blob: 53b3b0b019acd85fe48e375005e9b36149edad13 [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2022 Intel Corporation
*/
#include "xe_pm.h"
#include <linux/pm_runtime.h>
#include <drm/drm_managed.h>
#include <drm/ttm/ttm_placement.h>
#include "display/xe_display.h"
#include "xe_bo.h"
#include "xe_bo_evict.h"
#include "xe_device.h"
#include "xe_device_sysfs.h"
#include "xe_ggtt.h"
#include "xe_gt.h"
#include "xe_guc.h"
#include "xe_irq.h"
#include "xe_pcode.h"
#include "xe_wa.h"
/**
* DOC: Xe Power Management
*
* Xe PM shall be guided by the simplicity.
* Use the simplest hook options whenever possible.
* Let's not reinvent the runtime_pm references and hooks.
* Shall have a clear separation of display and gt underneath this component.
*
* What's next:
*
* For now s2idle and s3 are only working in integrated devices. The next step
* is to iterate through all VRAM's BO backing them up into the system memory
* before allowing the system suspend.
*
* Also runtime_pm needs to be here from the beginning.
*
* RC6/RPS are also critical PM features. Let's start with GuCRC and GuC SLPC
* and no wait boost. Frequency optimizations should come on a next stage.
*/
/**
* xe_pm_suspend - Helper for System suspend, i.e. S0->S3 / S0->S2idle
* @xe: xe device instance
*
* Return: 0 on success
*/
int xe_pm_suspend(struct xe_device *xe)
{
struct xe_gt *gt;
u8 id;
int err;
for_each_gt(gt, xe, id)
xe_gt_suspend_prepare(gt);
/* FIXME: Super racey... */
err = xe_bo_evict_all(xe);
if (err)
return err;
xe_display_pm_suspend(xe);
for_each_gt(gt, xe, id) {
err = xe_gt_suspend(gt);
if (err) {
xe_display_pm_resume(xe);
return err;
}
}
xe_irq_suspend(xe);
xe_display_pm_suspend_late(xe);
return 0;
}
/**
* xe_pm_resume - Helper for System resume S3->S0 / S2idle->S0
* @xe: xe device instance
*
* Return: 0 on success
*/
int xe_pm_resume(struct xe_device *xe)
{
struct xe_tile *tile;
struct xe_gt *gt;
u8 id;
int err;
for_each_tile(tile, xe, id)
xe_wa_apply_tile_workarounds(tile);
for_each_gt(gt, xe, id) {
err = xe_pcode_init(gt);
if (err)
return err;
}
xe_display_pm_resume_early(xe);
/*
* This only restores pinned memory which is the memory required for the
* GT(s) to resume.
*/
err = xe_bo_restore_kernel(xe);
if (err)
return err;
xe_irq_resume(xe);
xe_display_pm_resume(xe);
for_each_gt(gt, xe, id)
xe_gt_resume(gt);
err = xe_bo_restore_user(xe);
if (err)
return err;
return 0;
}
static bool xe_pm_pci_d3cold_capable(struct xe_device *xe)
{
struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
struct pci_dev *root_pdev;
root_pdev = pcie_find_root_port(pdev);
if (!root_pdev)
return false;
/* D3Cold requires PME capability */
if (!pci_pme_capable(root_pdev, PCI_D3cold)) {
drm_dbg(&xe->drm, "d3cold: PME# not supported\n");
return false;
}
/* D3Cold requires _PR3 power resource */
if (!pci_pr3_present(root_pdev)) {
drm_dbg(&xe->drm, "d3cold: ACPI _PR3 not present\n");
return false;
}
return true;
}
static void xe_pm_runtime_init(struct xe_device *xe)
{
struct device *dev = xe->drm.dev;
/*
* Disable the system suspend direct complete optimization.
* We need to ensure that the regular device suspend/resume functions
* are called since our runtime_pm cannot guarantee local memory
* eviction for d3cold.
* TODO: Check HDA audio dependencies claimed by i915, and then enforce
* this option to integrated graphics as well.
*/
if (IS_DGFX(xe))
dev_pm_set_driver_flags(dev, DPM_FLAG_NO_DIRECT_COMPLETE);
pm_runtime_use_autosuspend(dev);
pm_runtime_set_autosuspend_delay(dev, 1000);
pm_runtime_set_active(dev);
pm_runtime_allow(dev);
pm_runtime_mark_last_busy(dev);
pm_runtime_put(dev);
}
void xe_pm_init_early(struct xe_device *xe)
{
INIT_LIST_HEAD(&xe->mem_access.vram_userfault.list);
drmm_mutex_init(&xe->drm, &xe->mem_access.vram_userfault.lock);
}
void xe_pm_init(struct xe_device *xe)
{
/* For now suspend/resume is only allowed with GuC */
if (!xe_device_uc_enabled(xe))
return;
drmm_mutex_init(&xe->drm, &xe->d3cold.lock);
xe->d3cold.capable = xe_pm_pci_d3cold_capable(xe);
if (xe->d3cold.capable) {
xe_device_sysfs_init(xe);
xe_pm_set_vram_threshold(xe, DEFAULT_VRAM_THRESHOLD);
}
xe_pm_runtime_init(xe);
}
void xe_pm_runtime_fini(struct xe_device *xe)
{
struct device *dev = xe->drm.dev;
pm_runtime_get_sync(dev);
pm_runtime_forbid(dev);
}
static void xe_pm_write_callback_task(struct xe_device *xe,
struct task_struct *task)
{
WRITE_ONCE(xe->pm_callback_task, task);
/*
* Just in case it's somehow possible for our writes to be reordered to
* the extent that something else re-uses the task written in
* pm_callback_task. For example after returning from the callback, but
* before the reordered write that resets pm_callback_task back to NULL.
*/
smp_mb(); /* pairs with xe_pm_read_callback_task */
}
struct task_struct *xe_pm_read_callback_task(struct xe_device *xe)
{
smp_mb(); /* pairs with xe_pm_write_callback_task */
return READ_ONCE(xe->pm_callback_task);
}
int xe_pm_runtime_suspend(struct xe_device *xe)
{
struct xe_bo *bo, *on;
struct xe_gt *gt;
u8 id;
int err = 0;
if (xe->d3cold.allowed && xe_device_mem_access_ongoing(xe))
return -EBUSY;
/* Disable access_ongoing asserts and prevent recursive pm calls */
xe_pm_write_callback_task(xe, current);
/*
* The actual xe_device_mem_access_put() is always async underneath, so
* exactly where that is called should makes no difference to us. However
* we still need to be very careful with the locks that this callback
* acquires and the locks that are acquired and held by any callers of
* xe_device_mem_access_get(). We already have the matching annotation
* on that side, but we also need it here. For example lockdep should be
* able to tell us if the following scenario is in theory possible:
*
* CPU0 | CPU1 (kworker)
* lock(A) |
* | xe_pm_runtime_suspend()
* | lock(A)
* xe_device_mem_access_get() |
*
* This will clearly deadlock since rpm core needs to wait for
* xe_pm_runtime_suspend() to complete, but here we are holding lock(A)
* on CPU0 which prevents CPU1 making forward progress. With the
* annotation here and in xe_device_mem_access_get() lockdep will see
* the potential lock inversion and give us a nice splat.
*/
lock_map_acquire(&xe_device_mem_access_lockdep_map);
/*
* Applying lock for entire list op as xe_ttm_bo_destroy and xe_bo_move_notify
* also checks and delets bo entry from user fault list.
*/
mutex_lock(&xe->mem_access.vram_userfault.lock);
list_for_each_entry_safe(bo, on,
&xe->mem_access.vram_userfault.list, vram_userfault_link)
xe_bo_runtime_pm_release_mmap_offset(bo);
mutex_unlock(&xe->mem_access.vram_userfault.lock);
if (xe->d3cold.allowed) {
err = xe_bo_evict_all(xe);
if (err)
goto out;
}
for_each_gt(gt, xe, id) {
err = xe_gt_suspend(gt);
if (err)
goto out;
}
xe_irq_suspend(xe);
out:
lock_map_release(&xe_device_mem_access_lockdep_map);
xe_pm_write_callback_task(xe, NULL);
return err;
}
int xe_pm_runtime_resume(struct xe_device *xe)
{
struct xe_gt *gt;
u8 id;
int err = 0;
/* Disable access_ongoing asserts and prevent recursive pm calls */
xe_pm_write_callback_task(xe, current);
lock_map_acquire(&xe_device_mem_access_lockdep_map);
/*
* It can be possible that xe has allowed d3cold but other pcie devices
* in gfx card soc would have blocked d3cold, therefore card has not
* really lost power. Detecting primary Gt power is sufficient.
*/
gt = xe_device_get_gt(xe, 0);
xe->d3cold.power_lost = xe_guc_in_reset(&gt->uc.guc);
if (xe->d3cold.allowed && xe->d3cold.power_lost) {
for_each_gt(gt, xe, id) {
err = xe_pcode_init(gt);
if (err)
goto out;
}
/*
* This only restores pinned memory which is the memory
* required for the GT(s) to resume.
*/
err = xe_bo_restore_kernel(xe);
if (err)
goto out;
}
xe_irq_resume(xe);
for_each_gt(gt, xe, id)
xe_gt_resume(gt);
if (xe->d3cold.allowed && xe->d3cold.power_lost) {
err = xe_bo_restore_user(xe);
if (err)
goto out;
}
out:
lock_map_release(&xe_device_mem_access_lockdep_map);
xe_pm_write_callback_task(xe, NULL);
return err;
}
int xe_pm_runtime_get(struct xe_device *xe)
{
return pm_runtime_get_sync(xe->drm.dev);
}
int xe_pm_runtime_put(struct xe_device *xe)
{
pm_runtime_mark_last_busy(xe->drm.dev);
return pm_runtime_put(xe->drm.dev);
}
int xe_pm_runtime_get_if_active(struct xe_device *xe)
{
return pm_runtime_get_if_active(xe->drm.dev);
}
void xe_pm_assert_unbounded_bridge(struct xe_device *xe)
{
struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
struct pci_dev *bridge = pci_upstream_bridge(pdev);
if (!bridge)
return;
if (!bridge->driver) {
drm_warn(&xe->drm, "unbounded parent pci bridge, device won't support any PM support.\n");
device_set_pm_not_required(&pdev->dev);
}
}
int xe_pm_set_vram_threshold(struct xe_device *xe, u32 threshold)
{
struct ttm_resource_manager *man;
u32 vram_total_mb = 0;
int i;
for (i = XE_PL_VRAM0; i <= XE_PL_VRAM1; ++i) {
man = ttm_manager_type(&xe->ttm, i);
if (man)
vram_total_mb += DIV_ROUND_UP_ULL(man->size, 1024 * 1024);
}
drm_dbg(&xe->drm, "Total vram %u mb\n", vram_total_mb);
if (threshold > vram_total_mb)
return -EINVAL;
mutex_lock(&xe->d3cold.lock);
xe->d3cold.vram_threshold = threshold;
mutex_unlock(&xe->d3cold.lock);
return 0;
}
void xe_pm_d3cold_allowed_toggle(struct xe_device *xe)
{
struct ttm_resource_manager *man;
u32 total_vram_used_mb = 0;
u64 vram_used;
int i;
if (!xe->d3cold.capable) {
xe->d3cold.allowed = false;
return;
}
for (i = XE_PL_VRAM0; i <= XE_PL_VRAM1; ++i) {
man = ttm_manager_type(&xe->ttm, i);
if (man) {
vram_used = ttm_resource_manager_usage(man);
total_vram_used_mb += DIV_ROUND_UP_ULL(vram_used, 1024 * 1024);
}
}
mutex_lock(&xe->d3cold.lock);
if (total_vram_used_mb < xe->d3cold.vram_threshold)
xe->d3cold.allowed = true;
else
xe->d3cold.allowed = false;
mutex_unlock(&xe->d3cold.lock);
drm_dbg(&xe->drm,
"d3cold: allowed=%s\n", str_yes_no(xe->d3cold.allowed));
}