| #ifndef _ASM_POWERPC_IO_H |
| #define _ASM_POWERPC_IO_H |
| #ifdef __KERNEL__ |
| |
| /* |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| /* Check of existence of legacy devices */ |
| extern int check_legacy_ioport(unsigned long base_port); |
| #define PNPBIOS_BASE 0xf000 /* only relevant for PReP */ |
| |
| #include <linux/compiler.h> |
| #include <asm/page.h> |
| #include <asm/byteorder.h> |
| #include <asm/synch.h> |
| #include <asm/delay.h> |
| #include <asm/mmu.h> |
| |
| #include <asm-generic/iomap.h> |
| |
| #ifdef CONFIG_PPC64 |
| #include <asm/paca.h> |
| #endif |
| |
| #define SIO_CONFIG_RA 0x398 |
| #define SIO_CONFIG_RD 0x399 |
| |
| #define SLOW_DOWN_IO |
| |
| /* 32 bits uses slightly different variables for the various IO |
| * bases. Most of this file only uses _IO_BASE though which we |
| * define properly based on the platform |
| */ |
| #ifndef CONFIG_PCI |
| #define _IO_BASE 0 |
| #define _ISA_MEM_BASE 0 |
| #define PCI_DRAM_OFFSET 0 |
| #elif defined(CONFIG_PPC32) |
| #define _IO_BASE isa_io_base |
| #define _ISA_MEM_BASE isa_mem_base |
| #define PCI_DRAM_OFFSET pci_dram_offset |
| #else |
| #define _IO_BASE pci_io_base |
| #define _ISA_MEM_BASE 0 |
| #define PCI_DRAM_OFFSET 0 |
| #endif |
| |
| extern unsigned long isa_io_base; |
| extern unsigned long isa_mem_base; |
| extern unsigned long pci_io_base; |
| extern unsigned long pci_dram_offset; |
| |
| #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_INDIRECT_IO) |
| #error CONFIG_PPC_INDIRECT_IO is not yet supported on 32 bits |
| #endif |
| |
| /* |
| * |
| * Low level MMIO accessors |
| * |
| * This provides the non-bus specific accessors to MMIO. Those are PowerPC |
| * specific and thus shouldn't be used in generic code. The accessors |
| * provided here are: |
| * |
| * in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64 |
| * out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64 |
| * _insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns |
| * |
| * Those operate directly on a kernel virtual address. Note that the prototype |
| * for the out_* accessors has the arguments in opposite order from the usual |
| * linux PCI accessors. Unlike those, they take the address first and the value |
| * next. |
| * |
| * Note: I might drop the _ns suffix on the stream operations soon as it is |
| * simply normal for stream operations to not swap in the first place. |
| * |
| */ |
| |
| #ifdef CONFIG_PPC64 |
| #define IO_SET_SYNC_FLAG() do { get_paca()->io_sync = 1; } while(0) |
| #else |
| #define IO_SET_SYNC_FLAG() |
| #endif |
| |
| #define DEF_MMIO_IN(name, type, insn) \ |
| static inline type name(const volatile type __iomem *addr) \ |
| { \ |
| type ret; \ |
| __asm__ __volatile__("sync;" insn ";twi 0,%0,0;isync" \ |
| : "=r" (ret) : "r" (addr), "m" (*addr)); \ |
| return ret; \ |
| } |
| |
| #define DEF_MMIO_OUT(name, type, insn) \ |
| static inline void name(volatile type __iomem *addr, type val) \ |
| { \ |
| __asm__ __volatile__("sync;" insn \ |
| : "=m" (*addr) : "r" (val), "r" (addr)); \ |
| IO_SET_SYNC_FLAG(); \ |
| } |
| |
| |
| #define DEF_MMIO_IN_BE(name, size, insn) \ |
| DEF_MMIO_IN(name, u##size, __stringify(insn)"%U2%X2 %0,%2") |
| #define DEF_MMIO_IN_LE(name, size, insn) \ |
| DEF_MMIO_IN(name, u##size, __stringify(insn)" %0,0,%1") |
| |
| #define DEF_MMIO_OUT_BE(name, size, insn) \ |
| DEF_MMIO_OUT(name, u##size, __stringify(insn)"%U0%X0 %1,%0") |
| #define DEF_MMIO_OUT_LE(name, size, insn) \ |
| DEF_MMIO_OUT(name, u##size, __stringify(insn)" %1,0,%2") |
| |
| DEF_MMIO_IN_BE(in_8, 8, lbz); |
| DEF_MMIO_IN_BE(in_be16, 16, lhz); |
| DEF_MMIO_IN_BE(in_be32, 32, lwz); |
| DEF_MMIO_IN_LE(in_le16, 16, lhbrx); |
| DEF_MMIO_IN_LE(in_le32, 32, lwbrx); |
| |
| DEF_MMIO_OUT_BE(out_8, 8, stb); |
| DEF_MMIO_OUT_BE(out_be16, 16, sth); |
| DEF_MMIO_OUT_BE(out_be32, 32, stw); |
| DEF_MMIO_OUT_LE(out_le16, 16, sthbrx); |
| DEF_MMIO_OUT_LE(out_le32, 32, stwbrx); |
| |
| #ifdef __powerpc64__ |
| DEF_MMIO_OUT_BE(out_be64, 64, std); |
| DEF_MMIO_IN_BE(in_be64, 64, ld); |
| |
| /* There is no asm instructions for 64 bits reverse loads and stores */ |
| static inline u64 in_le64(const volatile u64 __iomem *addr) |
| { |
| return le64_to_cpu(in_be64(addr)); |
| } |
| |
| static inline void out_le64(volatile u64 __iomem *addr, u64 val) |
| { |
| out_be64(addr, cpu_to_le64(val)); |
| } |
| #endif /* __powerpc64__ */ |
| |
| /* |
| * Low level IO stream instructions are defined out of line for now |
| */ |
| extern void _insb(const volatile u8 __iomem *addr, void *buf, long count); |
| extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count); |
| extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count); |
| extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count); |
| extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count); |
| extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count); |
| |
| /* The _ns naming is historical and will be removed. For now, just #define |
| * the non _ns equivalent names |
| */ |
| #define _insw _insw_ns |
| #define _insl _insl_ns |
| #define _outsw _outsw_ns |
| #define _outsl _outsl_ns |
| |
| |
| /* |
| * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line |
| */ |
| |
| extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n); |
| extern void _memcpy_fromio(void *dest, const volatile void __iomem *src, |
| unsigned long n); |
| extern void _memcpy_toio(volatile void __iomem *dest, const void *src, |
| unsigned long n); |
| |
| /* |
| * |
| * PCI and standard ISA accessors |
| * |
| * Those are globally defined linux accessors for devices on PCI or ISA |
| * busses. They follow the Linux defined semantics. The current implementation |
| * for PowerPC is as close as possible to the x86 version of these, and thus |
| * provides fairly heavy weight barriers for the non-raw versions |
| * |
| * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_IO |
| * allowing the platform to provide its own implementation of some or all |
| * of the accessors. |
| */ |
| |
| /* |
| * Include the EEH definitions when EEH is enabled only so they don't get |
| * in the way when building for 32 bits |
| */ |
| #ifdef CONFIG_EEH |
| #include <asm/eeh.h> |
| #endif |
| |
| /* Shortcut to the MMIO argument pointer */ |
| #define PCI_IO_ADDR volatile void __iomem * |
| |
| /* Indirect IO address tokens: |
| * |
| * When CONFIG_PPC_INDIRECT_IO is set, the platform can provide hooks |
| * on all IOs. (Note that this is all 64 bits only for now) |
| * |
| * To help platforms who may need to differenciate MMIO addresses in |
| * their hooks, a bitfield is reserved for use by the platform near the |
| * top of MMIO addresses (not PIO, those have to cope the hard way). |
| * |
| * This bit field is 12 bits and is at the top of the IO virtual |
| * addresses PCI_IO_INDIRECT_TOKEN_MASK. |
| * |
| * The kernel virtual space is thus: |
| * |
| * 0xD000000000000000 : vmalloc |
| * 0xD000080000000000 : PCI PHB IO space |
| * 0xD000080080000000 : ioremap |
| * 0xD0000fffffffffff : end of ioremap region |
| * |
| * Since the top 4 bits are reserved as the region ID, we use thus |
| * the next 12 bits and keep 4 bits available for the future if the |
| * virtual address space is ever to be extended. |
| * |
| * The direct IO mapping operations will then mask off those bits |
| * before doing the actual access, though that only happen when |
| * CONFIG_PPC_INDIRECT_IO is set, thus be careful when you use that |
| * mechanism |
| */ |
| |
| #ifdef CONFIG_PPC_INDIRECT_IO |
| #define PCI_IO_IND_TOKEN_MASK 0x0fff000000000000ul |
| #define PCI_IO_IND_TOKEN_SHIFT 48 |
| #define PCI_FIX_ADDR(addr) \ |
| ((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK)) |
| #define PCI_GET_ADDR_TOKEN(addr) \ |
| (((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> \ |
| PCI_IO_IND_TOKEN_SHIFT) |
| #define PCI_SET_ADDR_TOKEN(addr, token) \ |
| do { \ |
| unsigned long __a = (unsigned long)(addr); \ |
| __a &= ~PCI_IO_IND_TOKEN_MASK; \ |
| __a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT; \ |
| (addr) = (void __iomem *)__a; \ |
| } while(0) |
| #else |
| #define PCI_FIX_ADDR(addr) (addr) |
| #endif |
| |
| |
| /* |
| * Non ordered and non-swapping "raw" accessors |
| */ |
| |
| static inline unsigned char __raw_readb(const volatile void __iomem *addr) |
| { |
| return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr); |
| } |
| static inline unsigned short __raw_readw(const volatile void __iomem *addr) |
| { |
| return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr); |
| } |
| static inline unsigned int __raw_readl(const volatile void __iomem *addr) |
| { |
| return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr); |
| } |
| static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr) |
| { |
| *(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v; |
| } |
| static inline void __raw_writew(unsigned short v, volatile void __iomem *addr) |
| { |
| *(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v; |
| } |
| static inline void __raw_writel(unsigned int v, volatile void __iomem *addr) |
| { |
| *(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v; |
| } |
| |
| #ifdef __powerpc64__ |
| static inline unsigned long __raw_readq(const volatile void __iomem *addr) |
| { |
| return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr); |
| } |
| static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr) |
| { |
| *(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v; |
| } |
| #endif /* __powerpc64__ */ |
| |
| /* |
| * |
| * PCI PIO and MMIO accessors. |
| * |
| * |
| * On 32 bits, PIO operations have a recovery mechanism in case they trigger |
| * machine checks (which they occasionally do when probing non existing |
| * IO ports on some platforms, like PowerMac and 8xx). |
| * I always found it to be of dubious reliability and I am tempted to get |
| * rid of it one of these days. So if you think it's important to keep it, |
| * please voice up asap. We never had it for 64 bits and I do not intend |
| * to port it over |
| */ |
| |
| #ifdef CONFIG_PPC32 |
| |
| #define __do_in_asm(name, op) \ |
| extern __inline__ unsigned int name(unsigned int port) \ |
| { \ |
| unsigned int x; \ |
| __asm__ __volatile__( \ |
| "sync\n" \ |
| "0:" op " %0,0,%1\n" \ |
| "1: twi 0,%0,0\n" \ |
| "2: isync\n" \ |
| "3: nop\n" \ |
| "4:\n" \ |
| ".section .fixup,\"ax\"\n" \ |
| "5: li %0,-1\n" \ |
| " b 4b\n" \ |
| ".previous\n" \ |
| ".section __ex_table,\"a\"\n" \ |
| " .align 2\n" \ |
| " .long 0b,5b\n" \ |
| " .long 1b,5b\n" \ |
| " .long 2b,5b\n" \ |
| " .long 3b,5b\n" \ |
| ".previous" \ |
| : "=&r" (x) \ |
| : "r" (port + _IO_BASE)); \ |
| return x; \ |
| } |
| |
| #define __do_out_asm(name, op) \ |
| extern __inline__ void name(unsigned int val, unsigned int port) \ |
| { \ |
| __asm__ __volatile__( \ |
| "sync\n" \ |
| "0:" op " %0,0,%1\n" \ |
| "1: sync\n" \ |
| "2:\n" \ |
| ".section __ex_table,\"a\"\n" \ |
| " .align 2\n" \ |
| " .long 0b,2b\n" \ |
| " .long 1b,2b\n" \ |
| ".previous" \ |
| : : "r" (val), "r" (port + _IO_BASE)); \ |
| } |
| |
| __do_in_asm(_rec_inb, "lbzx") |
| __do_in_asm(_rec_inw, "lhbrx") |
| __do_in_asm(_rec_inl, "lwbrx") |
| __do_out_asm(_rec_outb, "stbx") |
| __do_out_asm(_rec_outw, "sthbrx") |
| __do_out_asm(_rec_outl, "stwbrx") |
| |
| #endif /* CONFIG_PPC32 */ |
| |
| /* The "__do_*" operations below provide the actual "base" implementation |
| * for each of the defined acccessor. Some of them use the out_* functions |
| * directly, some of them still use EEH, though we might change that in the |
| * future. Those macros below provide the necessary argument swapping and |
| * handling of the IO base for PIO. |
| * |
| * They are themselves used by the macros that define the actual accessors |
| * and can be used by the hooks if any. |
| * |
| * Note that PIO operations are always defined in terms of their corresonding |
| * MMIO operations. That allows platforms like iSeries who want to modify the |
| * behaviour of both to only hook on the MMIO version and get both. It's also |
| * possible to hook directly at the toplevel PIO operation if they have to |
| * be handled differently |
| */ |
| #define __do_writeb(val, addr) out_8(PCI_FIX_ADDR(addr), val) |
| #define __do_writew(val, addr) out_le16(PCI_FIX_ADDR(addr), val) |
| #define __do_writel(val, addr) out_le32(PCI_FIX_ADDR(addr), val) |
| #define __do_writeq(val, addr) out_le64(PCI_FIX_ADDR(addr), val) |
| #define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val) |
| #define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val) |
| #define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val) |
| |
| #ifdef CONFIG_EEH |
| #define __do_readb(addr) eeh_readb(PCI_FIX_ADDR(addr)) |
| #define __do_readw(addr) eeh_readw(PCI_FIX_ADDR(addr)) |
| #define __do_readl(addr) eeh_readl(PCI_FIX_ADDR(addr)) |
| #define __do_readq(addr) eeh_readq(PCI_FIX_ADDR(addr)) |
| #define __do_readw_be(addr) eeh_readw_be(PCI_FIX_ADDR(addr)) |
| #define __do_readl_be(addr) eeh_readl_be(PCI_FIX_ADDR(addr)) |
| #define __do_readq_be(addr) eeh_readq_be(PCI_FIX_ADDR(addr)) |
| #else /* CONFIG_EEH */ |
| #define __do_readb(addr) in_8(PCI_FIX_ADDR(addr)) |
| #define __do_readw(addr) in_le16(PCI_FIX_ADDR(addr)) |
| #define __do_readl(addr) in_le32(PCI_FIX_ADDR(addr)) |
| #define __do_readq(addr) in_le64(PCI_FIX_ADDR(addr)) |
| #define __do_readw_be(addr) in_be16(PCI_FIX_ADDR(addr)) |
| #define __do_readl_be(addr) in_be32(PCI_FIX_ADDR(addr)) |
| #define __do_readq_be(addr) in_be64(PCI_FIX_ADDR(addr)) |
| #endif /* !defined(CONFIG_EEH) */ |
| |
| #ifdef CONFIG_PPC32 |
| #define __do_outb(val, port) _rec_outb(val, port) |
| #define __do_outw(val, port) _rec_outw(val, port) |
| #define __do_outl(val, port) _rec_outl(val, port) |
| #define __do_inb(port) _rec_inb(port) |
| #define __do_inw(port) _rec_inw(port) |
| #define __do_inl(port) _rec_inl(port) |
| #else /* CONFIG_PPC32 */ |
| #define __do_outb(val, port) writeb(val,(PCI_IO_ADDR)_IO_BASE+port); |
| #define __do_outw(val, port) writew(val,(PCI_IO_ADDR)_IO_BASE+port); |
| #define __do_outl(val, port) writel(val,(PCI_IO_ADDR)_IO_BASE+port); |
| #define __do_inb(port) readb((PCI_IO_ADDR)_IO_BASE + port); |
| #define __do_inw(port) readw((PCI_IO_ADDR)_IO_BASE + port); |
| #define __do_inl(port) readl((PCI_IO_ADDR)_IO_BASE + port); |
| #endif /* !CONFIG_PPC32 */ |
| |
| #ifdef CONFIG_EEH |
| #define __do_readsb(a, b, n) eeh_readsb(PCI_FIX_ADDR(a), (b), (n)) |
| #define __do_readsw(a, b, n) eeh_readsw(PCI_FIX_ADDR(a), (b), (n)) |
| #define __do_readsl(a, b, n) eeh_readsl(PCI_FIX_ADDR(a), (b), (n)) |
| #else /* CONFIG_EEH */ |
| #define __do_readsb(a, b, n) _insb(PCI_FIX_ADDR(a), (b), (n)) |
| #define __do_readsw(a, b, n) _insw(PCI_FIX_ADDR(a), (b), (n)) |
| #define __do_readsl(a, b, n) _insl(PCI_FIX_ADDR(a), (b), (n)) |
| #endif /* !CONFIG_EEH */ |
| #define __do_writesb(a, b, n) _outsb(PCI_FIX_ADDR(a),(b),(n)) |
| #define __do_writesw(a, b, n) _outsw(PCI_FIX_ADDR(a),(b),(n)) |
| #define __do_writesl(a, b, n) _outsl(PCI_FIX_ADDR(a),(b),(n)) |
| |
| #define __do_insb(p, b, n) readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n)) |
| #define __do_insw(p, b, n) readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n)) |
| #define __do_insl(p, b, n) readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n)) |
| #define __do_outsb(p, b, n) writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n)) |
| #define __do_outsw(p, b, n) writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n)) |
| #define __do_outsl(p, b, n) writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n)) |
| |
| #define __do_memset_io(addr, c, n) \ |
| _memset_io(PCI_FIX_ADDR(addr), c, n) |
| #define __do_memcpy_toio(dst, src, n) \ |
| _memcpy_toio(PCI_FIX_ADDR(dst), src, n) |
| |
| #ifdef CONFIG_EEH |
| #define __do_memcpy_fromio(dst, src, n) \ |
| eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n) |
| #else /* CONFIG_EEH */ |
| #define __do_memcpy_fromio(dst, src, n) \ |
| _memcpy_fromio(dst,PCI_FIX_ADDR(src),n) |
| #endif /* !CONFIG_EEH */ |
| |
| #ifdef CONFIG_PPC_INDIRECT_IO |
| #define DEF_PCI_HOOK(x) x |
| #else |
| #define DEF_PCI_HOOK(x) NULL |
| #endif |
| |
| /* Structure containing all the hooks */ |
| extern struct ppc_pci_io { |
| |
| #define DEF_PCI_AC_RET(name, ret, at, al) ret (*name) at; |
| #define DEF_PCI_AC_NORET(name, at, al) void (*name) at; |
| |
| #include <asm/io-defs.h> |
| |
| #undef DEF_PCI_AC_RET |
| #undef DEF_PCI_AC_NORET |
| |
| } ppc_pci_io; |
| |
| /* The inline wrappers */ |
| #define DEF_PCI_AC_RET(name, ret, at, al) \ |
| static inline ret name at \ |
| { \ |
| if (DEF_PCI_HOOK(ppc_pci_io.name) != NULL) \ |
| return ppc_pci_io.name al; \ |
| return __do_##name al; \ |
| } |
| |
| #define DEF_PCI_AC_NORET(name, at, al) \ |
| static inline void name at \ |
| { \ |
| if (DEF_PCI_HOOK(ppc_pci_io.name) != NULL) \ |
| ppc_pci_io.name al; \ |
| else \ |
| __do_##name al; \ |
| } |
| |
| #include <asm/io-defs.h> |
| |
| #undef DEF_PCI_AC_RET |
| #undef DEF_PCI_AC_NORET |
| |
| /* Some drivers check for the presence of readq & writeq with |
| * a #ifdef, so we make them happy here. |
| */ |
| #ifdef __powerpc64__ |
| #define readq readq |
| #define writeq writeq |
| #endif |
| |
| #ifdef CONFIG_NOT_COHERENT_CACHE |
| |
| #define dma_cache_inv(_start,_size) \ |
| invalidate_dcache_range(_start, (_start + _size)) |
| #define dma_cache_wback(_start,_size) \ |
| clean_dcache_range(_start, (_start + _size)) |
| #define dma_cache_wback_inv(_start,_size) \ |
| flush_dcache_range(_start, (_start + _size)) |
| |
| #else /* CONFIG_NOT_COHERENT_CACHE */ |
| |
| #define dma_cache_inv(_start,_size) do { } while (0) |
| #define dma_cache_wback(_start,_size) do { } while (0) |
| #define dma_cache_wback_inv(_start,_size) do { } while (0) |
| |
| #endif /* !CONFIG_NOT_COHERENT_CACHE */ |
| |
| /* |
| * Convert a physical pointer to a virtual kernel pointer for /dev/mem |
| * access |
| */ |
| #define xlate_dev_mem_ptr(p) __va(p) |
| |
| /* |
| * Convert a virtual cached pointer to an uncached pointer |
| */ |
| #define xlate_dev_kmem_ptr(p) p |
| |
| /* |
| * We don't do relaxed operations yet, at least not with this semantic |
| */ |
| #define readb_relaxed(addr) readb(addr) |
| #define readw_relaxed(addr) readw(addr) |
| #define readl_relaxed(addr) readl(addr) |
| #define readq_relaxed(addr) readq(addr) |
| |
| #ifdef CONFIG_PPC32 |
| #define mmiowb() |
| #else |
| /* |
| * Enforce synchronisation of stores vs. spin_unlock |
| * (this does it explicitely, though our implementation of spin_unlock |
| * does it implicitely too) |
| */ |
| static inline void mmiowb(void) |
| { |
| unsigned long tmp; |
| |
| __asm__ __volatile__("sync; li %0,0; stb %0,%1(13)" |
| : "=&r" (tmp) : "i" (offsetof(struct paca_struct, io_sync)) |
| : "memory"); |
| } |
| #endif /* !CONFIG_PPC32 */ |
| |
| static inline void iosync(void) |
| { |
| __asm__ __volatile__ ("sync" : : : "memory"); |
| } |
| |
| /* Enforce in-order execution of data I/O. |
| * No distinction between read/write on PPC; use eieio for all three. |
| * Those are fairly week though. They don't provide a barrier between |
| * MMIO and cacheable storage nor do they provide a barrier vs. locks, |
| * they only provide barriers between 2 __raw MMIO operations and |
| * possibly break write combining. |
| */ |
| #define iobarrier_rw() eieio() |
| #define iobarrier_r() eieio() |
| #define iobarrier_w() eieio() |
| |
| |
| /* |
| * output pause versions need a delay at least for the |
| * w83c105 ide controller in a p610. |
| */ |
| #define inb_p(port) inb(port) |
| #define outb_p(val, port) (udelay(1), outb((val), (port))) |
| #define inw_p(port) inw(port) |
| #define outw_p(val, port) (udelay(1), outw((val), (port))) |
| #define inl_p(port) inl(port) |
| #define outl_p(val, port) (udelay(1), outl((val), (port))) |
| |
| |
| #define IO_SPACE_LIMIT ~(0UL) |
| |
| |
| /** |
| * ioremap - map bus memory into CPU space |
| * @address: bus address of the memory |
| * @size: size of the resource to map |
| * |
| * ioremap performs a platform specific sequence of operations to |
| * make bus memory CPU accessible via the readb/readw/readl/writeb/ |
| * writew/writel functions and the other mmio helpers. The returned |
| * address is not guaranteed to be usable directly as a virtual |
| * address. |
| * |
| * We provide a few variations of it: |
| * |
| * * ioremap is the standard one and provides non-cacheable guarded mappings |
| * and can be hooked by the platform via ppc_md |
| * |
| * * ioremap_flags allows to specify the page flags as an argument and can |
| * also be hooked by the platform via ppc_md |
| * |
| * * ioremap_nocache is identical to ioremap |
| * |
| * * iounmap undoes such a mapping and can be hooked |
| * |
| * * __ioremap_explicit (and the pending __iounmap_explicit) are low level |
| * functions to create hand-made mappings for use only by the PCI code |
| * and cannot currently be hooked. |
| * |
| * * __ioremap is the low level implementation used by ioremap and |
| * ioremap_flags and cannot be hooked (but can be used by a hook on one |
| * of the previous ones) |
| * |
| * * __iounmap, is the low level implementation used by iounmap and cannot |
| * be hooked (but can be used by a hook on iounmap) |
| * |
| */ |
| extern void __iomem *ioremap(phys_addr_t address, unsigned long size); |
| extern void __iomem *ioremap_flags(phys_addr_t address, unsigned long size, |
| unsigned long flags); |
| #define ioremap_nocache(addr, size) ioremap((addr), (size)) |
| extern void iounmap(volatile void __iomem *addr); |
| |
| extern void __iomem *__ioremap(phys_addr_t, unsigned long size, |
| unsigned long flags); |
| extern void __iounmap(volatile void __iomem *addr); |
| |
| extern int __ioremap_explicit(phys_addr_t p_addr, unsigned long v_addr, |
| unsigned long size, unsigned long flags); |
| extern int __iounmap_explicit(volatile void __iomem *start, |
| unsigned long size); |
| |
| extern void __iomem * reserve_phb_iospace(unsigned long size); |
| |
| /* Those are more 32 bits only functions */ |
| extern unsigned long iopa(unsigned long addr); |
| extern unsigned long mm_ptov(unsigned long addr) __attribute_const__; |
| extern void io_block_mapping(unsigned long virt, phys_addr_t phys, |
| unsigned int size, int flags); |
| |
| |
| /* |
| * When CONFIG_PPC_INDIRECT_IO is set, we use the generic iomap implementation |
| * which needs some additional definitions here. They basically allow PIO |
| * space overall to be 1GB. This will work as long as we never try to use |
| * iomap to map MMIO below 1GB which should be fine on ppc64 |
| */ |
| #define HAVE_ARCH_PIO_SIZE 1 |
| #define PIO_OFFSET 0x00000000UL |
| #define PIO_MASK 0x3fffffffUL |
| #define PIO_RESERVED 0x40000000UL |
| |
| #define mmio_read16be(addr) readw_be(addr) |
| #define mmio_read32be(addr) readl_be(addr) |
| #define mmio_write16be(val, addr) writew_be(val, addr) |
| #define mmio_write32be(val, addr) writel_be(val, addr) |
| #define mmio_insb(addr, dst, count) readsb(addr, dst, count) |
| #define mmio_insw(addr, dst, count) readsw(addr, dst, count) |
| #define mmio_insl(addr, dst, count) readsl(addr, dst, count) |
| #define mmio_outsb(addr, src, count) writesb(addr, src, count) |
| #define mmio_outsw(addr, src, count) writesw(addr, src, count) |
| #define mmio_outsl(addr, src, count) writesl(addr, src, count) |
| |
| /** |
| * virt_to_phys - map virtual addresses to physical |
| * @address: address to remap |
| * |
| * The returned physical address is the physical (CPU) mapping for |
| * the memory address given. It is only valid to use this function on |
| * addresses directly mapped or allocated via kmalloc. |
| * |
| * This function does not give bus mappings for DMA transfers. In |
| * almost all conceivable cases a device driver should not be using |
| * this function |
| */ |
| static inline unsigned long virt_to_phys(volatile void * address) |
| { |
| return __pa((unsigned long)address); |
| } |
| |
| /** |
| * phys_to_virt - map physical address to virtual |
| * @address: address to remap |
| * |
| * The returned virtual address is a current CPU mapping for |
| * the memory address given. It is only valid to use this function on |
| * addresses that have a kernel mapping |
| * |
| * This function does not handle bus mappings for DMA transfers. In |
| * almost all conceivable cases a device driver should not be using |
| * this function |
| */ |
| static inline void * phys_to_virt(unsigned long address) |
| { |
| return (void *)__va(address); |
| } |
| |
| /* |
| * Change "struct page" to physical address. |
| */ |
| #define page_to_phys(page) (page_to_pfn(page) << PAGE_SHIFT) |
| |
| /* We do NOT want virtual merging, it would put too much pressure on |
| * our iommu allocator. Instead, we want drivers to be smart enough |
| * to coalesce sglists that happen to have been mapped in a contiguous |
| * way by the iommu |
| */ |
| #define BIO_VMERGE_BOUNDARY 0 |
| |
| /* |
| * 32 bits still uses virt_to_bus() for it's implementation of DMA |
| * mappings se we have to keep it defined here. We also have some old |
| * drivers (shame shame shame) that use bus_to_virt() and haven't been |
| * fixed yet so I need to define it here. |
| */ |
| #ifdef CONFIG_PPC32 |
| |
| static inline unsigned long virt_to_bus(volatile void * address) |
| { |
| if (address == NULL) |
| return 0; |
| return __pa(address) + PCI_DRAM_OFFSET; |
| } |
| |
| static inline void * bus_to_virt(unsigned long address) |
| { |
| if (address == 0) |
| return NULL; |
| return __va(address - PCI_DRAM_OFFSET); |
| } |
| |
| #define page_to_bus(page) (page_to_phys(page) + PCI_DRAM_OFFSET) |
| |
| #endif /* CONFIG_PPC32 */ |
| |
| |
| #endif /* __KERNEL__ */ |
| |
| #endif /* _ASM_POWERPC_IO_H */ |