| |
| /* Init code: */ |
| |
| /* |
| * Only for filesystem bringup, when first reading the btree roots or allocating |
| * btree roots when initializing a new filesystem: |
| */ |
| void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b) |
| { |
| BUG_ON(btree_node_root(c, b)); |
| |
| __bch2_btree_set_root_inmem(c, b); |
| bch2_btree_set_root_ondisk(c, b, READ); |
| } |
| |
| void bch2_btree_root_alloc(struct bch_fs *c, enum btree_id id) |
| { |
| struct closure cl; |
| struct btree *b; |
| int ret; |
| |
| closure_init_stack(&cl); |
| |
| do { |
| ret = bch2_btree_cache_cannibalize_lock(c, &cl); |
| closure_sync(&cl); |
| } while (ret); |
| |
| b = bch2_btree_node_mem_alloc(c); |
| bch2_btree_cache_cannibalize_unlock(c); |
| |
| set_btree_node_fake(b); |
| b->level = 0; |
| b->btree_id = id; |
| |
| bkey_extent_init(&b->key); |
| b->key.k.p = POS_MAX; |
| bkey_i_to_extent(&b->key)->v._data[0] = U64_MAX - id; |
| |
| bch2_bset_init_first(b, &b->data->keys); |
| bch2_btree_build_aux_trees(b); |
| |
| b->data->min_key = POS_MIN; |
| b->data->max_key = POS_MAX; |
| b->data->format = bch2_btree_calc_format(b); |
| btree_node_set_format(b, b->data->format); |
| |
| ret = bch2_btree_node_hash_insert(&c->btree_cache, b, b->level, b->btree_id); |
| BUG_ON(ret); |
| |
| __bch2_btree_set_root_inmem(c, b); |
| |
| six_unlock_write(&b->lock); |
| six_unlock_intent(&b->lock); |
| } |
| |
| ssize_t bch2_btree_updates_print(struct bch_fs *c, char *buf) |
| { |
| struct printbuf out = _PBUF(buf, PAGE_SIZE); |
| struct btree_update *as; |
| |
| mutex_lock(&c->btree_interior_update_lock); |
| list_for_each_entry(as, &c->btree_interior_update_list, list) |
| pr_buf(&out, "%p m %u w %u r %u j %llu\n", |
| as, |
| as->mode, |
| as->nodes_written, |
| atomic_read(&as->cl.remaining) & CLOSURE_REMAINING_MASK, |
| as->journal.seq); |
| mutex_unlock(&c->btree_interior_update_lock); |
| |
| return out.pos - buf; |
| } |
| |
| size_t bch2_btree_interior_updates_nr_pending(struct bch_fs *c) |
| { |
| size_t ret = 0; |
| struct list_head *i; |
| |
| mutex_lock(&c->btree_interior_update_lock); |
| list_for_each(i, &c->btree_interior_update_list) |
| ret++; |
| mutex_unlock(&c->btree_interior_update_lock); |
| |
| return ret; |
| } |