| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright © 2023 Intel Corporation |
| */ |
| |
| #include <linux/hwmon-sysfs.h> |
| #include <linux/hwmon.h> |
| #include <linux/types.h> |
| |
| #include <drm/drm_managed.h> |
| #include "regs/xe_gt_regs.h" |
| #include "regs/xe_mchbar_regs.h" |
| #include "regs/xe_pcode_regs.h" |
| #include "xe_device.h" |
| #include "xe_gt.h" |
| #include "xe_hwmon.h" |
| #include "xe_mmio.h" |
| #include "xe_pcode.h" |
| #include "xe_pcode_api.h" |
| #include "xe_sriov.h" |
| |
| enum xe_hwmon_reg { |
| REG_PKG_RAPL_LIMIT, |
| REG_PKG_POWER_SKU, |
| REG_PKG_POWER_SKU_UNIT, |
| REG_GT_PERF_STATUS, |
| REG_PKG_ENERGY_STATUS, |
| }; |
| |
| enum xe_hwmon_reg_operation { |
| REG_READ32, |
| REG_RMW32, |
| REG_READ64, |
| }; |
| |
| /* |
| * SF_* - scale factors for particular quantities according to hwmon spec. |
| */ |
| #define SF_POWER 1000000 /* microwatts */ |
| #define SF_CURR 1000 /* milliamperes */ |
| #define SF_VOLTAGE 1000 /* millivolts */ |
| #define SF_ENERGY 1000000 /* microjoules */ |
| #define SF_TIME 1000 /* milliseconds */ |
| |
| /** |
| * struct xe_hwmon_energy_info - to accumulate energy |
| */ |
| struct xe_hwmon_energy_info { |
| /** @reg_val_prev: previous energy reg val */ |
| u32 reg_val_prev; |
| /** @accum_energy: accumulated energy */ |
| long accum_energy; |
| }; |
| |
| /** |
| * struct xe_hwmon - xe hwmon data structure |
| */ |
| struct xe_hwmon { |
| /** @hwmon_dev: hwmon device for xe */ |
| struct device *hwmon_dev; |
| /** @gt: primary gt */ |
| struct xe_gt *gt; |
| /** @hwmon_lock: lock for rw attributes*/ |
| struct mutex hwmon_lock; |
| /** @scl_shift_power: pkg power unit */ |
| int scl_shift_power; |
| /** @scl_shift_energy: pkg energy unit */ |
| int scl_shift_energy; |
| /** @scl_shift_time: pkg time unit */ |
| int scl_shift_time; |
| /** @ei: Energy info for energy1_input */ |
| struct xe_hwmon_energy_info ei; |
| }; |
| |
| static u32 xe_hwmon_get_reg(struct xe_hwmon *hwmon, enum xe_hwmon_reg hwmon_reg) |
| { |
| struct xe_device *xe = gt_to_xe(hwmon->gt); |
| struct xe_reg reg = XE_REG(0); |
| |
| switch (hwmon_reg) { |
| case REG_PKG_RAPL_LIMIT: |
| if (xe->info.platform == XE_PVC) |
| reg = PVC_GT0_PACKAGE_RAPL_LIMIT; |
| else if (xe->info.platform == XE_DG2) |
| reg = PCU_CR_PACKAGE_RAPL_LIMIT; |
| break; |
| case REG_PKG_POWER_SKU: |
| if (xe->info.platform == XE_PVC) |
| reg = PVC_GT0_PACKAGE_POWER_SKU; |
| else if (xe->info.platform == XE_DG2) |
| reg = PCU_CR_PACKAGE_POWER_SKU; |
| break; |
| case REG_PKG_POWER_SKU_UNIT: |
| if (xe->info.platform == XE_PVC) |
| reg = PVC_GT0_PACKAGE_POWER_SKU_UNIT; |
| else if (xe->info.platform == XE_DG2) |
| reg = PCU_CR_PACKAGE_POWER_SKU_UNIT; |
| break; |
| case REG_GT_PERF_STATUS: |
| if (xe->info.platform == XE_DG2) |
| reg = GT_PERF_STATUS; |
| break; |
| case REG_PKG_ENERGY_STATUS: |
| if (xe->info.platform == XE_PVC) |
| reg = PVC_GT0_PLATFORM_ENERGY_STATUS; |
| else if (xe->info.platform == XE_DG2) |
| reg = PCU_CR_PACKAGE_ENERGY_STATUS; |
| break; |
| default: |
| drm_warn(&xe->drm, "Unknown xe hwmon reg id: %d\n", hwmon_reg); |
| break; |
| } |
| |
| return reg.raw; |
| } |
| |
| static void xe_hwmon_process_reg(struct xe_hwmon *hwmon, enum xe_hwmon_reg hwmon_reg, |
| enum xe_hwmon_reg_operation operation, u64 *value, |
| u32 clr, u32 set) |
| { |
| struct xe_reg reg; |
| |
| reg.raw = xe_hwmon_get_reg(hwmon, hwmon_reg); |
| |
| if (!reg.raw) |
| return; |
| |
| switch (operation) { |
| case REG_READ32: |
| *value = xe_mmio_read32(hwmon->gt, reg); |
| break; |
| case REG_RMW32: |
| *value = xe_mmio_rmw32(hwmon->gt, reg, clr, set); |
| break; |
| case REG_READ64: |
| *value = xe_mmio_read64_2x32(hwmon->gt, reg); |
| break; |
| default: |
| drm_warn(>_to_xe(hwmon->gt)->drm, "Invalid xe hwmon reg operation: %d\n", |
| operation); |
| break; |
| } |
| } |
| |
| #define PL1_DISABLE 0 |
| |
| /* |
| * HW allows arbitrary PL1 limits to be set but silently clamps these values to |
| * "typical but not guaranteed" min/max values in REG_PKG_POWER_SKU. Follow the |
| * same pattern for sysfs, allow arbitrary PL1 limits to be set but display |
| * clamped values when read. |
| */ |
| static void xe_hwmon_power_max_read(struct xe_hwmon *hwmon, long *value) |
| { |
| u64 reg_val, min, max; |
| |
| mutex_lock(&hwmon->hwmon_lock); |
| |
| xe_hwmon_process_reg(hwmon, REG_PKG_RAPL_LIMIT, REG_READ32, ®_val, 0, 0); |
| /* Check if PL1 limit is disabled */ |
| if (!(reg_val & PKG_PWR_LIM_1_EN)) { |
| *value = PL1_DISABLE; |
| goto unlock; |
| } |
| |
| reg_val = REG_FIELD_GET(PKG_PWR_LIM_1, reg_val); |
| *value = mul_u64_u32_shr(reg_val, SF_POWER, hwmon->scl_shift_power); |
| |
| xe_hwmon_process_reg(hwmon, REG_PKG_POWER_SKU, REG_READ64, ®_val, 0, 0); |
| min = REG_FIELD_GET(PKG_MIN_PWR, reg_val); |
| min = mul_u64_u32_shr(min, SF_POWER, hwmon->scl_shift_power); |
| max = REG_FIELD_GET(PKG_MAX_PWR, reg_val); |
| max = mul_u64_u32_shr(max, SF_POWER, hwmon->scl_shift_power); |
| |
| if (min && max) |
| *value = clamp_t(u64, *value, min, max); |
| unlock: |
| mutex_unlock(&hwmon->hwmon_lock); |
| } |
| |
| static int xe_hwmon_power_max_write(struct xe_hwmon *hwmon, long value) |
| { |
| int ret = 0; |
| u64 reg_val; |
| |
| mutex_lock(&hwmon->hwmon_lock); |
| |
| /* Disable PL1 limit and verify, as limit cannot be disabled on all platforms */ |
| if (value == PL1_DISABLE) { |
| xe_hwmon_process_reg(hwmon, REG_PKG_RAPL_LIMIT, REG_RMW32, ®_val, |
| PKG_PWR_LIM_1_EN, 0); |
| xe_hwmon_process_reg(hwmon, REG_PKG_RAPL_LIMIT, REG_READ32, ®_val, |
| PKG_PWR_LIM_1_EN, 0); |
| |
| if (reg_val & PKG_PWR_LIM_1_EN) { |
| ret = -EOPNOTSUPP; |
| goto unlock; |
| } |
| } |
| |
| /* Computation in 64-bits to avoid overflow. Round to nearest. */ |
| reg_val = DIV_ROUND_CLOSEST_ULL((u64)value << hwmon->scl_shift_power, SF_POWER); |
| reg_val = PKG_PWR_LIM_1_EN | REG_FIELD_PREP(PKG_PWR_LIM_1, reg_val); |
| |
| xe_hwmon_process_reg(hwmon, REG_PKG_RAPL_LIMIT, REG_RMW32, ®_val, |
| PKG_PWR_LIM_1_EN | PKG_PWR_LIM_1, reg_val); |
| unlock: |
| mutex_unlock(&hwmon->hwmon_lock); |
| return ret; |
| } |
| |
| static void xe_hwmon_power_rated_max_read(struct xe_hwmon *hwmon, long *value) |
| { |
| u64 reg_val; |
| |
| xe_hwmon_process_reg(hwmon, REG_PKG_POWER_SKU, REG_READ32, ®_val, 0, 0); |
| reg_val = REG_FIELD_GET(PKG_TDP, reg_val); |
| *value = mul_u64_u32_shr(reg_val, SF_POWER, hwmon->scl_shift_power); |
| } |
| |
| /* |
| * xe_hwmon_energy_get - Obtain energy value |
| * |
| * The underlying energy hardware register is 32-bits and is subject to |
| * overflow. How long before overflow? For example, with an example |
| * scaling bit shift of 14 bits (see register *PACKAGE_POWER_SKU_UNIT) and |
| * a power draw of 1000 watts, the 32-bit counter will overflow in |
| * approximately 4.36 minutes. |
| * |
| * Examples: |
| * 1 watt: (2^32 >> 14) / 1 W / (60 * 60 * 24) secs/day -> 3 days |
| * 1000 watts: (2^32 >> 14) / 1000 W / 60 secs/min -> 4.36 minutes |
| * |
| * The function significantly increases overflow duration (from 4.36 |
| * minutes) by accumulating the energy register into a 'long' as allowed by |
| * the hwmon API. Using x86_64 128 bit arithmetic (see mul_u64_u32_shr()), |
| * a 'long' of 63 bits, SF_ENERGY of 1e6 (~20 bits) and |
| * hwmon->scl_shift_energy of 14 bits we have 57 (63 - 20 + 14) bits before |
| * energy1_input overflows. This at 1000 W is an overflow duration of 278 years. |
| */ |
| static void |
| xe_hwmon_energy_get(struct xe_hwmon *hwmon, long *energy) |
| { |
| struct xe_hwmon_energy_info *ei = &hwmon->ei; |
| u64 reg_val; |
| |
| xe_hwmon_process_reg(hwmon, REG_PKG_ENERGY_STATUS, REG_READ32, |
| ®_val, 0, 0); |
| |
| if (reg_val >= ei->reg_val_prev) |
| ei->accum_energy += reg_val - ei->reg_val_prev; |
| else |
| ei->accum_energy += UINT_MAX - ei->reg_val_prev + reg_val; |
| |
| ei->reg_val_prev = reg_val; |
| |
| *energy = mul_u64_u32_shr(ei->accum_energy, SF_ENERGY, |
| hwmon->scl_shift_energy); |
| } |
| |
| static ssize_t |
| xe_hwmon_power1_max_interval_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| struct xe_hwmon *hwmon = dev_get_drvdata(dev); |
| u32 x, y, x_w = 2; /* 2 bits */ |
| u64 r, tau4, out; |
| |
| xe_device_mem_access_get(gt_to_xe(hwmon->gt)); |
| |
| mutex_lock(&hwmon->hwmon_lock); |
| |
| xe_hwmon_process_reg(hwmon, REG_PKG_RAPL_LIMIT, |
| REG_READ32, &r, 0, 0); |
| |
| mutex_unlock(&hwmon->hwmon_lock); |
| |
| xe_device_mem_access_put(gt_to_xe(hwmon->gt)); |
| |
| x = REG_FIELD_GET(PKG_PWR_LIM_1_TIME_X, r); |
| y = REG_FIELD_GET(PKG_PWR_LIM_1_TIME_Y, r); |
| |
| /* |
| * tau = 1.x * power(2,y), x = bits(23:22), y = bits(21:17) |
| * = (4 | x) << (y - 2) |
| * |
| * Here (y - 2) ensures a 1.x fixed point representation of 1.x |
| * As x is 2 bits so 1.x can be 1.0, 1.25, 1.50, 1.75 |
| * |
| * As y can be < 2, we compute tau4 = (4 | x) << y |
| * and then add 2 when doing the final right shift to account for units |
| */ |
| tau4 = ((1 << x_w) | x) << y; |
| |
| /* val in hwmon interface units (millisec) */ |
| out = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w); |
| |
| return sysfs_emit(buf, "%llu\n", out); |
| } |
| |
| static ssize_t |
| xe_hwmon_power1_max_interval_store(struct device *dev, struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct xe_hwmon *hwmon = dev_get_drvdata(dev); |
| u32 x, y, rxy, x_w = 2; /* 2 bits */ |
| u64 tau4, r, max_win; |
| unsigned long val; |
| int ret; |
| |
| ret = kstrtoul(buf, 0, &val); |
| if (ret) |
| return ret; |
| |
| /* |
| * Max HW supported tau in '1.x * power(2,y)' format, x = 0, y = 0x12. |
| * The hwmon->scl_shift_time default of 0xa results in a max tau of 256 seconds. |
| * |
| * The ideal scenario is for PKG_MAX_WIN to be read from the PKG_PWR_SKU register. |
| * However, it is observed that existing discrete GPUs does not provide correct |
| * PKG_MAX_WIN value, therefore a using default constant value. For future discrete GPUs |
| * this may get resolved, in which case PKG_MAX_WIN should be obtained from PKG_PWR_SKU. |
| */ |
| #define PKG_MAX_WIN_DEFAULT 0x12ull |
| |
| /* |
| * val must be < max in hwmon interface units. The steps below are |
| * explained in xe_hwmon_power1_max_interval_show() |
| */ |
| r = FIELD_PREP(PKG_MAX_WIN, PKG_MAX_WIN_DEFAULT); |
| x = REG_FIELD_GET(PKG_MAX_WIN_X, r); |
| y = REG_FIELD_GET(PKG_MAX_WIN_Y, r); |
| tau4 = ((1 << x_w) | x) << y; |
| max_win = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w); |
| |
| if (val > max_win) |
| return -EINVAL; |
| |
| /* val in hw units */ |
| val = DIV_ROUND_CLOSEST_ULL((u64)val << hwmon->scl_shift_time, SF_TIME); |
| |
| /* |
| * Convert val to 1.x * power(2,y) |
| * y = ilog2(val) |
| * x = (val - (1 << y)) >> (y - 2) |
| */ |
| if (!val) { |
| y = 0; |
| x = 0; |
| } else { |
| y = ilog2(val); |
| x = (val - (1ul << y)) << x_w >> y; |
| } |
| |
| rxy = REG_FIELD_PREP(PKG_PWR_LIM_1_TIME_X, x) | REG_FIELD_PREP(PKG_PWR_LIM_1_TIME_Y, y); |
| |
| xe_device_mem_access_get(gt_to_xe(hwmon->gt)); |
| |
| mutex_lock(&hwmon->hwmon_lock); |
| |
| xe_hwmon_process_reg(hwmon, REG_PKG_RAPL_LIMIT, REG_RMW32, (u64 *)&r, |
| PKG_PWR_LIM_1_TIME, rxy); |
| |
| mutex_unlock(&hwmon->hwmon_lock); |
| |
| xe_device_mem_access_put(gt_to_xe(hwmon->gt)); |
| |
| return count; |
| } |
| |
| static SENSOR_DEVICE_ATTR(power1_max_interval, 0664, |
| xe_hwmon_power1_max_interval_show, |
| xe_hwmon_power1_max_interval_store, 0); |
| |
| static struct attribute *hwmon_attributes[] = { |
| &sensor_dev_attr_power1_max_interval.dev_attr.attr, |
| NULL |
| }; |
| |
| static umode_t xe_hwmon_attributes_visible(struct kobject *kobj, |
| struct attribute *attr, int index) |
| { |
| struct device *dev = kobj_to_dev(kobj); |
| struct xe_hwmon *hwmon = dev_get_drvdata(dev); |
| int ret = 0; |
| |
| xe_device_mem_access_get(gt_to_xe(hwmon->gt)); |
| |
| if (attr == &sensor_dev_attr_power1_max_interval.dev_attr.attr) |
| ret = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT) ? attr->mode : 0; |
| |
| xe_device_mem_access_put(gt_to_xe(hwmon->gt)); |
| |
| return ret; |
| } |
| |
| static const struct attribute_group hwmon_attrgroup = { |
| .attrs = hwmon_attributes, |
| .is_visible = xe_hwmon_attributes_visible, |
| }; |
| |
| static const struct attribute_group *hwmon_groups[] = { |
| &hwmon_attrgroup, |
| NULL |
| }; |
| |
| static const struct hwmon_channel_info * const hwmon_info[] = { |
| HWMON_CHANNEL_INFO(power, HWMON_P_MAX | HWMON_P_RATED_MAX | HWMON_P_CRIT), |
| HWMON_CHANNEL_INFO(curr, HWMON_C_CRIT), |
| HWMON_CHANNEL_INFO(in, HWMON_I_INPUT), |
| HWMON_CHANNEL_INFO(energy, HWMON_E_INPUT), |
| NULL |
| }; |
| |
| /* I1 is exposed as power_crit or as curr_crit depending on bit 31 */ |
| static int xe_hwmon_pcode_read_i1(struct xe_gt *gt, u32 *uval) |
| { |
| /* Avoid Illegal Subcommand error */ |
| if (gt_to_xe(gt)->info.platform == XE_DG2) |
| return -ENXIO; |
| |
| return xe_pcode_read(gt, PCODE_MBOX(PCODE_POWER_SETUP, |
| POWER_SETUP_SUBCOMMAND_READ_I1, 0), |
| uval, NULL); |
| } |
| |
| static int xe_hwmon_pcode_write_i1(struct xe_gt *gt, u32 uval) |
| { |
| return xe_pcode_write(gt, PCODE_MBOX(PCODE_POWER_SETUP, |
| POWER_SETUP_SUBCOMMAND_WRITE_I1, 0), |
| uval); |
| } |
| |
| static int xe_hwmon_power_curr_crit_read(struct xe_hwmon *hwmon, long *value, u32 scale_factor) |
| { |
| int ret; |
| u32 uval; |
| |
| mutex_lock(&hwmon->hwmon_lock); |
| |
| ret = xe_hwmon_pcode_read_i1(hwmon->gt, &uval); |
| if (ret) |
| goto unlock; |
| |
| *value = mul_u64_u32_shr(REG_FIELD_GET(POWER_SETUP_I1_DATA_MASK, uval), |
| scale_factor, POWER_SETUP_I1_SHIFT); |
| unlock: |
| mutex_unlock(&hwmon->hwmon_lock); |
| return ret; |
| } |
| |
| static int xe_hwmon_power_curr_crit_write(struct xe_hwmon *hwmon, long value, u32 scale_factor) |
| { |
| int ret; |
| u32 uval; |
| |
| mutex_lock(&hwmon->hwmon_lock); |
| |
| uval = DIV_ROUND_CLOSEST_ULL(value << POWER_SETUP_I1_SHIFT, scale_factor); |
| ret = xe_hwmon_pcode_write_i1(hwmon->gt, uval); |
| |
| mutex_unlock(&hwmon->hwmon_lock); |
| return ret; |
| } |
| |
| static void xe_hwmon_get_voltage(struct xe_hwmon *hwmon, long *value) |
| { |
| u64 reg_val; |
| |
| xe_hwmon_process_reg(hwmon, REG_GT_PERF_STATUS, |
| REG_READ32, ®_val, 0, 0); |
| /* HW register value in units of 2.5 millivolt */ |
| *value = DIV_ROUND_CLOSEST(REG_FIELD_GET(VOLTAGE_MASK, reg_val) * 2500, SF_VOLTAGE); |
| } |
| |
| static umode_t |
| xe_hwmon_power_is_visible(struct xe_hwmon *hwmon, u32 attr, int chan) |
| { |
| u32 uval; |
| |
| switch (attr) { |
| case hwmon_power_max: |
| return xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT) ? 0664 : 0; |
| case hwmon_power_rated_max: |
| return xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU) ? 0444 : 0; |
| case hwmon_power_crit: |
| return (xe_hwmon_pcode_read_i1(hwmon->gt, &uval) || |
| !(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644; |
| default: |
| return 0; |
| } |
| } |
| |
| static int |
| xe_hwmon_power_read(struct xe_hwmon *hwmon, u32 attr, int chan, long *val) |
| { |
| switch (attr) { |
| case hwmon_power_max: |
| xe_hwmon_power_max_read(hwmon, val); |
| return 0; |
| case hwmon_power_rated_max: |
| xe_hwmon_power_rated_max_read(hwmon, val); |
| return 0; |
| case hwmon_power_crit: |
| return xe_hwmon_power_curr_crit_read(hwmon, val, SF_POWER); |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| static int |
| xe_hwmon_power_write(struct xe_hwmon *hwmon, u32 attr, int chan, long val) |
| { |
| switch (attr) { |
| case hwmon_power_max: |
| return xe_hwmon_power_max_write(hwmon, val); |
| case hwmon_power_crit: |
| return xe_hwmon_power_curr_crit_write(hwmon, val, SF_POWER); |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| static umode_t |
| xe_hwmon_curr_is_visible(const struct xe_hwmon *hwmon, u32 attr) |
| { |
| u32 uval; |
| |
| switch (attr) { |
| case hwmon_curr_crit: |
| return (xe_hwmon_pcode_read_i1(hwmon->gt, &uval) || |
| (uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644; |
| default: |
| return 0; |
| } |
| } |
| |
| static int |
| xe_hwmon_curr_read(struct xe_hwmon *hwmon, u32 attr, long *val) |
| { |
| switch (attr) { |
| case hwmon_curr_crit: |
| return xe_hwmon_power_curr_crit_read(hwmon, val, SF_CURR); |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| static int |
| xe_hwmon_curr_write(struct xe_hwmon *hwmon, u32 attr, long val) |
| { |
| switch (attr) { |
| case hwmon_curr_crit: |
| return xe_hwmon_power_curr_crit_write(hwmon, val, SF_CURR); |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| static umode_t |
| xe_hwmon_in_is_visible(struct xe_hwmon *hwmon, u32 attr) |
| { |
| switch (attr) { |
| case hwmon_in_input: |
| return xe_hwmon_get_reg(hwmon, REG_GT_PERF_STATUS) ? 0444 : 0; |
| default: |
| return 0; |
| } |
| } |
| |
| static int |
| xe_hwmon_in_read(struct xe_hwmon *hwmon, u32 attr, long *val) |
| { |
| switch (attr) { |
| case hwmon_in_input: |
| xe_hwmon_get_voltage(hwmon, val); |
| return 0; |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| static umode_t |
| xe_hwmon_energy_is_visible(struct xe_hwmon *hwmon, u32 attr) |
| { |
| switch (attr) { |
| case hwmon_energy_input: |
| return xe_hwmon_get_reg(hwmon, REG_PKG_ENERGY_STATUS) ? 0444 : 0; |
| default: |
| return 0; |
| } |
| } |
| |
| static int |
| xe_hwmon_energy_read(struct xe_hwmon *hwmon, u32 attr, long *val) |
| { |
| switch (attr) { |
| case hwmon_energy_input: |
| xe_hwmon_energy_get(hwmon, val); |
| return 0; |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| static umode_t |
| xe_hwmon_is_visible(const void *drvdata, enum hwmon_sensor_types type, |
| u32 attr, int channel) |
| { |
| struct xe_hwmon *hwmon = (struct xe_hwmon *)drvdata; |
| int ret; |
| |
| xe_device_mem_access_get(gt_to_xe(hwmon->gt)); |
| |
| switch (type) { |
| case hwmon_power: |
| ret = xe_hwmon_power_is_visible(hwmon, attr, channel); |
| break; |
| case hwmon_curr: |
| ret = xe_hwmon_curr_is_visible(hwmon, attr); |
| break; |
| case hwmon_in: |
| ret = xe_hwmon_in_is_visible(hwmon, attr); |
| break; |
| case hwmon_energy: |
| ret = xe_hwmon_energy_is_visible(hwmon, attr); |
| break; |
| default: |
| ret = 0; |
| break; |
| } |
| |
| xe_device_mem_access_put(gt_to_xe(hwmon->gt)); |
| |
| return ret; |
| } |
| |
| static int |
| xe_hwmon_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, |
| int channel, long *val) |
| { |
| struct xe_hwmon *hwmon = dev_get_drvdata(dev); |
| int ret; |
| |
| xe_device_mem_access_get(gt_to_xe(hwmon->gt)); |
| |
| switch (type) { |
| case hwmon_power: |
| ret = xe_hwmon_power_read(hwmon, attr, channel, val); |
| break; |
| case hwmon_curr: |
| ret = xe_hwmon_curr_read(hwmon, attr, val); |
| break; |
| case hwmon_in: |
| ret = xe_hwmon_in_read(hwmon, attr, val); |
| break; |
| case hwmon_energy: |
| ret = xe_hwmon_energy_read(hwmon, attr, val); |
| break; |
| default: |
| ret = -EOPNOTSUPP; |
| break; |
| } |
| |
| xe_device_mem_access_put(gt_to_xe(hwmon->gt)); |
| |
| return ret; |
| } |
| |
| static int |
| xe_hwmon_write(struct device *dev, enum hwmon_sensor_types type, u32 attr, |
| int channel, long val) |
| { |
| struct xe_hwmon *hwmon = dev_get_drvdata(dev); |
| int ret; |
| |
| xe_device_mem_access_get(gt_to_xe(hwmon->gt)); |
| |
| switch (type) { |
| case hwmon_power: |
| ret = xe_hwmon_power_write(hwmon, attr, channel, val); |
| break; |
| case hwmon_curr: |
| ret = xe_hwmon_curr_write(hwmon, attr, val); |
| break; |
| default: |
| ret = -EOPNOTSUPP; |
| break; |
| } |
| |
| xe_device_mem_access_put(gt_to_xe(hwmon->gt)); |
| |
| return ret; |
| } |
| |
| static const struct hwmon_ops hwmon_ops = { |
| .is_visible = xe_hwmon_is_visible, |
| .read = xe_hwmon_read, |
| .write = xe_hwmon_write, |
| }; |
| |
| static const struct hwmon_chip_info hwmon_chip_info = { |
| .ops = &hwmon_ops, |
| .info = hwmon_info, |
| }; |
| |
| static void |
| xe_hwmon_get_preregistration_info(struct xe_device *xe) |
| { |
| struct xe_hwmon *hwmon = xe->hwmon; |
| long energy; |
| u64 val_sku_unit = 0; |
| |
| /* |
| * The contents of register PKG_POWER_SKU_UNIT do not change, |
| * so read it once and store the shift values. |
| */ |
| if (xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU_UNIT)) { |
| xe_hwmon_process_reg(hwmon, REG_PKG_POWER_SKU_UNIT, |
| REG_READ32, &val_sku_unit, 0, 0); |
| hwmon->scl_shift_power = REG_FIELD_GET(PKG_PWR_UNIT, val_sku_unit); |
| hwmon->scl_shift_energy = REG_FIELD_GET(PKG_ENERGY_UNIT, val_sku_unit); |
| hwmon->scl_shift_time = REG_FIELD_GET(PKG_TIME_UNIT, val_sku_unit); |
| } |
| |
| /* |
| * Initialize 'struct xe_hwmon_energy_info', i.e. set fields to the |
| * first value of the energy register read |
| */ |
| if (xe_hwmon_is_visible(hwmon, hwmon_energy, hwmon_energy_input, 0)) |
| xe_hwmon_energy_get(hwmon, &energy); |
| } |
| |
| static void xe_hwmon_mutex_destroy(void *arg) |
| { |
| struct xe_hwmon *hwmon = arg; |
| |
| mutex_destroy(&hwmon->hwmon_lock); |
| } |
| |
| void xe_hwmon_register(struct xe_device *xe) |
| { |
| struct device *dev = xe->drm.dev; |
| struct xe_hwmon *hwmon; |
| |
| /* hwmon is available only for dGfx */ |
| if (!IS_DGFX(xe)) |
| return; |
| |
| /* hwmon is not available on VFs */ |
| if (IS_SRIOV_VF(xe)) |
| return; |
| |
| hwmon = devm_kzalloc(dev, sizeof(*hwmon), GFP_KERNEL); |
| if (!hwmon) |
| return; |
| |
| xe->hwmon = hwmon; |
| |
| mutex_init(&hwmon->hwmon_lock); |
| if (devm_add_action_or_reset(dev, xe_hwmon_mutex_destroy, hwmon)) |
| return; |
| |
| /* primary GT to access device level properties */ |
| hwmon->gt = xe->tiles[0].primary_gt; |
| |
| xe_hwmon_get_preregistration_info(xe); |
| |
| drm_dbg(&xe->drm, "Register xe hwmon interface\n"); |
| |
| /* hwmon_dev points to device hwmon<i> */ |
| hwmon->hwmon_dev = devm_hwmon_device_register_with_info(dev, "xe", hwmon, |
| &hwmon_chip_info, |
| hwmon_groups); |
| |
| if (IS_ERR(hwmon->hwmon_dev)) { |
| drm_warn(&xe->drm, "Failed to register xe hwmon (%pe)\n", hwmon->hwmon_dev); |
| xe->hwmon = NULL; |
| return; |
| } |
| } |
| |