| /* |
| * Copyright 2019 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| */ |
| |
| #include "amdgpu.h" |
| #include "amdgpu_smu.h" |
| #include "smu_internal.h" |
| #include "smu_v12_0_ppsmc.h" |
| #include "smu12_driver_if.h" |
| #include "smu_v12_0.h" |
| #include "renoir_ppt.h" |
| |
| |
| #define CLK_MAP(clk, index) \ |
| [SMU_##clk] = {1, (index)} |
| |
| #define MSG_MAP(msg, index) \ |
| [SMU_MSG_##msg] = {1, (index)} |
| |
| #define TAB_MAP_VALID(tab) \ |
| [SMU_TABLE_##tab] = {1, TABLE_##tab} |
| |
| #define TAB_MAP_INVALID(tab) \ |
| [SMU_TABLE_##tab] = {0, TABLE_##tab} |
| |
| static struct smu_12_0_cmn2aisc_mapping renoir_message_map[SMU_MSG_MAX_COUNT] = { |
| MSG_MAP(TestMessage, PPSMC_MSG_TestMessage), |
| MSG_MAP(GetSmuVersion, PPSMC_MSG_GetSmuVersion), |
| MSG_MAP(GetDriverIfVersion, PPSMC_MSG_GetDriverIfVersion), |
| MSG_MAP(PowerUpGfx, PPSMC_MSG_PowerUpGfx), |
| MSG_MAP(AllowGfxOff, PPSMC_MSG_EnableGfxOff), |
| MSG_MAP(DisallowGfxOff, PPSMC_MSG_DisableGfxOff), |
| MSG_MAP(PowerDownIspByTile, PPSMC_MSG_PowerDownIspByTile), |
| MSG_MAP(PowerUpIspByTile, PPSMC_MSG_PowerUpIspByTile), |
| MSG_MAP(PowerDownVcn, PPSMC_MSG_PowerDownVcn), |
| MSG_MAP(PowerUpVcn, PPSMC_MSG_PowerUpVcn), |
| MSG_MAP(PowerDownSdma, PPSMC_MSG_PowerDownSdma), |
| MSG_MAP(PowerUpSdma, PPSMC_MSG_PowerUpSdma), |
| MSG_MAP(SetHardMinIspclkByFreq, PPSMC_MSG_SetHardMinIspclkByFreq), |
| MSG_MAP(SetHardMinVcn, PPSMC_MSG_SetHardMinVcn), |
| MSG_MAP(Spare1, PPSMC_MSG_spare1), |
| MSG_MAP(Spare2, PPSMC_MSG_spare2), |
| MSG_MAP(SetAllowFclkSwitch, PPSMC_MSG_SetAllowFclkSwitch), |
| MSG_MAP(SetMinVideoGfxclkFreq, PPSMC_MSG_SetMinVideoGfxclkFreq), |
| MSG_MAP(ActiveProcessNotify, PPSMC_MSG_ActiveProcessNotify), |
| MSG_MAP(SetCustomPolicy, PPSMC_MSG_SetCustomPolicy), |
| MSG_MAP(SetVideoFps, PPSMC_MSG_SetVideoFps), |
| MSG_MAP(NumOfDisplays, PPSMC_MSG_SetDisplayCount), |
| MSG_MAP(QueryPowerLimit, PPSMC_MSG_QueryPowerLimit), |
| MSG_MAP(SetDriverDramAddrHigh, PPSMC_MSG_SetDriverDramAddrHigh), |
| MSG_MAP(SetDriverDramAddrLow, PPSMC_MSG_SetDriverDramAddrLow), |
| MSG_MAP(TransferTableSmu2Dram, PPSMC_MSG_TransferTableSmu2Dram), |
| MSG_MAP(TransferTableDram2Smu, PPSMC_MSG_TransferTableDram2Smu), |
| MSG_MAP(GfxDeviceDriverReset, PPSMC_MSG_GfxDeviceDriverReset), |
| MSG_MAP(SetGfxclkOverdriveByFreqVid, PPSMC_MSG_SetGfxclkOverdriveByFreqVid), |
| MSG_MAP(SetHardMinDcfclkByFreq, PPSMC_MSG_SetHardMinDcfclkByFreq), |
| MSG_MAP(SetHardMinSocclkByFreq, PPSMC_MSG_SetHardMinSocclkByFreq), |
| MSG_MAP(ControlIgpuATS, PPSMC_MSG_ControlIgpuATS), |
| MSG_MAP(SetMinVideoFclkFreq, PPSMC_MSG_SetMinVideoFclkFreq), |
| MSG_MAP(SetMinDeepSleepDcfclk, PPSMC_MSG_SetMinDeepSleepDcfclk), |
| MSG_MAP(ForcePowerDownGfx, PPSMC_MSG_ForcePowerDownGfx), |
| MSG_MAP(SetPhyclkVoltageByFreq, PPSMC_MSG_SetPhyclkVoltageByFreq), |
| MSG_MAP(SetDppclkVoltageByFreq, PPSMC_MSG_SetDppclkVoltageByFreq), |
| MSG_MAP(SetSoftMinVcn, PPSMC_MSG_SetSoftMinVcn), |
| MSG_MAP(EnablePostCode, PPSMC_MSG_EnablePostCode), |
| MSG_MAP(GetGfxclkFrequency, PPSMC_MSG_GetGfxclkFrequency), |
| MSG_MAP(GetFclkFrequency, PPSMC_MSG_GetFclkFrequency), |
| MSG_MAP(GetMinGfxclkFrequency, PPSMC_MSG_GetMinGfxclkFrequency), |
| MSG_MAP(GetMaxGfxclkFrequency, PPSMC_MSG_GetMaxGfxclkFrequency), |
| MSG_MAP(SoftReset, PPSMC_MSG_SoftReset), |
| MSG_MAP(SetGfxCGPG, PPSMC_MSG_SetGfxCGPG), |
| MSG_MAP(SetSoftMaxGfxClk, PPSMC_MSG_SetSoftMaxGfxClk), |
| MSG_MAP(SetHardMinGfxClk, PPSMC_MSG_SetHardMinGfxClk), |
| MSG_MAP(SetSoftMaxSocclkByFreq, PPSMC_MSG_SetSoftMaxSocclkByFreq), |
| MSG_MAP(SetSoftMaxFclkByFreq, PPSMC_MSG_SetSoftMaxFclkByFreq), |
| MSG_MAP(SetSoftMaxVcn, PPSMC_MSG_SetSoftMaxVcn), |
| MSG_MAP(PowerGateMmHub, PPSMC_MSG_PowerGateMmHub), |
| MSG_MAP(UpdatePmeRestore, PPSMC_MSG_UpdatePmeRestore), |
| MSG_MAP(GpuChangeState, PPSMC_MSG_GpuChangeState), |
| MSG_MAP(SetPowerLimitPercentage, PPSMC_MSG_SetPowerLimitPercentage), |
| MSG_MAP(ForceGfxContentSave, PPSMC_MSG_ForceGfxContentSave), |
| MSG_MAP(EnableTmdp48MHzRefclkPwrDown, PPSMC_MSG_EnableTmdp48MHzRefclkPwrDown), |
| MSG_MAP(PowerDownJpeg, PPSMC_MSG_PowerDownJpeg), |
| MSG_MAP(PowerUpJpeg, PPSMC_MSG_PowerUpJpeg), |
| MSG_MAP(PowerGateAtHub, PPSMC_MSG_PowerGateAtHub), |
| MSG_MAP(SetSoftMinJpeg, PPSMC_MSG_SetSoftMinJpeg), |
| MSG_MAP(SetHardMinFclkByFreq, PPSMC_MSG_SetHardMinFclkByFreq), |
| }; |
| |
| static struct smu_12_0_cmn2aisc_mapping renoir_clk_map[SMU_CLK_COUNT] = { |
| CLK_MAP(GFXCLK, CLOCK_GFXCLK), |
| CLK_MAP(SCLK, CLOCK_GFXCLK), |
| CLK_MAP(SOCCLK, CLOCK_SOCCLK), |
| CLK_MAP(UCLK, CLOCK_FCLK), |
| CLK_MAP(MCLK, CLOCK_FCLK), |
| }; |
| |
| static struct smu_12_0_cmn2aisc_mapping renoir_table_map[SMU_TABLE_COUNT] = { |
| TAB_MAP_VALID(WATERMARKS), |
| TAB_MAP_INVALID(CUSTOM_DPM), |
| TAB_MAP_VALID(DPMCLOCKS), |
| TAB_MAP_VALID(SMU_METRICS), |
| }; |
| |
| static int renoir_get_smu_msg_index(struct smu_context *smc, uint32_t index) |
| { |
| struct smu_12_0_cmn2aisc_mapping mapping; |
| |
| if (index >= SMU_MSG_MAX_COUNT) |
| return -EINVAL; |
| |
| mapping = renoir_message_map[index]; |
| if (!(mapping.valid_mapping)) |
| return -EINVAL; |
| |
| return mapping.map_to; |
| } |
| |
| static int renoir_get_smu_clk_index(struct smu_context *smc, uint32_t index) |
| { |
| struct smu_12_0_cmn2aisc_mapping mapping; |
| |
| if (index >= SMU_CLK_COUNT) |
| return -EINVAL; |
| |
| mapping = renoir_clk_map[index]; |
| if (!(mapping.valid_mapping)) { |
| return -EINVAL; |
| } |
| |
| return mapping.map_to; |
| } |
| |
| static int renoir_get_smu_table_index(struct smu_context *smc, uint32_t index) |
| { |
| struct smu_12_0_cmn2aisc_mapping mapping; |
| |
| if (index >= SMU_TABLE_COUNT) |
| return -EINVAL; |
| |
| mapping = renoir_table_map[index]; |
| if (!(mapping.valid_mapping)) |
| return -EINVAL; |
| |
| return mapping.map_to; |
| } |
| |
| static int renoir_get_metrics_table(struct smu_context *smu, |
| SmuMetrics_t *metrics_table) |
| { |
| struct smu_table_context *smu_table= &smu->smu_table; |
| int ret = 0; |
| |
| mutex_lock(&smu->metrics_lock); |
| if (!smu_table->metrics_time || time_after(jiffies, smu_table->metrics_time + msecs_to_jiffies(100))) { |
| ret = smu_update_table(smu, SMU_TABLE_SMU_METRICS, 0, |
| (void *)smu_table->metrics_table, false); |
| if (ret) { |
| pr_info("Failed to export SMU metrics table!\n"); |
| mutex_unlock(&smu->metrics_lock); |
| return ret; |
| } |
| smu_table->metrics_time = jiffies; |
| } |
| |
| memcpy(metrics_table, smu_table->metrics_table, sizeof(SmuMetrics_t)); |
| mutex_unlock(&smu->metrics_lock); |
| |
| return ret; |
| } |
| |
| static int renoir_tables_init(struct smu_context *smu, struct smu_table *tables) |
| { |
| struct smu_table_context *smu_table = &smu->smu_table; |
| |
| SMU_TABLE_INIT(tables, SMU_TABLE_WATERMARKS, sizeof(Watermarks_t), |
| PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); |
| SMU_TABLE_INIT(tables, SMU_TABLE_DPMCLOCKS, sizeof(DpmClocks_t), |
| PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); |
| SMU_TABLE_INIT(tables, SMU_TABLE_SMU_METRICS, sizeof(SmuMetrics_t), |
| PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); |
| |
| smu_table->clocks_table = kzalloc(sizeof(DpmClocks_t), GFP_KERNEL); |
| if (!smu_table->clocks_table) |
| return -ENOMEM; |
| |
| smu_table->metrics_table = kzalloc(sizeof(SmuMetrics_t), GFP_KERNEL); |
| if (!smu_table->metrics_table) |
| return -ENOMEM; |
| smu_table->metrics_time = 0; |
| |
| smu_table->watermarks_table = kzalloc(sizeof(Watermarks_t), GFP_KERNEL); |
| if (!smu_table->watermarks_table) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| /** |
| * This interface just for getting uclk ultimate freq and should't introduce |
| * other likewise function result in overmuch callback. |
| */ |
| static int renoir_get_dpm_clk_limited(struct smu_context *smu, enum smu_clk_type clk_type, |
| uint32_t dpm_level, uint32_t *freq) |
| { |
| DpmClocks_t *clk_table = smu->smu_table.clocks_table; |
| |
| if (!clk_table || clk_type >= SMU_CLK_COUNT) |
| return -EINVAL; |
| |
| GET_DPM_CUR_FREQ(clk_table, clk_type, dpm_level, *freq); |
| |
| return 0; |
| } |
| |
| static int renoir_print_clk_levels(struct smu_context *smu, |
| enum smu_clk_type clk_type, char *buf) |
| { |
| int i, size = 0, ret = 0; |
| uint32_t cur_value = 0, value = 0, count = 0, min = 0, max = 0; |
| DpmClocks_t *clk_table = smu->smu_table.clocks_table; |
| SmuMetrics_t metrics; |
| bool cur_value_match_level = false; |
| |
| if (!clk_table || clk_type >= SMU_CLK_COUNT) |
| return -EINVAL; |
| |
| memset(&metrics, 0, sizeof(metrics)); |
| |
| ret = renoir_get_metrics_table(smu, &metrics); |
| if (ret) |
| return ret; |
| |
| switch (clk_type) { |
| case SMU_GFXCLK: |
| case SMU_SCLK: |
| /* retirve table returned paramters unit is MHz */ |
| cur_value = metrics.ClockFrequency[CLOCK_GFXCLK]; |
| ret = smu_get_dpm_freq_range(smu, SMU_GFXCLK, &min, &max, false); |
| if (!ret) { |
| /* driver only know min/max gfx_clk, Add level 1 for all other gfx clks */ |
| if (cur_value == max) |
| i = 2; |
| else if (cur_value == min) |
| i = 0; |
| else |
| i = 1; |
| |
| size += sprintf(buf + size, "0: %uMhz %s\n", min, |
| i == 0 ? "*" : ""); |
| size += sprintf(buf + size, "1: %uMhz %s\n", |
| i == 1 ? cur_value : RENOIR_UMD_PSTATE_GFXCLK, |
| i == 1 ? "*" : ""); |
| size += sprintf(buf + size, "2: %uMhz %s\n", max, |
| i == 2 ? "*" : ""); |
| } |
| return size; |
| case SMU_SOCCLK: |
| count = NUM_SOCCLK_DPM_LEVELS; |
| cur_value = metrics.ClockFrequency[CLOCK_SOCCLK]; |
| break; |
| case SMU_MCLK: |
| count = NUM_MEMCLK_DPM_LEVELS; |
| cur_value = metrics.ClockFrequency[CLOCK_FCLK]; |
| break; |
| case SMU_DCEFCLK: |
| count = NUM_DCFCLK_DPM_LEVELS; |
| cur_value = metrics.ClockFrequency[CLOCK_DCFCLK]; |
| break; |
| case SMU_FCLK: |
| count = NUM_FCLK_DPM_LEVELS; |
| cur_value = metrics.ClockFrequency[CLOCK_FCLK]; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| for (i = 0; i < count; i++) { |
| GET_DPM_CUR_FREQ(clk_table, clk_type, i, value); |
| if (!value) |
| continue; |
| size += sprintf(buf + size, "%d: %uMhz %s\n", i, value, |
| cur_value == value ? "*" : ""); |
| if (cur_value == value) |
| cur_value_match_level = true; |
| } |
| |
| if (!cur_value_match_level) |
| size += sprintf(buf + size, " %uMhz *\n", cur_value); |
| |
| return size; |
| } |
| |
| static enum amd_pm_state_type renoir_get_current_power_state(struct smu_context *smu) |
| { |
| enum amd_pm_state_type pm_type; |
| struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm); |
| |
| if (!smu_dpm_ctx->dpm_context || |
| !smu_dpm_ctx->dpm_current_power_state) |
| return -EINVAL; |
| |
| switch (smu_dpm_ctx->dpm_current_power_state->classification.ui_label) { |
| case SMU_STATE_UI_LABEL_BATTERY: |
| pm_type = POWER_STATE_TYPE_BATTERY; |
| break; |
| case SMU_STATE_UI_LABEL_BALLANCED: |
| pm_type = POWER_STATE_TYPE_BALANCED; |
| break; |
| case SMU_STATE_UI_LABEL_PERFORMANCE: |
| pm_type = POWER_STATE_TYPE_PERFORMANCE; |
| break; |
| default: |
| if (smu_dpm_ctx->dpm_current_power_state->classification.flags & SMU_STATE_CLASSIFICATION_FLAG_BOOT) |
| pm_type = POWER_STATE_TYPE_INTERNAL_BOOT; |
| else |
| pm_type = POWER_STATE_TYPE_DEFAULT; |
| break; |
| } |
| |
| return pm_type; |
| } |
| |
| static int renoir_dpm_set_uvd_enable(struct smu_context *smu, bool enable) |
| { |
| struct smu_power_context *smu_power = &smu->smu_power; |
| struct smu_power_gate *power_gate = &smu_power->power_gate; |
| int ret = 0; |
| |
| if (enable) { |
| /* vcn dpm on is a prerequisite for vcn power gate messages */ |
| if (smu_feature_is_enabled(smu, SMU_FEATURE_VCN_PG_BIT)) { |
| ret = smu_send_smc_msg_with_param(smu, SMU_MSG_PowerUpVcn, 0, NULL); |
| if (ret) |
| return ret; |
| } |
| power_gate->vcn_gated = false; |
| } else { |
| if (smu_feature_is_enabled(smu, SMU_FEATURE_VCN_PG_BIT)) { |
| ret = smu_send_smc_msg(smu, SMU_MSG_PowerDownVcn, NULL); |
| if (ret) |
| return ret; |
| } |
| power_gate->vcn_gated = true; |
| } |
| |
| return ret; |
| } |
| |
| static int renoir_dpm_set_jpeg_enable(struct smu_context *smu, bool enable) |
| { |
| struct smu_power_context *smu_power = &smu->smu_power; |
| struct smu_power_gate *power_gate = &smu_power->power_gate; |
| int ret = 0; |
| |
| if (enable) { |
| if (smu_feature_is_enabled(smu, SMU_FEATURE_JPEG_PG_BIT)) { |
| ret = smu_send_smc_msg_with_param(smu, SMU_MSG_PowerUpJpeg, 0, NULL); |
| if (ret) |
| return ret; |
| } |
| power_gate->jpeg_gated = false; |
| } else { |
| if (smu_feature_is_enabled(smu, SMU_FEATURE_JPEG_PG_BIT)) { |
| ret = smu_send_smc_msg_with_param(smu, SMU_MSG_PowerDownJpeg, 0, NULL); |
| if (ret) |
| return ret; |
| } |
| power_gate->jpeg_gated = true; |
| } |
| |
| return ret; |
| } |
| |
| static int renoir_get_current_clk_freq_by_table(struct smu_context *smu, |
| enum smu_clk_type clk_type, |
| uint32_t *value) |
| { |
| int ret = 0, clk_id = 0; |
| SmuMetrics_t metrics; |
| |
| ret = renoir_get_metrics_table(smu, &metrics); |
| if (ret) |
| return ret; |
| |
| clk_id = smu_clk_get_index(smu, clk_type); |
| if (clk_id < 0) |
| return clk_id; |
| |
| *value = metrics.ClockFrequency[clk_id]; |
| |
| return ret; |
| } |
| |
| static int renoir_force_dpm_limit_value(struct smu_context *smu, bool highest) |
| { |
| int ret = 0, i = 0; |
| uint32_t min_freq, max_freq, force_freq; |
| enum smu_clk_type clk_type; |
| |
| enum smu_clk_type clks[] = { |
| SMU_GFXCLK, |
| SMU_MCLK, |
| SMU_SOCCLK, |
| }; |
| |
| for (i = 0; i < ARRAY_SIZE(clks); i++) { |
| clk_type = clks[i]; |
| ret = smu_get_dpm_freq_range(smu, clk_type, &min_freq, &max_freq, false); |
| if (ret) |
| return ret; |
| |
| force_freq = highest ? max_freq : min_freq; |
| ret = smu_set_soft_freq_range(smu, clk_type, force_freq, force_freq, false); |
| if (ret) |
| return ret; |
| } |
| |
| return ret; |
| } |
| |
| static int renoir_unforce_dpm_levels(struct smu_context *smu) { |
| |
| int ret = 0, i = 0; |
| uint32_t min_freq, max_freq; |
| enum smu_clk_type clk_type; |
| |
| struct clk_feature_map { |
| enum smu_clk_type clk_type; |
| uint32_t feature; |
| } clk_feature_map[] = { |
| {SMU_GFXCLK, SMU_FEATURE_DPM_GFXCLK_BIT}, |
| {SMU_MCLK, SMU_FEATURE_DPM_UCLK_BIT}, |
| {SMU_SOCCLK, SMU_FEATURE_DPM_SOCCLK_BIT}, |
| }; |
| |
| for (i = 0; i < ARRAY_SIZE(clk_feature_map); i++) { |
| if (!smu_feature_is_enabled(smu, clk_feature_map[i].feature)) |
| continue; |
| |
| clk_type = clk_feature_map[i].clk_type; |
| |
| ret = smu_get_dpm_freq_range(smu, clk_type, &min_freq, &max_freq, false); |
| if (ret) |
| return ret; |
| |
| ret = smu_set_soft_freq_range(smu, clk_type, min_freq, max_freq, false); |
| if (ret) |
| return ret; |
| } |
| |
| return ret; |
| } |
| |
| static int renoir_get_gpu_temperature(struct smu_context *smu, uint32_t *value) |
| { |
| int ret = 0; |
| SmuMetrics_t metrics; |
| |
| if (!value) |
| return -EINVAL; |
| |
| ret = renoir_get_metrics_table(smu, &metrics); |
| if (ret) |
| return ret; |
| |
| *value = (metrics.GfxTemperature / 100) * |
| SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; |
| |
| return 0; |
| } |
| |
| static int renoir_get_current_activity_percent(struct smu_context *smu, |
| enum amd_pp_sensors sensor, |
| uint32_t *value) |
| { |
| int ret = 0; |
| SmuMetrics_t metrics; |
| |
| if (!value) |
| return -EINVAL; |
| |
| ret = renoir_get_metrics_table(smu, &metrics); |
| if (ret) |
| return ret; |
| |
| switch (sensor) { |
| case AMDGPU_PP_SENSOR_GPU_LOAD: |
| *value = metrics.AverageGfxActivity / 100; |
| break; |
| default: |
| pr_err("Invalid sensor for retrieving clock activity\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int renoir_get_workload_type(struct smu_context *smu, uint32_t profile) |
| { |
| |
| uint32_t pplib_workload = 0; |
| |
| switch (profile) { |
| case PP_SMC_POWER_PROFILE_FULLSCREEN3D: |
| pplib_workload = WORKLOAD_PPLIB_FULL_SCREEN_3D_BIT; |
| break; |
| case PP_SMC_POWER_PROFILE_CUSTOM: |
| pplib_workload = WORKLOAD_PPLIB_COUNT; |
| break; |
| case PP_SMC_POWER_PROFILE_VIDEO: |
| pplib_workload = WORKLOAD_PPLIB_VIDEO_BIT; |
| break; |
| case PP_SMC_POWER_PROFILE_VR: |
| pplib_workload = WORKLOAD_PPLIB_VR_BIT; |
| break; |
| case PP_SMC_POWER_PROFILE_COMPUTE: |
| pplib_workload = WORKLOAD_PPLIB_COMPUTE_BIT; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return pplib_workload; |
| } |
| |
| static int renoir_get_profiling_clk_mask(struct smu_context *smu, |
| enum amd_dpm_forced_level level, |
| uint32_t *sclk_mask, |
| uint32_t *mclk_mask, |
| uint32_t *soc_mask) |
| { |
| |
| if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) { |
| if (sclk_mask) |
| *sclk_mask = 0; |
| } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) { |
| if (mclk_mask) |
| *mclk_mask = 0; |
| } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { |
| if(sclk_mask) |
| /* The sclk as gfxclk and has three level about max/min/current */ |
| *sclk_mask = 3 - 1; |
| |
| if(mclk_mask) |
| *mclk_mask = NUM_MEMCLK_DPM_LEVELS - 1; |
| |
| if(soc_mask) |
| *soc_mask = NUM_SOCCLK_DPM_LEVELS - 1; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * This interface get dpm clock table for dc |
| */ |
| static int renoir_get_dpm_clock_table(struct smu_context *smu, struct dpm_clocks *clock_table) |
| { |
| DpmClocks_t *table = smu->smu_table.clocks_table; |
| int i; |
| |
| if (!clock_table || !table) |
| return -EINVAL; |
| |
| for (i = 0; i < NUM_DCFCLK_DPM_LEVELS; i++) { |
| clock_table->DcfClocks[i].Freq = table->DcfClocks[i].Freq; |
| clock_table->DcfClocks[i].Vol = table->DcfClocks[i].Vol; |
| } |
| |
| for (i = 0; i < NUM_SOCCLK_DPM_LEVELS; i++) { |
| clock_table->SocClocks[i].Freq = table->SocClocks[i].Freq; |
| clock_table->SocClocks[i].Vol = table->SocClocks[i].Vol; |
| } |
| |
| for (i = 0; i < NUM_FCLK_DPM_LEVELS; i++) { |
| clock_table->FClocks[i].Freq = table->FClocks[i].Freq; |
| clock_table->FClocks[i].Vol = table->FClocks[i].Vol; |
| } |
| |
| for (i = 0; i< NUM_MEMCLK_DPM_LEVELS; i++) { |
| clock_table->MemClocks[i].Freq = table->MemClocks[i].Freq; |
| clock_table->MemClocks[i].Vol = table->MemClocks[i].Vol; |
| } |
| |
| return 0; |
| } |
| |
| static int renoir_force_clk_levels(struct smu_context *smu, |
| enum smu_clk_type clk_type, uint32_t mask) |
| { |
| |
| int ret = 0 ; |
| uint32_t soft_min_level = 0, soft_max_level = 0, min_freq = 0, max_freq = 0; |
| DpmClocks_t *clk_table = smu->smu_table.clocks_table; |
| |
| soft_min_level = mask ? (ffs(mask) - 1) : 0; |
| soft_max_level = mask ? (fls(mask) - 1) : 0; |
| |
| switch (clk_type) { |
| case SMU_GFXCLK: |
| case SMU_SCLK: |
| if (soft_min_level > 2 || soft_max_level > 2) { |
| pr_info("Currently sclk only support 3 levels on APU\n"); |
| return -EINVAL; |
| } |
| |
| ret = smu_get_dpm_freq_range(smu, SMU_GFXCLK, &min_freq, &max_freq, false); |
| if (ret) |
| return ret; |
| ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxGfxClk, |
| soft_max_level == 0 ? min_freq : |
| soft_max_level == 1 ? RENOIR_UMD_PSTATE_GFXCLK : max_freq, |
| NULL); |
| if (ret) |
| return ret; |
| ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinGfxClk, |
| soft_min_level == 2 ? max_freq : |
| soft_min_level == 1 ? RENOIR_UMD_PSTATE_GFXCLK : min_freq, |
| NULL); |
| if (ret) |
| return ret; |
| break; |
| case SMU_SOCCLK: |
| GET_DPM_CUR_FREQ(clk_table, clk_type, soft_min_level, min_freq); |
| GET_DPM_CUR_FREQ(clk_table, clk_type, soft_max_level, max_freq); |
| ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxSocclkByFreq, max_freq, NULL); |
| if (ret) |
| return ret; |
| ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinSocclkByFreq, min_freq, NULL); |
| if (ret) |
| return ret; |
| break; |
| case SMU_MCLK: |
| case SMU_FCLK: |
| GET_DPM_CUR_FREQ(clk_table, clk_type, soft_min_level, min_freq); |
| GET_DPM_CUR_FREQ(clk_table, clk_type, soft_max_level, max_freq); |
| ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxFclkByFreq, max_freq, NULL); |
| if (ret) |
| return ret; |
| ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinFclkByFreq, min_freq, NULL); |
| if (ret) |
| return ret; |
| break; |
| default: |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static int renoir_set_power_profile_mode(struct smu_context *smu, long *input, uint32_t size) |
| { |
| int workload_type, ret; |
| uint32_t profile_mode = input[size]; |
| |
| if (profile_mode > PP_SMC_POWER_PROFILE_CUSTOM) { |
| pr_err("Invalid power profile mode %d\n", smu->power_profile_mode); |
| return -EINVAL; |
| } |
| |
| /* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */ |
| workload_type = smu_workload_get_type(smu, smu->power_profile_mode); |
| if (workload_type < 0) { |
| /* |
| * TODO: If some case need switch to powersave/default power mode |
| * then can consider enter WORKLOAD_COMPUTE/WORKLOAD_CUSTOM for power saving. |
| */ |
| pr_err_once("Unsupported power profile mode %d on RENOIR\n",smu->power_profile_mode); |
| return -EINVAL; |
| } |
| |
| ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetWorkloadMask, |
| 1 << workload_type, |
| NULL); |
| if (ret) { |
| pr_err_once("Fail to set workload type %d\n", workload_type); |
| return ret; |
| } |
| |
| smu->power_profile_mode = profile_mode; |
| |
| return 0; |
| } |
| |
| static int renoir_set_peak_clock_by_device(struct smu_context *smu) |
| { |
| int ret = 0; |
| uint32_t sclk_freq = 0, uclk_freq = 0; |
| |
| ret = smu_get_dpm_freq_range(smu, SMU_SCLK, NULL, &sclk_freq, false); |
| if (ret) |
| return ret; |
| |
| ret = smu_set_soft_freq_range(smu, SMU_SCLK, sclk_freq, sclk_freq, false); |
| if (ret) |
| return ret; |
| |
| ret = smu_get_dpm_freq_range(smu, SMU_UCLK, NULL, &uclk_freq, false); |
| if (ret) |
| return ret; |
| |
| ret = smu_set_soft_freq_range(smu, SMU_UCLK, uclk_freq, uclk_freq, false); |
| if (ret) |
| return ret; |
| |
| return ret; |
| } |
| |
| static int renoir_set_performance_level(struct smu_context *smu, |
| enum amd_dpm_forced_level level) |
| { |
| int ret = 0; |
| uint32_t sclk_mask, mclk_mask, soc_mask; |
| |
| switch (level) { |
| case AMD_DPM_FORCED_LEVEL_HIGH: |
| ret = smu_force_dpm_limit_value(smu, true); |
| break; |
| case AMD_DPM_FORCED_LEVEL_LOW: |
| ret = smu_force_dpm_limit_value(smu, false); |
| break; |
| case AMD_DPM_FORCED_LEVEL_AUTO: |
| case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD: |
| ret = smu_unforce_dpm_levels(smu); |
| break; |
| case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK: |
| case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK: |
| ret = smu_get_profiling_clk_mask(smu, level, |
| &sclk_mask, |
| &mclk_mask, |
| &soc_mask); |
| if (ret) |
| return ret; |
| smu_force_clk_levels(smu, SMU_SCLK, 1 << sclk_mask, false); |
| smu_force_clk_levels(smu, SMU_MCLK, 1 << mclk_mask, false); |
| smu_force_clk_levels(smu, SMU_SOCCLK, 1 << soc_mask, false); |
| break; |
| case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK: |
| ret = renoir_set_peak_clock_by_device(smu); |
| break; |
| case AMD_DPM_FORCED_LEVEL_MANUAL: |
| case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT: |
| default: |
| break; |
| } |
| return ret; |
| } |
| |
| /* save watermark settings into pplib smu structure, |
| * also pass data to smu controller |
| */ |
| static int renoir_set_watermarks_table( |
| struct smu_context *smu, |
| void *watermarks, |
| struct dm_pp_wm_sets_with_clock_ranges_soc15 *clock_ranges) |
| { |
| int i; |
| int ret = 0; |
| Watermarks_t *table = watermarks; |
| |
| if (!table || !clock_ranges) |
| return -EINVAL; |
| |
| if (clock_ranges->num_wm_dmif_sets > 4 || |
| clock_ranges->num_wm_mcif_sets > 4) |
| return -EINVAL; |
| |
| /* save into smu->smu_table.tables[SMU_TABLE_WATERMARKS]->cpu_addr*/ |
| for (i = 0; i < clock_ranges->num_wm_dmif_sets; i++) { |
| table->WatermarkRow[WM_DCFCLK][i].MinClock = |
| cpu_to_le16((uint16_t) |
| (clock_ranges->wm_dmif_clocks_ranges[i].wm_min_dcfclk_clk_in_khz)); |
| table->WatermarkRow[WM_DCFCLK][i].MaxClock = |
| cpu_to_le16((uint16_t) |
| (clock_ranges->wm_dmif_clocks_ranges[i].wm_max_dcfclk_clk_in_khz)); |
| table->WatermarkRow[WM_DCFCLK][i].MinMclk = |
| cpu_to_le16((uint16_t) |
| (clock_ranges->wm_dmif_clocks_ranges[i].wm_min_mem_clk_in_khz)); |
| table->WatermarkRow[WM_DCFCLK][i].MaxMclk = |
| cpu_to_le16((uint16_t) |
| (clock_ranges->wm_dmif_clocks_ranges[i].wm_max_mem_clk_in_khz)); |
| table->WatermarkRow[WM_DCFCLK][i].WmSetting = (uint8_t) |
| clock_ranges->wm_dmif_clocks_ranges[i].wm_set_id; |
| } |
| |
| for (i = 0; i < clock_ranges->num_wm_mcif_sets; i++) { |
| table->WatermarkRow[WM_SOCCLK][i].MinClock = |
| cpu_to_le16((uint16_t) |
| (clock_ranges->wm_mcif_clocks_ranges[i].wm_min_socclk_clk_in_khz)); |
| table->WatermarkRow[WM_SOCCLK][i].MaxClock = |
| cpu_to_le16((uint16_t) |
| (clock_ranges->wm_mcif_clocks_ranges[i].wm_max_socclk_clk_in_khz)); |
| table->WatermarkRow[WM_SOCCLK][i].MinMclk = |
| cpu_to_le16((uint16_t) |
| (clock_ranges->wm_mcif_clocks_ranges[i].wm_min_mem_clk_in_khz)); |
| table->WatermarkRow[WM_SOCCLK][i].MaxMclk = |
| cpu_to_le16((uint16_t) |
| (clock_ranges->wm_mcif_clocks_ranges[i].wm_max_mem_clk_in_khz)); |
| table->WatermarkRow[WM_SOCCLK][i].WmSetting = (uint8_t) |
| clock_ranges->wm_mcif_clocks_ranges[i].wm_set_id; |
| } |
| |
| smu->watermarks_bitmap |= WATERMARKS_EXIST; |
| |
| /* pass data to smu controller */ |
| if (!(smu->watermarks_bitmap & WATERMARKS_LOADED)) { |
| ret = smu_write_watermarks_table(smu); |
| if (ret) { |
| pr_err("Failed to update WMTABLE!"); |
| return ret; |
| } |
| smu->watermarks_bitmap |= WATERMARKS_LOADED; |
| } |
| |
| return 0; |
| } |
| |
| static int renoir_get_power_profile_mode(struct smu_context *smu, |
| char *buf) |
| { |
| static const char *profile_name[] = { |
| "BOOTUP_DEFAULT", |
| "3D_FULL_SCREEN", |
| "POWER_SAVING", |
| "VIDEO", |
| "VR", |
| "COMPUTE", |
| "CUSTOM"}; |
| uint32_t i, size = 0; |
| int16_t workload_type = 0; |
| |
| if (!buf) |
| return -EINVAL; |
| |
| for (i = 0; i <= PP_SMC_POWER_PROFILE_CUSTOM; i++) { |
| /* |
| * Conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT |
| * Not all profile modes are supported on arcturus. |
| */ |
| workload_type = smu_workload_get_type(smu, i); |
| if (workload_type < 0) |
| continue; |
| |
| size += sprintf(buf + size, "%2d %14s%s\n", |
| i, profile_name[i], (i == smu->power_profile_mode) ? "*" : " "); |
| } |
| |
| return size; |
| } |
| |
| static int renoir_read_sensor(struct smu_context *smu, |
| enum amd_pp_sensors sensor, |
| void *data, uint32_t *size) |
| { |
| int ret = 0; |
| |
| if (!data || !size) |
| return -EINVAL; |
| |
| mutex_lock(&smu->sensor_lock); |
| switch (sensor) { |
| case AMDGPU_PP_SENSOR_GPU_LOAD: |
| ret = renoir_get_current_activity_percent(smu, sensor, (uint32_t *)data); |
| *size = 4; |
| break; |
| case AMDGPU_PP_SENSOR_GPU_TEMP: |
| ret = renoir_get_gpu_temperature(smu, (uint32_t *)data); |
| *size = 4; |
| break; |
| default: |
| ret = smu_v12_0_read_sensor(smu, sensor, data, size); |
| } |
| mutex_unlock(&smu->sensor_lock); |
| |
| return ret; |
| } |
| |
| static bool renoir_is_dpm_running(struct smu_context *smu) |
| { |
| struct amdgpu_device *adev = smu->adev; |
| |
| /* |
| * Until now, the pmfw hasn't exported the interface of SMU |
| * feature mask to APU SKU so just force on all the feature |
| * at early initial stage. |
| */ |
| if (adev->in_suspend) |
| return false; |
| else |
| return true; |
| |
| } |
| |
| static const struct pptable_funcs renoir_ppt_funcs = { |
| .get_smu_msg_index = renoir_get_smu_msg_index, |
| .get_smu_clk_index = renoir_get_smu_clk_index, |
| .get_smu_table_index = renoir_get_smu_table_index, |
| .tables_init = renoir_tables_init, |
| .set_power_state = NULL, |
| .get_dpm_clk_limited = renoir_get_dpm_clk_limited, |
| .print_clk_levels = renoir_print_clk_levels, |
| .get_current_power_state = renoir_get_current_power_state, |
| .dpm_set_uvd_enable = renoir_dpm_set_uvd_enable, |
| .dpm_set_jpeg_enable = renoir_dpm_set_jpeg_enable, |
| .get_current_clk_freq_by_table = renoir_get_current_clk_freq_by_table, |
| .force_dpm_limit_value = renoir_force_dpm_limit_value, |
| .unforce_dpm_levels = renoir_unforce_dpm_levels, |
| .get_workload_type = renoir_get_workload_type, |
| .get_profiling_clk_mask = renoir_get_profiling_clk_mask, |
| .force_clk_levels = renoir_force_clk_levels, |
| .set_power_profile_mode = renoir_set_power_profile_mode, |
| .set_performance_level = renoir_set_performance_level, |
| .get_dpm_clock_table = renoir_get_dpm_clock_table, |
| .set_watermarks_table = renoir_set_watermarks_table, |
| .get_power_profile_mode = renoir_get_power_profile_mode, |
| .read_sensor = renoir_read_sensor, |
| .check_fw_status = smu_v12_0_check_fw_status, |
| .check_fw_version = smu_v12_0_check_fw_version, |
| .powergate_sdma = smu_v12_0_powergate_sdma, |
| .powergate_vcn = smu_v12_0_powergate_vcn, |
| .powergate_jpeg = smu_v12_0_powergate_jpeg, |
| .send_smc_msg_with_param = smu_v12_0_send_msg_with_param, |
| .set_gfx_cgpg = smu_v12_0_set_gfx_cgpg, |
| .gfx_off_control = smu_v12_0_gfx_off_control, |
| .init_smc_tables = smu_v12_0_init_smc_tables, |
| .fini_smc_tables = smu_v12_0_fini_smc_tables, |
| .populate_smc_tables = smu_v12_0_populate_smc_tables, |
| .get_enabled_mask = smu_v12_0_get_enabled_mask, |
| .get_current_clk_freq = smu_v12_0_get_current_clk_freq, |
| .get_dpm_ultimate_freq = smu_v12_0_get_dpm_ultimate_freq, |
| .mode2_reset = smu_v12_0_mode2_reset, |
| .set_soft_freq_limited_range = smu_v12_0_set_soft_freq_limited_range, |
| .set_driver_table_location = smu_v12_0_set_driver_table_location, |
| .is_dpm_running = renoir_is_dpm_running, |
| }; |
| |
| void renoir_set_ppt_funcs(struct smu_context *smu) |
| { |
| smu->ppt_funcs = &renoir_ppt_funcs; |
| smu->smc_driver_if_version = SMU12_DRIVER_IF_VERSION; |
| smu->is_apu = true; |
| } |