| /* SPDX-License-Identifier: Apache-2.0 OR BSD-2-Clause */ |
| // |
| // This file is dual-licensed, meaning that you can use it under your |
| // choice of either of the following two licenses: |
| // |
| // Copyright 2023 The OpenSSL Project Authors. All Rights Reserved. |
| // |
| // Licensed under the Apache License 2.0 (the "License"). You can obtain |
| // a copy in the file LICENSE in the source distribution or at |
| // https://www.openssl.org/source/license.html |
| // |
| // or |
| // |
| // Copyright (c) 2023, Jerry Shih <jerry.shih@sifive.com> |
| // Copyright 2024 Google LLC |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions |
| // are met: |
| // 1. Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // 2. Redistributions in binary form must reproduce the above copyright |
| // notice, this list of conditions and the following disclaimer in the |
| // documentation and/or other materials provided with the distribution. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // The generated code of this file depends on the following RISC-V extensions: |
| // - RV64I |
| // - RISC-V Vector ('V') with VLEN >= 128 |
| // - RISC-V Vector AES block cipher extension ('Zvkned') |
| // - RISC-V Vector Cryptography Bit-manipulation extension ('Zvkb') |
| |
| #include <linux/linkage.h> |
| |
| .text |
| .option arch, +zvkned, +zvkb |
| |
| #include "aes-macros.S" |
| |
| #define KEYP a0 |
| #define INP a1 |
| #define OUTP a2 |
| #define LEN a3 |
| #define IVP a4 |
| |
| #define LEN32 a5 |
| #define VL_E32 a6 |
| #define VL_BLOCKS a7 |
| |
| .macro aes_ctr32_crypt keylen |
| // LEN32 = number of blocks, rounded up, in 32-bit words. |
| addi t0, LEN, 15 |
| srli t0, t0, 4 |
| slli LEN32, t0, 2 |
| |
| // Create a mask that selects the last 32-bit word of each 128-bit |
| // block. This is the word that contains the (big-endian) counter. |
| li t0, 0x88 |
| vsetvli t1, zero, e8, m1, ta, ma |
| vmv.v.x v0, t0 |
| |
| // Load the IV into v31. The last 32-bit word contains the counter. |
| vsetivli zero, 4, e32, m1, ta, ma |
| vle32.v v31, (IVP) |
| |
| // Convert the big-endian counter into little-endian. |
| vsetivli zero, 4, e32, m1, ta, mu |
| vrev8.v v31, v31, v0.t |
| |
| // Splat the IV to v16 (with LMUL=4). The number of copies is the |
| // maximum number of blocks that will be processed per iteration. |
| vsetvli zero, LEN32, e32, m4, ta, ma |
| vmv.v.i v16, 0 |
| vaesz.vs v16, v31 |
| |
| // v20 = [x, x, x, 0, x, x, x, 1, ...] |
| viota.m v20, v0, v0.t |
| // v16 = [IV0, IV1, IV2, counter+0, IV0, IV1, IV2, counter+1, ...] |
| vsetvli VL_E32, LEN32, e32, m4, ta, mu |
| vadd.vv v16, v16, v20, v0.t |
| |
| j 2f |
| 1: |
| // Set the number of blocks to process in this iteration. vl=VL_E32 is |
| // the length in 32-bit words, i.e. 4 times the number of blocks. |
| vsetvli VL_E32, LEN32, e32, m4, ta, mu |
| |
| // Increment the counters by the number of blocks processed in the |
| // previous iteration. |
| vadd.vx v16, v16, VL_BLOCKS, v0.t |
| 2: |
| // Prepare the AES inputs into v24. |
| vmv.v.v v24, v16 |
| vrev8.v v24, v24, v0.t // Convert counters back to big-endian. |
| |
| // Encrypt the AES inputs to create the next portion of the keystream. |
| aes_encrypt v24, \keylen |
| |
| // XOR the data with the keystream. |
| vsetvli t0, LEN, e8, m4, ta, ma |
| vle8.v v20, (INP) |
| vxor.vv v20, v20, v24 |
| vse8.v v20, (OUTP) |
| |
| // Advance the pointers and update the remaining length. |
| add INP, INP, t0 |
| add OUTP, OUTP, t0 |
| sub LEN, LEN, t0 |
| sub LEN32, LEN32, VL_E32 |
| srli VL_BLOCKS, VL_E32, 2 |
| |
| // Repeat if more data remains. |
| bnez LEN, 1b |
| |
| // Update *IVP to contain the next counter. |
| vsetivli zero, 4, e32, m1, ta, mu |
| vadd.vx v16, v16, VL_BLOCKS, v0.t |
| vrev8.v v16, v16, v0.t // Convert counters back to big-endian. |
| vse32.v v16, (IVP) |
| |
| ret |
| .endm |
| |
| // void aes_ctr32_crypt_zvkned_zvkb(const struct crypto_aes_ctx *key, |
| // const u8 *in, u8 *out, size_t len, |
| // u8 iv[16]); |
| SYM_FUNC_START(aes_ctr32_crypt_zvkned_zvkb) |
| aes_begin KEYP, 128f, 192f |
| aes_ctr32_crypt 256 |
| 128: |
| aes_ctr32_crypt 128 |
| 192: |
| aes_ctr32_crypt 192 |
| SYM_FUNC_END(aes_ctr32_crypt_zvkned_zvkb) |