| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright © 2022 Intel Corporation |
| */ |
| |
| #include "xe_pm.h" |
| |
| #include <linux/pm_runtime.h> |
| |
| #include <drm/drm_managed.h> |
| #include <drm/ttm/ttm_placement.h> |
| |
| #include "display/xe_display.h" |
| #include "xe_bo.h" |
| #include "xe_bo_evict.h" |
| #include "xe_device.h" |
| #include "xe_device_sysfs.h" |
| #include "xe_ggtt.h" |
| #include "xe_gt.h" |
| #include "xe_guc.h" |
| #include "xe_irq.h" |
| #include "xe_pcode.h" |
| #include "xe_wa.h" |
| |
| /** |
| * DOC: Xe Power Management |
| * |
| * Xe PM shall be guided by the simplicity. |
| * Use the simplest hook options whenever possible. |
| * Let's not reinvent the runtime_pm references and hooks. |
| * Shall have a clear separation of display and gt underneath this component. |
| * |
| * What's next: |
| * |
| * For now s2idle and s3 are only working in integrated devices. The next step |
| * is to iterate through all VRAM's BO backing them up into the system memory |
| * before allowing the system suspend. |
| * |
| * Also runtime_pm needs to be here from the beginning. |
| * |
| * RC6/RPS are also critical PM features. Let's start with GuCRC and GuC SLPC |
| * and no wait boost. Frequency optimizations should come on a next stage. |
| */ |
| |
| /** |
| * xe_pm_suspend - Helper for System suspend, i.e. S0->S3 / S0->S2idle |
| * @xe: xe device instance |
| * |
| * Return: 0 on success |
| */ |
| int xe_pm_suspend(struct xe_device *xe) |
| { |
| struct xe_gt *gt; |
| u8 id; |
| int err; |
| |
| for_each_gt(gt, xe, id) |
| xe_gt_suspend_prepare(gt); |
| |
| /* FIXME: Super racey... */ |
| err = xe_bo_evict_all(xe); |
| if (err) |
| return err; |
| |
| xe_display_pm_suspend(xe); |
| |
| for_each_gt(gt, xe, id) { |
| err = xe_gt_suspend(gt); |
| if (err) { |
| xe_display_pm_resume(xe); |
| return err; |
| } |
| } |
| |
| xe_irq_suspend(xe); |
| |
| xe_display_pm_suspend_late(xe); |
| |
| return 0; |
| } |
| |
| /** |
| * xe_pm_resume - Helper for System resume S3->S0 / S2idle->S0 |
| * @xe: xe device instance |
| * |
| * Return: 0 on success |
| */ |
| int xe_pm_resume(struct xe_device *xe) |
| { |
| struct xe_tile *tile; |
| struct xe_gt *gt; |
| u8 id; |
| int err; |
| |
| for_each_tile(tile, xe, id) |
| xe_wa_apply_tile_workarounds(tile); |
| |
| for_each_gt(gt, xe, id) { |
| err = xe_pcode_init(gt); |
| if (err) |
| return err; |
| } |
| |
| xe_display_pm_resume_early(xe); |
| |
| /* |
| * This only restores pinned memory which is the memory required for the |
| * GT(s) to resume. |
| */ |
| err = xe_bo_restore_kernel(xe); |
| if (err) |
| return err; |
| |
| xe_irq_resume(xe); |
| |
| xe_display_pm_resume(xe); |
| |
| for_each_gt(gt, xe, id) |
| xe_gt_resume(gt); |
| |
| err = xe_bo_restore_user(xe); |
| if (err) |
| return err; |
| |
| return 0; |
| } |
| |
| static bool xe_pm_pci_d3cold_capable(struct xe_device *xe) |
| { |
| struct pci_dev *pdev = to_pci_dev(xe->drm.dev); |
| struct pci_dev *root_pdev; |
| |
| root_pdev = pcie_find_root_port(pdev); |
| if (!root_pdev) |
| return false; |
| |
| /* D3Cold requires PME capability */ |
| if (!pci_pme_capable(root_pdev, PCI_D3cold)) { |
| drm_dbg(&xe->drm, "d3cold: PME# not supported\n"); |
| return false; |
| } |
| |
| /* D3Cold requires _PR3 power resource */ |
| if (!pci_pr3_present(root_pdev)) { |
| drm_dbg(&xe->drm, "d3cold: ACPI _PR3 not present\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static void xe_pm_runtime_init(struct xe_device *xe) |
| { |
| struct device *dev = xe->drm.dev; |
| |
| /* |
| * Disable the system suspend direct complete optimization. |
| * We need to ensure that the regular device suspend/resume functions |
| * are called since our runtime_pm cannot guarantee local memory |
| * eviction for d3cold. |
| * TODO: Check HDA audio dependencies claimed by i915, and then enforce |
| * this option to integrated graphics as well. |
| */ |
| if (IS_DGFX(xe)) |
| dev_pm_set_driver_flags(dev, DPM_FLAG_NO_DIRECT_COMPLETE); |
| |
| pm_runtime_use_autosuspend(dev); |
| pm_runtime_set_autosuspend_delay(dev, 1000); |
| pm_runtime_set_active(dev); |
| pm_runtime_allow(dev); |
| pm_runtime_mark_last_busy(dev); |
| pm_runtime_put(dev); |
| } |
| |
| void xe_pm_init_early(struct xe_device *xe) |
| { |
| INIT_LIST_HEAD(&xe->mem_access.vram_userfault.list); |
| drmm_mutex_init(&xe->drm, &xe->mem_access.vram_userfault.lock); |
| } |
| |
| void xe_pm_init(struct xe_device *xe) |
| { |
| /* For now suspend/resume is only allowed with GuC */ |
| if (!xe_device_uc_enabled(xe)) |
| return; |
| |
| drmm_mutex_init(&xe->drm, &xe->d3cold.lock); |
| |
| xe->d3cold.capable = xe_pm_pci_d3cold_capable(xe); |
| |
| if (xe->d3cold.capable) { |
| xe_device_sysfs_init(xe); |
| xe_pm_set_vram_threshold(xe, DEFAULT_VRAM_THRESHOLD); |
| } |
| |
| xe_pm_runtime_init(xe); |
| } |
| |
| void xe_pm_runtime_fini(struct xe_device *xe) |
| { |
| struct device *dev = xe->drm.dev; |
| |
| pm_runtime_get_sync(dev); |
| pm_runtime_forbid(dev); |
| } |
| |
| static void xe_pm_write_callback_task(struct xe_device *xe, |
| struct task_struct *task) |
| { |
| WRITE_ONCE(xe->pm_callback_task, task); |
| |
| /* |
| * Just in case it's somehow possible for our writes to be reordered to |
| * the extent that something else re-uses the task written in |
| * pm_callback_task. For example after returning from the callback, but |
| * before the reordered write that resets pm_callback_task back to NULL. |
| */ |
| smp_mb(); /* pairs with xe_pm_read_callback_task */ |
| } |
| |
| struct task_struct *xe_pm_read_callback_task(struct xe_device *xe) |
| { |
| smp_mb(); /* pairs with xe_pm_write_callback_task */ |
| |
| return READ_ONCE(xe->pm_callback_task); |
| } |
| |
| int xe_pm_runtime_suspend(struct xe_device *xe) |
| { |
| struct xe_bo *bo, *on; |
| struct xe_gt *gt; |
| u8 id; |
| int err = 0; |
| |
| if (xe->d3cold.allowed && xe_device_mem_access_ongoing(xe)) |
| return -EBUSY; |
| |
| /* Disable access_ongoing asserts and prevent recursive pm calls */ |
| xe_pm_write_callback_task(xe, current); |
| |
| /* |
| * The actual xe_device_mem_access_put() is always async underneath, so |
| * exactly where that is called should makes no difference to us. However |
| * we still need to be very careful with the locks that this callback |
| * acquires and the locks that are acquired and held by any callers of |
| * xe_device_mem_access_get(). We already have the matching annotation |
| * on that side, but we also need it here. For example lockdep should be |
| * able to tell us if the following scenario is in theory possible: |
| * |
| * CPU0 | CPU1 (kworker) |
| * lock(A) | |
| * | xe_pm_runtime_suspend() |
| * | lock(A) |
| * xe_device_mem_access_get() | |
| * |
| * This will clearly deadlock since rpm core needs to wait for |
| * xe_pm_runtime_suspend() to complete, but here we are holding lock(A) |
| * on CPU0 which prevents CPU1 making forward progress. With the |
| * annotation here and in xe_device_mem_access_get() lockdep will see |
| * the potential lock inversion and give us a nice splat. |
| */ |
| lock_map_acquire(&xe_device_mem_access_lockdep_map); |
| |
| /* |
| * Applying lock for entire list op as xe_ttm_bo_destroy and xe_bo_move_notify |
| * also checks and delets bo entry from user fault list. |
| */ |
| mutex_lock(&xe->mem_access.vram_userfault.lock); |
| list_for_each_entry_safe(bo, on, |
| &xe->mem_access.vram_userfault.list, vram_userfault_link) |
| xe_bo_runtime_pm_release_mmap_offset(bo); |
| mutex_unlock(&xe->mem_access.vram_userfault.lock); |
| |
| if (xe->d3cold.allowed) { |
| err = xe_bo_evict_all(xe); |
| if (err) |
| goto out; |
| } |
| |
| for_each_gt(gt, xe, id) { |
| err = xe_gt_suspend(gt); |
| if (err) |
| goto out; |
| } |
| |
| xe_irq_suspend(xe); |
| out: |
| lock_map_release(&xe_device_mem_access_lockdep_map); |
| xe_pm_write_callback_task(xe, NULL); |
| return err; |
| } |
| |
| int xe_pm_runtime_resume(struct xe_device *xe) |
| { |
| struct xe_gt *gt; |
| u8 id; |
| int err = 0; |
| |
| /* Disable access_ongoing asserts and prevent recursive pm calls */ |
| xe_pm_write_callback_task(xe, current); |
| |
| lock_map_acquire(&xe_device_mem_access_lockdep_map); |
| |
| /* |
| * It can be possible that xe has allowed d3cold but other pcie devices |
| * in gfx card soc would have blocked d3cold, therefore card has not |
| * really lost power. Detecting primary Gt power is sufficient. |
| */ |
| gt = xe_device_get_gt(xe, 0); |
| xe->d3cold.power_lost = xe_guc_in_reset(>->uc.guc); |
| |
| if (xe->d3cold.allowed && xe->d3cold.power_lost) { |
| for_each_gt(gt, xe, id) { |
| err = xe_pcode_init(gt); |
| if (err) |
| goto out; |
| } |
| |
| /* |
| * This only restores pinned memory which is the memory |
| * required for the GT(s) to resume. |
| */ |
| err = xe_bo_restore_kernel(xe); |
| if (err) |
| goto out; |
| } |
| |
| xe_irq_resume(xe); |
| |
| for_each_gt(gt, xe, id) |
| xe_gt_resume(gt); |
| |
| if (xe->d3cold.allowed && xe->d3cold.power_lost) { |
| err = xe_bo_restore_user(xe); |
| if (err) |
| goto out; |
| } |
| out: |
| lock_map_release(&xe_device_mem_access_lockdep_map); |
| xe_pm_write_callback_task(xe, NULL); |
| return err; |
| } |
| |
| int xe_pm_runtime_get(struct xe_device *xe) |
| { |
| return pm_runtime_get_sync(xe->drm.dev); |
| } |
| |
| int xe_pm_runtime_put(struct xe_device *xe) |
| { |
| pm_runtime_mark_last_busy(xe->drm.dev); |
| return pm_runtime_put(xe->drm.dev); |
| } |
| |
| int xe_pm_runtime_get_if_active(struct xe_device *xe) |
| { |
| return pm_runtime_get_if_active(xe->drm.dev); |
| } |
| |
| void xe_pm_assert_unbounded_bridge(struct xe_device *xe) |
| { |
| struct pci_dev *pdev = to_pci_dev(xe->drm.dev); |
| struct pci_dev *bridge = pci_upstream_bridge(pdev); |
| |
| if (!bridge) |
| return; |
| |
| if (!bridge->driver) { |
| drm_warn(&xe->drm, "unbounded parent pci bridge, device won't support any PM support.\n"); |
| device_set_pm_not_required(&pdev->dev); |
| } |
| } |
| |
| int xe_pm_set_vram_threshold(struct xe_device *xe, u32 threshold) |
| { |
| struct ttm_resource_manager *man; |
| u32 vram_total_mb = 0; |
| int i; |
| |
| for (i = XE_PL_VRAM0; i <= XE_PL_VRAM1; ++i) { |
| man = ttm_manager_type(&xe->ttm, i); |
| if (man) |
| vram_total_mb += DIV_ROUND_UP_ULL(man->size, 1024 * 1024); |
| } |
| |
| drm_dbg(&xe->drm, "Total vram %u mb\n", vram_total_mb); |
| |
| if (threshold > vram_total_mb) |
| return -EINVAL; |
| |
| mutex_lock(&xe->d3cold.lock); |
| xe->d3cold.vram_threshold = threshold; |
| mutex_unlock(&xe->d3cold.lock); |
| |
| return 0; |
| } |
| |
| void xe_pm_d3cold_allowed_toggle(struct xe_device *xe) |
| { |
| struct ttm_resource_manager *man; |
| u32 total_vram_used_mb = 0; |
| u64 vram_used; |
| int i; |
| |
| if (!xe->d3cold.capable) { |
| xe->d3cold.allowed = false; |
| return; |
| } |
| |
| for (i = XE_PL_VRAM0; i <= XE_PL_VRAM1; ++i) { |
| man = ttm_manager_type(&xe->ttm, i); |
| if (man) { |
| vram_used = ttm_resource_manager_usage(man); |
| total_vram_used_mb += DIV_ROUND_UP_ULL(vram_used, 1024 * 1024); |
| } |
| } |
| |
| mutex_lock(&xe->d3cold.lock); |
| |
| if (total_vram_used_mb < xe->d3cold.vram_threshold) |
| xe->d3cold.allowed = true; |
| else |
| xe->d3cold.allowed = false; |
| |
| mutex_unlock(&xe->d3cold.lock); |
| |
| drm_dbg(&xe->drm, |
| "d3cold: allowed=%s\n", str_yes_no(xe->d3cold.allowed)); |
| } |