| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef _BCACHEFS_BTREE_UPDATE_INTERIOR_H |
| #define _BCACHEFS_BTREE_UPDATE_INTERIOR_H |
| |
| #include "btree_cache.h" |
| #include "btree_locking.h" |
| #include "btree_update.h" |
| |
| #define BTREE_UPDATE_NODES_MAX ((BTREE_MAX_DEPTH - 2) * 2 + GC_MERGE_NODES) |
| |
| #define BTREE_UPDATE_JOURNAL_RES (BTREE_UPDATE_NODES_MAX * (BKEY_BTREE_PTR_U64s_MAX + 1)) |
| |
| /* |
| * Tracks an in progress split/rewrite of a btree node and the update to the |
| * parent node: |
| * |
| * When we split/rewrite a node, we do all the updates in memory without |
| * waiting for any writes to complete - we allocate the new node(s) and update |
| * the parent node, possibly recursively up to the root. |
| * |
| * The end result is that we have one or more new nodes being written - |
| * possibly several, if there were multiple splits - and then a write (updating |
| * an interior node) which will make all these new nodes visible. |
| * |
| * Additionally, as we split/rewrite nodes we free the old nodes - but the old |
| * nodes can't be freed (their space on disk can't be reclaimed) until the |
| * update to the interior node that makes the new node visible completes - |
| * until then, the old nodes are still reachable on disk. |
| * |
| */ |
| struct btree_update { |
| struct closure cl; |
| struct bch_fs *c; |
| u64 start_time; |
| unsigned long ip_started; |
| |
| struct list_head list; |
| struct list_head unwritten_list; |
| |
| /* What kind of update are we doing? */ |
| enum { |
| BTREE_INTERIOR_NO_UPDATE, |
| BTREE_INTERIOR_UPDATING_NODE, |
| BTREE_INTERIOR_UPDATING_ROOT, |
| BTREE_INTERIOR_UPDATING_AS, |
| } mode; |
| |
| unsigned nodes_written:1; |
| unsigned took_gc_lock:1; |
| |
| enum btree_id btree_id; |
| unsigned update_level; |
| |
| struct disk_reservation disk_res; |
| |
| /* |
| * BTREE_INTERIOR_UPDATING_NODE: |
| * The update that made the new nodes visible was a regular update to an |
| * existing interior node - @b. We can't write out the update to @b |
| * until the new nodes we created are finished writing, so we block @b |
| * from writing by putting this btree_interior update on the |
| * @b->write_blocked list with @write_blocked_list: |
| */ |
| struct btree *b; |
| struct list_head write_blocked_list; |
| |
| /* |
| * We may be freeing nodes that were dirty, and thus had journal entries |
| * pinned: we need to transfer the oldest of those pins to the |
| * btree_update operation, and release it when the new node(s) |
| * are all persistent and reachable: |
| */ |
| struct journal_entry_pin journal; |
| |
| /* Preallocated nodes we reserve when we start the update: */ |
| struct prealloc_nodes { |
| struct btree *b[BTREE_UPDATE_NODES_MAX]; |
| unsigned nr; |
| } prealloc_nodes[2]; |
| |
| /* Nodes being freed: */ |
| struct keylist old_keys; |
| u64 _old_keys[BTREE_UPDATE_NODES_MAX * |
| BKEY_BTREE_PTR_U64s_MAX]; |
| |
| /* Nodes being added: */ |
| struct keylist new_keys; |
| u64 _new_keys[BTREE_UPDATE_NODES_MAX * |
| BKEY_BTREE_PTR_U64s_MAX]; |
| |
| /* New nodes, that will be made reachable by this update: */ |
| struct btree *new_nodes[BTREE_UPDATE_NODES_MAX]; |
| unsigned nr_new_nodes; |
| |
| struct btree *old_nodes[BTREE_UPDATE_NODES_MAX]; |
| __le64 old_nodes_seq[BTREE_UPDATE_NODES_MAX]; |
| unsigned nr_old_nodes; |
| |
| open_bucket_idx_t open_buckets[BTREE_UPDATE_NODES_MAX * |
| BCH_REPLICAS_MAX]; |
| open_bucket_idx_t nr_open_buckets; |
| |
| unsigned journal_u64s; |
| u64 journal_entries[BTREE_UPDATE_JOURNAL_RES]; |
| |
| /* Only here to reduce stack usage on recursive splits: */ |
| struct keylist parent_keys; |
| /* |
| * Enough room for btree_split's keys without realloc - btree node |
| * pointers never have crc/compression info, so we only need to acount |
| * for the pointers for three keys |
| */ |
| u64 inline_keys[BKEY_BTREE_PTR_U64s_MAX * 3]; |
| }; |
| |
| struct btree *__bch2_btree_node_alloc_replacement(struct btree_update *, |
| struct btree_trans *, |
| struct btree *, |
| struct bkey_format); |
| |
| int bch2_btree_split_leaf(struct btree_trans *, btree_path_idx_t, unsigned); |
| |
| int bch2_btree_increase_depth(struct btree_trans *, btree_path_idx_t, unsigned); |
| |
| int __bch2_foreground_maybe_merge(struct btree_trans *, btree_path_idx_t, |
| unsigned, unsigned, enum btree_node_sibling); |
| |
| static inline int bch2_foreground_maybe_merge_sibling(struct btree_trans *trans, |
| btree_path_idx_t path_idx, |
| unsigned level, unsigned flags, |
| enum btree_node_sibling sib) |
| { |
| struct btree_path *path = trans->paths + path_idx; |
| struct btree *b; |
| |
| EBUG_ON(!btree_node_locked(path, level)); |
| |
| b = path->l[level].b; |
| if (b->sib_u64s[sib] > trans->c->btree_foreground_merge_threshold) |
| return 0; |
| |
| return __bch2_foreground_maybe_merge(trans, path_idx, level, flags, sib); |
| } |
| |
| static inline int bch2_foreground_maybe_merge(struct btree_trans *trans, |
| btree_path_idx_t path, |
| unsigned level, |
| unsigned flags) |
| { |
| return bch2_foreground_maybe_merge_sibling(trans, path, level, flags, |
| btree_prev_sib) ?: |
| bch2_foreground_maybe_merge_sibling(trans, path, level, flags, |
| btree_next_sib); |
| } |
| |
| int bch2_btree_node_rewrite(struct btree_trans *, struct btree_iter *, |
| struct btree *, unsigned); |
| void bch2_btree_node_rewrite_async(struct bch_fs *, struct btree *); |
| int bch2_btree_node_update_key(struct btree_trans *, struct btree_iter *, |
| struct btree *, struct bkey_i *, |
| unsigned, bool); |
| int bch2_btree_node_update_key_get_iter(struct btree_trans *, struct btree *, |
| struct bkey_i *, unsigned, bool); |
| |
| void bch2_btree_set_root_for_read(struct bch_fs *, struct btree *); |
| void bch2_btree_root_alloc(struct bch_fs *, enum btree_id); |
| |
| static inline unsigned btree_update_reserve_required(struct bch_fs *c, |
| struct btree *b) |
| { |
| unsigned depth = btree_node_root(c, b)->c.level + 1; |
| |
| /* |
| * Number of nodes we might have to allocate in a worst case btree |
| * split operation - we split all the way up to the root, then allocate |
| * a new root, unless we're already at max depth: |
| */ |
| if (depth < BTREE_MAX_DEPTH) |
| return (depth - b->c.level) * 2 + 1; |
| else |
| return (depth - b->c.level) * 2 - 1; |
| } |
| |
| static inline void btree_node_reset_sib_u64s(struct btree *b) |
| { |
| b->sib_u64s[0] = b->nr.live_u64s; |
| b->sib_u64s[1] = b->nr.live_u64s; |
| } |
| |
| static inline void *btree_data_end(struct btree *b) |
| { |
| return (void *) b->data + btree_buf_bytes(b); |
| } |
| |
| static inline struct bkey_packed *unwritten_whiteouts_start(struct btree *b) |
| { |
| return (void *) ((u64 *) btree_data_end(b) - b->whiteout_u64s); |
| } |
| |
| static inline struct bkey_packed *unwritten_whiteouts_end(struct btree *b) |
| { |
| return btree_data_end(b); |
| } |
| |
| static inline void *write_block(struct btree *b) |
| { |
| return (void *) b->data + (b->written << 9); |
| } |
| |
| static inline bool __btree_addr_written(struct btree *b, void *p) |
| { |
| return p < write_block(b); |
| } |
| |
| static inline bool bset_written(struct btree *b, struct bset *i) |
| { |
| return __btree_addr_written(b, i); |
| } |
| |
| static inline bool bkey_written(struct btree *b, struct bkey_packed *k) |
| { |
| return __btree_addr_written(b, k); |
| } |
| |
| static inline ssize_t __bch2_btree_u64s_remaining(struct btree *b, void *end) |
| { |
| ssize_t used = bset_byte_offset(b, end) / sizeof(u64) + |
| b->whiteout_u64s; |
| ssize_t total = btree_buf_bytes(b) >> 3; |
| |
| /* Always leave one extra u64 for bch2_varint_decode: */ |
| used++; |
| |
| return total - used; |
| } |
| |
| static inline size_t bch2_btree_keys_u64s_remaining(struct btree *b) |
| { |
| ssize_t remaining = __bch2_btree_u64s_remaining(b, |
| btree_bkey_last(b, bset_tree_last(b))); |
| |
| BUG_ON(remaining < 0); |
| |
| if (bset_written(b, btree_bset_last(b))) |
| return 0; |
| |
| return remaining; |
| } |
| |
| #define BTREE_WRITE_SET_U64s_BITS 9 |
| |
| static inline unsigned btree_write_set_buffer(struct btree *b) |
| { |
| /* |
| * Could buffer up larger amounts of keys for btrees with larger keys, |
| * pending benchmarking: |
| */ |
| return 8 << BTREE_WRITE_SET_U64s_BITS; |
| } |
| |
| static inline struct btree_node_entry *want_new_bset(struct bch_fs *c, struct btree *b) |
| { |
| struct bset_tree *t = bset_tree_last(b); |
| struct btree_node_entry *bne = max(write_block(b), |
| (void *) btree_bkey_last(b, bset_tree_last(b))); |
| ssize_t remaining_space = |
| __bch2_btree_u64s_remaining(b, bne->keys.start); |
| |
| if (unlikely(bset_written(b, bset(b, t)))) { |
| if (remaining_space > (ssize_t) (block_bytes(c) >> 3)) |
| return bne; |
| } else { |
| if (unlikely(bset_u64s(t) * sizeof(u64) > btree_write_set_buffer(b)) && |
| remaining_space > (ssize_t) (btree_write_set_buffer(b) >> 3)) |
| return bne; |
| } |
| |
| return NULL; |
| } |
| |
| static inline void push_whiteout(struct btree *b, struct bpos pos) |
| { |
| struct bkey_packed k; |
| |
| BUG_ON(bch2_btree_keys_u64s_remaining(b) < BKEY_U64s); |
| EBUG_ON(btree_node_just_written(b)); |
| |
| if (!bkey_pack_pos(&k, pos, b)) { |
| struct bkey *u = (void *) &k; |
| |
| bkey_init(u); |
| u->p = pos; |
| } |
| |
| k.needs_whiteout = true; |
| |
| b->whiteout_u64s += k.u64s; |
| bkey_p_copy(unwritten_whiteouts_start(b), &k); |
| } |
| |
| /* |
| * write lock must be held on @b (else the dirty bset that we were going to |
| * insert into could be written out from under us) |
| */ |
| static inline bool bch2_btree_node_insert_fits(struct btree *b, unsigned u64s) |
| { |
| if (unlikely(btree_node_need_rewrite(b))) |
| return false; |
| |
| return u64s <= bch2_btree_keys_u64s_remaining(b); |
| } |
| |
| void bch2_btree_updates_to_text(struct printbuf *, struct bch_fs *); |
| |
| bool bch2_btree_interior_updates_flush(struct bch_fs *); |
| |
| void bch2_journal_entry_to_btree_root(struct bch_fs *, struct jset_entry *); |
| struct jset_entry *bch2_btree_roots_to_journal_entries(struct bch_fs *, |
| struct jset_entry *, unsigned long); |
| |
| void bch2_do_pending_node_rewrites(struct bch_fs *); |
| void bch2_free_pending_node_rewrites(struct bch_fs *); |
| |
| void bch2_fs_btree_interior_update_exit(struct bch_fs *); |
| void bch2_fs_btree_interior_update_init_early(struct bch_fs *); |
| int bch2_fs_btree_interior_update_init(struct bch_fs *); |
| |
| #endif /* _BCACHEFS_BTREE_UPDATE_INTERIOR_H */ |