blob: 1098ffc3d54b358d19c2e69b8df9ae9eb5fba031 [file] [log] [blame]
/*
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
* Author: Christoffer Dall <c.dall@virtualopensystems.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#ifndef __ARM_KVM_MMU_H__
#define __ARM_KVM_MMU_H__
#include <asm/memory.h>
#include <asm/page.h>
/*
* We directly use the kernel VA for the HYP, as we can directly share
* the mapping (HTTBR "covers" TTBR1).
*/
#define kern_hyp_va(kva) (kva)
/* Contrary to arm64, there is no need to generate a PC-relative address */
#define hyp_symbol_addr(s) \
({ \
typeof(s) *addr = &(s); \
addr; \
})
#ifndef __ASSEMBLY__
#include <linux/highmem.h>
#include <asm/cacheflush.h>
#include <asm/cputype.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_hyp.h>
#include <asm/pgalloc.h>
#include <asm/stage2_pgtable.h>
/* Ensure compatibility with arm64 */
#define VA_BITS 32
#define kvm_phys_shift(kvm) KVM_PHYS_SHIFT
#define kvm_phys_size(kvm) (1ULL << kvm_phys_shift(kvm))
#define kvm_phys_mask(kvm) (kvm_phys_size(kvm) - 1ULL)
#define kvm_vttbr_baddr_mask(kvm) VTTBR_BADDR_MASK
#define stage2_pgd_size(kvm) (PTRS_PER_S2_PGD * sizeof(pgd_t))
int create_hyp_mappings(void *from, void *to, pgprot_t prot);
int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
void __iomem **kaddr,
void __iomem **haddr);
int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
void **haddr);
void free_hyp_pgds(void);
void stage2_unmap_vm(struct kvm *kvm);
int kvm_alloc_stage2_pgd(struct kvm *kvm);
void kvm_free_stage2_pgd(struct kvm *kvm);
int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
phys_addr_t pa, unsigned long size, bool writable);
int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
phys_addr_t kvm_mmu_get_httbr(void);
phys_addr_t kvm_get_idmap_vector(void);
int kvm_mmu_init(void);
void kvm_clear_hyp_idmap(void);
#define kvm_mk_pmd(ptep) __pmd(__pa(ptep) | PMD_TYPE_TABLE)
#define kvm_mk_pud(pmdp) __pud(__pa(pmdp) | PMD_TYPE_TABLE)
#define kvm_mk_pgd(pudp) ({ BUILD_BUG(); 0; })
static inline pte_t kvm_s2pte_mkwrite(pte_t pte)
{
pte_val(pte) |= L_PTE_S2_RDWR;
return pte;
}
static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd)
{
pmd_val(pmd) |= L_PMD_S2_RDWR;
return pmd;
}
static inline pte_t kvm_s2pte_mkexec(pte_t pte)
{
pte_val(pte) &= ~L_PTE_XN;
return pte;
}
static inline pmd_t kvm_s2pmd_mkexec(pmd_t pmd)
{
pmd_val(pmd) &= ~PMD_SECT_XN;
return pmd;
}
static inline void kvm_set_s2pte_readonly(pte_t *pte)
{
pte_val(*pte) = (pte_val(*pte) & ~L_PTE_S2_RDWR) | L_PTE_S2_RDONLY;
}
static inline bool kvm_s2pte_readonly(pte_t *pte)
{
return (pte_val(*pte) & L_PTE_S2_RDWR) == L_PTE_S2_RDONLY;
}
static inline bool kvm_s2pte_exec(pte_t *pte)
{
return !(pte_val(*pte) & L_PTE_XN);
}
static inline void kvm_set_s2pmd_readonly(pmd_t *pmd)
{
pmd_val(*pmd) = (pmd_val(*pmd) & ~L_PMD_S2_RDWR) | L_PMD_S2_RDONLY;
}
static inline bool kvm_s2pmd_readonly(pmd_t *pmd)
{
return (pmd_val(*pmd) & L_PMD_S2_RDWR) == L_PMD_S2_RDONLY;
}
static inline bool kvm_s2pmd_exec(pmd_t *pmd)
{
return !(pmd_val(*pmd) & PMD_SECT_XN);
}
static inline bool kvm_page_empty(void *ptr)
{
struct page *ptr_page = virt_to_page(ptr);
return page_count(ptr_page) == 1;
}
#define kvm_pte_table_empty(kvm, ptep) kvm_page_empty(ptep)
#define kvm_pmd_table_empty(kvm, pmdp) kvm_page_empty(pmdp)
#define kvm_pud_table_empty(kvm, pudp) false
#define hyp_pte_table_empty(ptep) kvm_page_empty(ptep)
#define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp)
#define hyp_pud_table_empty(pudp) false
struct kvm;
#define kvm_flush_dcache_to_poc(a,l) __cpuc_flush_dcache_area((a), (l))
static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
{
return (vcpu_cp15(vcpu, c1_SCTLR) & 0b101) == 0b101;
}
static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
{
/*
* Clean the dcache to the Point of Coherency.
*
* We need to do this through a kernel mapping (using the
* user-space mapping has proved to be the wrong
* solution). For that, we need to kmap one page at a time,
* and iterate over the range.
*/
VM_BUG_ON(size & ~PAGE_MASK);
while (size) {
void *va = kmap_atomic_pfn(pfn);
kvm_flush_dcache_to_poc(va, PAGE_SIZE);
size -= PAGE_SIZE;
pfn++;
kunmap_atomic(va);
}
}
static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn,
unsigned long size)
{
u32 iclsz;
/*
* If we are going to insert an instruction page and the icache is
* either VIPT or PIPT, there is a potential problem where the host
* (or another VM) may have used the same page as this guest, and we
* read incorrect data from the icache. If we're using a PIPT cache,
* we can invalidate just that page, but if we are using a VIPT cache
* we need to invalidate the entire icache - damn shame - as written
* in the ARM ARM (DDI 0406C.b - Page B3-1393).
*
* VIVT caches are tagged using both the ASID and the VMID and doesn't
* need any kind of flushing (DDI 0406C.b - Page B3-1392).
*/
VM_BUG_ON(size & ~PAGE_MASK);
if (icache_is_vivt_asid_tagged())
return;
if (!icache_is_pipt()) {
/* any kind of VIPT cache */
__flush_icache_all();
return;
}
/*
* CTR IminLine contains Log2 of the number of words in the
* cache line, so we can get the number of words as
* 2 << (IminLine - 1). To get the number of bytes, we
* multiply by 4 (the number of bytes in a 32-bit word), and
* get 4 << (IminLine).
*/
iclsz = 4 << (read_cpuid(CPUID_CACHETYPE) & 0xf);
while (size) {
void *va = kmap_atomic_pfn(pfn);
void *end = va + PAGE_SIZE;
void *addr = va;
do {
write_sysreg(addr, ICIMVAU);
addr += iclsz;
} while (addr < end);
dsb(ishst);
isb();
size -= PAGE_SIZE;
pfn++;
kunmap_atomic(va);
}
/* Check if we need to invalidate the BTB */
if ((read_cpuid_ext(CPUID_EXT_MMFR1) >> 28) != 4) {
write_sysreg(0, BPIALLIS);
dsb(ishst);
isb();
}
}
static inline void __kvm_flush_dcache_pte(pte_t pte)
{
void *va = kmap_atomic(pte_page(pte));
kvm_flush_dcache_to_poc(va, PAGE_SIZE);
kunmap_atomic(va);
}
static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
{
unsigned long size = PMD_SIZE;
kvm_pfn_t pfn = pmd_pfn(pmd);
while (size) {
void *va = kmap_atomic_pfn(pfn);
kvm_flush_dcache_to_poc(va, PAGE_SIZE);
pfn++;
size -= PAGE_SIZE;
kunmap_atomic(va);
}
}
static inline void __kvm_flush_dcache_pud(pud_t pud)
{
}
#define kvm_virt_to_phys(x) virt_to_idmap((unsigned long)(x))
void kvm_set_way_flush(struct kvm_vcpu *vcpu);
void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
static inline bool __kvm_cpu_uses_extended_idmap(void)
{
return false;
}
static inline unsigned long __kvm_idmap_ptrs_per_pgd(void)
{
return PTRS_PER_PGD;
}
static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd,
pgd_t *hyp_pgd,
pgd_t *merged_hyp_pgd,
unsigned long hyp_idmap_start) { }
static inline unsigned int kvm_get_vmid_bits(void)
{
return 8;
}
/*
* We are not in the kvm->srcu critical section most of the time, so we take
* the SRCU read lock here. Since we copy the data from the user page, we
* can immediately drop the lock again.
*/
static inline int kvm_read_guest_lock(struct kvm *kvm,
gpa_t gpa, void *data, unsigned long len)
{
int srcu_idx = srcu_read_lock(&kvm->srcu);
int ret = kvm_read_guest(kvm, gpa, data, len);
srcu_read_unlock(&kvm->srcu, srcu_idx);
return ret;
}
static inline void *kvm_get_hyp_vector(void)
{
switch(read_cpuid_part()) {
#ifdef CONFIG_HARDEN_BRANCH_PREDICTOR
case ARM_CPU_PART_CORTEX_A12:
case ARM_CPU_PART_CORTEX_A17:
{
extern char __kvm_hyp_vector_bp_inv[];
return kvm_ksym_ref(__kvm_hyp_vector_bp_inv);
}
case ARM_CPU_PART_BRAHMA_B15:
case ARM_CPU_PART_CORTEX_A15:
{
extern char __kvm_hyp_vector_ic_inv[];
return kvm_ksym_ref(__kvm_hyp_vector_ic_inv);
}
#endif
default:
{
extern char __kvm_hyp_vector[];
return kvm_ksym_ref(__kvm_hyp_vector);
}
}
}
static inline int kvm_map_vectors(void)
{
return 0;
}
static inline int hyp_map_aux_data(void)
{
return 0;
}
#define kvm_phys_to_vttbr(addr) (addr)
static inline void kvm_set_ipa_limit(void) {}
static inline bool kvm_cpu_has_cnp(void)
{
return false;
}
#endif /* !__ASSEMBLY__ */
#endif /* __ARM_KVM_MMU_H__ */