| // SPDX-License-Identifier: GPL-2.0 |
| #include <linux/pagewalk.h> |
| #include <linux/highmem.h> |
| #include <linux/sched.h> |
| #include <linux/hugetlb.h> |
| #include <linux/swap.h> |
| #include <linux/swapops.h> |
| |
| /* |
| * We want to know the real level where a entry is located ignoring any |
| * folding of levels which may be happening. For example if p4d is folded then |
| * a missing entry found at level 1 (p4d) is actually at level 0 (pgd). |
| */ |
| static int real_depth(int depth) |
| { |
| if (depth == 3 && PTRS_PER_PMD == 1) |
| depth = 2; |
| if (depth == 2 && PTRS_PER_PUD == 1) |
| depth = 1; |
| if (depth == 1 && PTRS_PER_P4D == 1) |
| depth = 0; |
| return depth; |
| } |
| |
| static int walk_pte_range_inner(pte_t *pte, unsigned long addr, |
| unsigned long end, struct mm_walk *walk) |
| { |
| const struct mm_walk_ops *ops = walk->ops; |
| int err = 0; |
| |
| for (;;) { |
| err = ops->pte_entry(pte, addr, addr + PAGE_SIZE, walk); |
| if (err) |
| break; |
| if (addr >= end - PAGE_SIZE) |
| break; |
| addr += PAGE_SIZE; |
| pte++; |
| } |
| return err; |
| } |
| |
| static int walk_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, |
| struct mm_walk *walk) |
| { |
| pte_t *pte; |
| int err = 0; |
| spinlock_t *ptl; |
| |
| if (walk->no_vma) { |
| /* |
| * pte_offset_map() might apply user-specific validation. |
| * Indeed, on x86_64 the pmd entries set up by init_espfix_ap() |
| * fit its pmd_bad() check (_PAGE_NX set and _PAGE_RW clear), |
| * and CONFIG_EFI_PGT_DUMP efi_mm goes so far as to walk them. |
| */ |
| if (walk->mm == &init_mm || addr >= TASK_SIZE) |
| pte = pte_offset_kernel(pmd, addr); |
| else |
| pte = pte_offset_map(pmd, addr); |
| if (pte) { |
| err = walk_pte_range_inner(pte, addr, end, walk); |
| if (walk->mm != &init_mm && addr < TASK_SIZE) |
| pte_unmap(pte); |
| } |
| } else { |
| pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); |
| if (pte) { |
| err = walk_pte_range_inner(pte, addr, end, walk); |
| pte_unmap_unlock(pte, ptl); |
| } |
| } |
| if (!pte) |
| walk->action = ACTION_AGAIN; |
| return err; |
| } |
| |
| static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, |
| struct mm_walk *walk) |
| { |
| pmd_t *pmd; |
| unsigned long next; |
| const struct mm_walk_ops *ops = walk->ops; |
| int err = 0; |
| int depth = real_depth(3); |
| |
| pmd = pmd_offset(pud, addr); |
| do { |
| again: |
| next = pmd_addr_end(addr, end); |
| if (pmd_none(*pmd)) { |
| if (ops->pte_hole) |
| err = ops->pte_hole(addr, next, depth, walk); |
| if (err) |
| break; |
| continue; |
| } |
| |
| walk->action = ACTION_SUBTREE; |
| |
| /* |
| * This implies that each ->pmd_entry() handler |
| * needs to know about pmd_trans_huge() pmds |
| */ |
| if (ops->pmd_entry) |
| err = ops->pmd_entry(pmd, addr, next, walk); |
| if (err) |
| break; |
| |
| if (walk->action == ACTION_AGAIN) |
| goto again; |
| |
| /* |
| * Check this here so we only break down trans_huge |
| * pages when we _need_ to |
| */ |
| if ((!walk->vma && (pmd_leaf(*pmd) || !pmd_present(*pmd))) || |
| walk->action == ACTION_CONTINUE || |
| !(ops->pte_entry)) |
| continue; |
| |
| if (walk->vma) |
| split_huge_pmd(walk->vma, pmd, addr); |
| |
| err = walk_pte_range(pmd, addr, next, walk); |
| if (err) |
| break; |
| |
| if (walk->action == ACTION_AGAIN) |
| goto again; |
| |
| } while (pmd++, addr = next, addr != end); |
| |
| return err; |
| } |
| |
| static int walk_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, |
| struct mm_walk *walk) |
| { |
| pud_t *pud; |
| unsigned long next; |
| const struct mm_walk_ops *ops = walk->ops; |
| int err = 0; |
| int depth = real_depth(2); |
| |
| pud = pud_offset(p4d, addr); |
| do { |
| again: |
| next = pud_addr_end(addr, end); |
| if (pud_none(*pud)) { |
| if (ops->pte_hole) |
| err = ops->pte_hole(addr, next, depth, walk); |
| if (err) |
| break; |
| continue; |
| } |
| |
| walk->action = ACTION_SUBTREE; |
| |
| if (ops->pud_entry) |
| err = ops->pud_entry(pud, addr, next, walk); |
| if (err) |
| break; |
| |
| if (walk->action == ACTION_AGAIN) |
| goto again; |
| |
| if ((!walk->vma && (pud_leaf(*pud) || !pud_present(*pud))) || |
| walk->action == ACTION_CONTINUE || |
| !(ops->pmd_entry || ops->pte_entry)) |
| continue; |
| |
| if (walk->vma) |
| split_huge_pud(walk->vma, pud, addr); |
| if (pud_none(*pud)) |
| goto again; |
| |
| err = walk_pmd_range(pud, addr, next, walk); |
| if (err) |
| break; |
| } while (pud++, addr = next, addr != end); |
| |
| return err; |
| } |
| |
| static int walk_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, |
| struct mm_walk *walk) |
| { |
| p4d_t *p4d; |
| unsigned long next; |
| const struct mm_walk_ops *ops = walk->ops; |
| int err = 0; |
| int depth = real_depth(1); |
| |
| p4d = p4d_offset(pgd, addr); |
| do { |
| next = p4d_addr_end(addr, end); |
| if (p4d_none_or_clear_bad(p4d)) { |
| if (ops->pte_hole) |
| err = ops->pte_hole(addr, next, depth, walk); |
| if (err) |
| break; |
| continue; |
| } |
| if (ops->p4d_entry) { |
| err = ops->p4d_entry(p4d, addr, next, walk); |
| if (err) |
| break; |
| } |
| if (ops->pud_entry || ops->pmd_entry || ops->pte_entry) |
| err = walk_pud_range(p4d, addr, next, walk); |
| if (err) |
| break; |
| } while (p4d++, addr = next, addr != end); |
| |
| return err; |
| } |
| |
| static int walk_pgd_range(unsigned long addr, unsigned long end, |
| struct mm_walk *walk) |
| { |
| pgd_t *pgd; |
| unsigned long next; |
| const struct mm_walk_ops *ops = walk->ops; |
| int err = 0; |
| |
| if (walk->pgd) |
| pgd = walk->pgd + pgd_index(addr); |
| else |
| pgd = pgd_offset(walk->mm, addr); |
| do { |
| next = pgd_addr_end(addr, end); |
| if (pgd_none_or_clear_bad(pgd)) { |
| if (ops->pte_hole) |
| err = ops->pte_hole(addr, next, 0, walk); |
| if (err) |
| break; |
| continue; |
| } |
| if (ops->pgd_entry) { |
| err = ops->pgd_entry(pgd, addr, next, walk); |
| if (err) |
| break; |
| } |
| if (ops->p4d_entry || ops->pud_entry || ops->pmd_entry || ops->pte_entry) |
| err = walk_p4d_range(pgd, addr, next, walk); |
| if (err) |
| break; |
| } while (pgd++, addr = next, addr != end); |
| |
| return err; |
| } |
| |
| #ifdef CONFIG_HUGETLB_PAGE |
| static unsigned long hugetlb_entry_end(struct hstate *h, unsigned long addr, |
| unsigned long end) |
| { |
| unsigned long boundary = (addr & huge_page_mask(h)) + huge_page_size(h); |
| return boundary < end ? boundary : end; |
| } |
| |
| static int walk_hugetlb_range(unsigned long addr, unsigned long end, |
| struct mm_walk *walk) |
| { |
| struct vm_area_struct *vma = walk->vma; |
| struct hstate *h = hstate_vma(vma); |
| unsigned long next; |
| unsigned long hmask = huge_page_mask(h); |
| unsigned long sz = huge_page_size(h); |
| pte_t *pte; |
| const struct mm_walk_ops *ops = walk->ops; |
| int err = 0; |
| |
| hugetlb_vma_lock_read(vma); |
| do { |
| next = hugetlb_entry_end(h, addr, end); |
| pte = hugetlb_walk(vma, addr & hmask, sz); |
| if (pte) |
| err = ops->hugetlb_entry(pte, hmask, addr, next, walk); |
| else if (ops->pte_hole) |
| err = ops->pte_hole(addr, next, -1, walk); |
| if (err) |
| break; |
| } while (addr = next, addr != end); |
| hugetlb_vma_unlock_read(vma); |
| |
| return err; |
| } |
| |
| #else /* CONFIG_HUGETLB_PAGE */ |
| static int walk_hugetlb_range(unsigned long addr, unsigned long end, |
| struct mm_walk *walk) |
| { |
| return 0; |
| } |
| |
| #endif /* CONFIG_HUGETLB_PAGE */ |
| |
| /* |
| * Decide whether we really walk over the current vma on [@start, @end) |
| * or skip it via the returned value. Return 0 if we do walk over the |
| * current vma, and return 1 if we skip the vma. Negative values means |
| * error, where we abort the current walk. |
| */ |
| static int walk_page_test(unsigned long start, unsigned long end, |
| struct mm_walk *walk) |
| { |
| struct vm_area_struct *vma = walk->vma; |
| const struct mm_walk_ops *ops = walk->ops; |
| |
| if (ops->test_walk) |
| return ops->test_walk(start, end, walk); |
| |
| /* |
| * vma(VM_PFNMAP) doesn't have any valid struct pages behind VM_PFNMAP |
| * range, so we don't walk over it as we do for normal vmas. However, |
| * Some callers are interested in handling hole range and they don't |
| * want to just ignore any single address range. Such users certainly |
| * define their ->pte_hole() callbacks, so let's delegate them to handle |
| * vma(VM_PFNMAP). |
| */ |
| if (vma->vm_flags & VM_PFNMAP) { |
| int err = 1; |
| if (ops->pte_hole) |
| err = ops->pte_hole(start, end, -1, walk); |
| return err ? err : 1; |
| } |
| return 0; |
| } |
| |
| static int __walk_page_range(unsigned long start, unsigned long end, |
| struct mm_walk *walk) |
| { |
| int err = 0; |
| struct vm_area_struct *vma = walk->vma; |
| const struct mm_walk_ops *ops = walk->ops; |
| |
| if (ops->pre_vma) { |
| err = ops->pre_vma(start, end, walk); |
| if (err) |
| return err; |
| } |
| |
| if (is_vm_hugetlb_page(vma)) { |
| if (ops->hugetlb_entry) |
| err = walk_hugetlb_range(start, end, walk); |
| } else |
| err = walk_pgd_range(start, end, walk); |
| |
| if (ops->post_vma) |
| ops->post_vma(walk); |
| |
| return err; |
| } |
| |
| static inline void process_mm_walk_lock(struct mm_struct *mm, |
| enum page_walk_lock walk_lock) |
| { |
| if (walk_lock == PGWALK_RDLOCK) |
| mmap_assert_locked(mm); |
| else |
| mmap_assert_write_locked(mm); |
| } |
| |
| static inline void process_vma_walk_lock(struct vm_area_struct *vma, |
| enum page_walk_lock walk_lock) |
| { |
| #ifdef CONFIG_PER_VMA_LOCK |
| switch (walk_lock) { |
| case PGWALK_WRLOCK: |
| vma_start_write(vma); |
| break; |
| case PGWALK_WRLOCK_VERIFY: |
| vma_assert_write_locked(vma); |
| break; |
| case PGWALK_RDLOCK: |
| /* PGWALK_RDLOCK is handled by process_mm_walk_lock */ |
| break; |
| } |
| #endif |
| } |
| |
| /** |
| * walk_page_range - walk page table with caller specific callbacks |
| * @mm: mm_struct representing the target process of page table walk |
| * @start: start address of the virtual address range |
| * @end: end address of the virtual address range |
| * @ops: operation to call during the walk |
| * @private: private data for callbacks' usage |
| * |
| * Recursively walk the page table tree of the process represented by @mm |
| * within the virtual address range [@start, @end). During walking, we can do |
| * some caller-specific works for each entry, by setting up pmd_entry(), |
| * pte_entry(), and/or hugetlb_entry(). If you don't set up for some of these |
| * callbacks, the associated entries/pages are just ignored. |
| * The return values of these callbacks are commonly defined like below: |
| * |
| * - 0 : succeeded to handle the current entry, and if you don't reach the |
| * end address yet, continue to walk. |
| * - >0 : succeeded to handle the current entry, and return to the caller |
| * with caller specific value. |
| * - <0 : failed to handle the current entry, and return to the caller |
| * with error code. |
| * |
| * Before starting to walk page table, some callers want to check whether |
| * they really want to walk over the current vma, typically by checking |
| * its vm_flags. walk_page_test() and @ops->test_walk() are used for this |
| * purpose. |
| * |
| * If operations need to be staged before and committed after a vma is walked, |
| * there are two callbacks, pre_vma() and post_vma(). Note that post_vma(), |
| * since it is intended to handle commit-type operations, can't return any |
| * errors. |
| * |
| * struct mm_walk keeps current values of some common data like vma and pmd, |
| * which are useful for the access from callbacks. If you want to pass some |
| * caller-specific data to callbacks, @private should be helpful. |
| * |
| * Locking: |
| * Callers of walk_page_range() and walk_page_vma() should hold @mm->mmap_lock, |
| * because these function traverse vma list and/or access to vma's data. |
| */ |
| int walk_page_range(struct mm_struct *mm, unsigned long start, |
| unsigned long end, const struct mm_walk_ops *ops, |
| void *private) |
| { |
| int err = 0; |
| unsigned long next; |
| struct vm_area_struct *vma; |
| struct mm_walk walk = { |
| .ops = ops, |
| .mm = mm, |
| .private = private, |
| }; |
| |
| if (start >= end) |
| return -EINVAL; |
| |
| if (!walk.mm) |
| return -EINVAL; |
| |
| process_mm_walk_lock(walk.mm, ops->walk_lock); |
| |
| vma = find_vma(walk.mm, start); |
| do { |
| if (!vma) { /* after the last vma */ |
| walk.vma = NULL; |
| next = end; |
| if (ops->pte_hole) |
| err = ops->pte_hole(start, next, -1, &walk); |
| } else if (start < vma->vm_start) { /* outside vma */ |
| walk.vma = NULL; |
| next = min(end, vma->vm_start); |
| if (ops->pte_hole) |
| err = ops->pte_hole(start, next, -1, &walk); |
| } else { /* inside vma */ |
| process_vma_walk_lock(vma, ops->walk_lock); |
| walk.vma = vma; |
| next = min(end, vma->vm_end); |
| vma = find_vma(mm, vma->vm_end); |
| |
| err = walk_page_test(start, next, &walk); |
| if (err > 0) { |
| /* |
| * positive return values are purely for |
| * controlling the pagewalk, so should never |
| * be passed to the callers. |
| */ |
| err = 0; |
| continue; |
| } |
| if (err < 0) |
| break; |
| err = __walk_page_range(start, next, &walk); |
| } |
| if (err) |
| break; |
| } while (start = next, start < end); |
| return err; |
| } |
| |
| /** |
| * walk_page_range_novma - walk a range of pagetables not backed by a vma |
| * @mm: mm_struct representing the target process of page table walk |
| * @start: start address of the virtual address range |
| * @end: end address of the virtual address range |
| * @ops: operation to call during the walk |
| * @pgd: pgd to walk if different from mm->pgd |
| * @private: private data for callbacks' usage |
| * |
| * Similar to walk_page_range() but can walk any page tables even if they are |
| * not backed by VMAs. Because 'unusual' entries may be walked this function |
| * will also not lock the PTEs for the pte_entry() callback. This is useful for |
| * walking the kernel pages tables or page tables for firmware. |
| * |
| * Note: Be careful to walk the kernel pages tables, the caller may be need to |
| * take other effective approache (mmap lock may be insufficient) to prevent |
| * the intermediate kernel page tables belonging to the specified address range |
| * from being freed (e.g. memory hot-remove). |
| */ |
| int walk_page_range_novma(struct mm_struct *mm, unsigned long start, |
| unsigned long end, const struct mm_walk_ops *ops, |
| pgd_t *pgd, |
| void *private) |
| { |
| struct mm_walk walk = { |
| .ops = ops, |
| .mm = mm, |
| .pgd = pgd, |
| .private = private, |
| .no_vma = true |
| }; |
| |
| if (start >= end || !walk.mm) |
| return -EINVAL; |
| |
| /* |
| * 1) For walking the user virtual address space: |
| * |
| * The mmap lock protects the page walker from changes to the page |
| * tables during the walk. However a read lock is insufficient to |
| * protect those areas which don't have a VMA as munmap() detaches |
| * the VMAs before downgrading to a read lock and actually tearing |
| * down PTEs/page tables. In which case, the mmap write lock should |
| * be hold. |
| * |
| * 2) For walking the kernel virtual address space: |
| * |
| * The kernel intermediate page tables usually do not be freed, so |
| * the mmap map read lock is sufficient. But there are some exceptions. |
| * E.g. memory hot-remove. In which case, the mmap lock is insufficient |
| * to prevent the intermediate kernel pages tables belonging to the |
| * specified address range from being freed. The caller should take |
| * other actions to prevent this race. |
| */ |
| if (mm == &init_mm) |
| mmap_assert_locked(walk.mm); |
| else |
| mmap_assert_write_locked(walk.mm); |
| |
| return walk_pgd_range(start, end, &walk); |
| } |
| |
| int walk_page_range_vma(struct vm_area_struct *vma, unsigned long start, |
| unsigned long end, const struct mm_walk_ops *ops, |
| void *private) |
| { |
| struct mm_walk walk = { |
| .ops = ops, |
| .mm = vma->vm_mm, |
| .vma = vma, |
| .private = private, |
| }; |
| |
| if (start >= end || !walk.mm) |
| return -EINVAL; |
| if (start < vma->vm_start || end > vma->vm_end) |
| return -EINVAL; |
| |
| process_mm_walk_lock(walk.mm, ops->walk_lock); |
| process_vma_walk_lock(vma, ops->walk_lock); |
| return __walk_page_range(start, end, &walk); |
| } |
| |
| int walk_page_vma(struct vm_area_struct *vma, const struct mm_walk_ops *ops, |
| void *private) |
| { |
| struct mm_walk walk = { |
| .ops = ops, |
| .mm = vma->vm_mm, |
| .vma = vma, |
| .private = private, |
| }; |
| |
| if (!walk.mm) |
| return -EINVAL; |
| |
| process_mm_walk_lock(walk.mm, ops->walk_lock); |
| process_vma_walk_lock(vma, ops->walk_lock); |
| return __walk_page_range(vma->vm_start, vma->vm_end, &walk); |
| } |
| |
| /** |
| * walk_page_mapping - walk all memory areas mapped into a struct address_space. |
| * @mapping: Pointer to the struct address_space |
| * @first_index: First page offset in the address_space |
| * @nr: Number of incremental page offsets to cover |
| * @ops: operation to call during the walk |
| * @private: private data for callbacks' usage |
| * |
| * This function walks all memory areas mapped into a struct address_space. |
| * The walk is limited to only the given page-size index range, but if |
| * the index boundaries cross a huge page-table entry, that entry will be |
| * included. |
| * |
| * Also see walk_page_range() for additional information. |
| * |
| * Locking: |
| * This function can't require that the struct mm_struct::mmap_lock is held, |
| * since @mapping may be mapped by multiple processes. Instead |
| * @mapping->i_mmap_rwsem must be held. This might have implications in the |
| * callbacks, and it's up tho the caller to ensure that the |
| * struct mm_struct::mmap_lock is not needed. |
| * |
| * Also this means that a caller can't rely on the struct |
| * vm_area_struct::vm_flags to be constant across a call, |
| * except for immutable flags. Callers requiring this shouldn't use |
| * this function. |
| * |
| * Return: 0 on success, negative error code on failure, positive number on |
| * caller defined premature termination. |
| */ |
| int walk_page_mapping(struct address_space *mapping, pgoff_t first_index, |
| pgoff_t nr, const struct mm_walk_ops *ops, |
| void *private) |
| { |
| struct mm_walk walk = { |
| .ops = ops, |
| .private = private, |
| }; |
| struct vm_area_struct *vma; |
| pgoff_t vba, vea, cba, cea; |
| unsigned long start_addr, end_addr; |
| int err = 0; |
| |
| lockdep_assert_held(&mapping->i_mmap_rwsem); |
| vma_interval_tree_foreach(vma, &mapping->i_mmap, first_index, |
| first_index + nr - 1) { |
| /* Clip to the vma */ |
| vba = vma->vm_pgoff; |
| vea = vba + vma_pages(vma); |
| cba = first_index; |
| cba = max(cba, vba); |
| cea = first_index + nr; |
| cea = min(cea, vea); |
| |
| start_addr = ((cba - vba) << PAGE_SHIFT) + vma->vm_start; |
| end_addr = ((cea - vba) << PAGE_SHIFT) + vma->vm_start; |
| if (start_addr >= end_addr) |
| continue; |
| |
| walk.vma = vma; |
| walk.mm = vma->vm_mm; |
| |
| err = walk_page_test(vma->vm_start, vma->vm_end, &walk); |
| if (err > 0) { |
| err = 0; |
| break; |
| } else if (err < 0) |
| break; |
| |
| err = __walk_page_range(start_addr, end_addr, &walk); |
| if (err) |
| break; |
| } |
| |
| return err; |
| } |
| |
| /** |
| * folio_walk_start - walk the page tables to a folio |
| * @fw: filled with information on success. |
| * @vma: the VMA. |
| * @addr: the virtual address to use for the page table walk. |
| * @flags: flags modifying which folios to walk to. |
| * |
| * Walk the page tables using @addr in a given @vma to a mapped folio and |
| * return the folio, making sure that the page table entry referenced by |
| * @addr cannot change until folio_walk_end() was called. |
| * |
| * As default, this function returns only folios that are not special (e.g., not |
| * the zeropage) and never returns folios that are supposed to be ignored by the |
| * VM as documented by vm_normal_page(). If requested, zeropages will be |
| * returned as well. |
| * |
| * As default, this function only considers present page table entries. |
| * If requested, it will also consider migration entries. |
| * |
| * If this function returns NULL it might either indicate "there is nothing" or |
| * "there is nothing suitable". |
| * |
| * On success, @fw is filled and the function returns the folio while the PTL |
| * is still held and folio_walk_end() must be called to clean up, |
| * releasing any held locks. The returned folio must *not* be used after the |
| * call to folio_walk_end(), unless a short-term folio reference is taken before |
| * that call. |
| * |
| * @fw->page will correspond to the page that is effectively referenced by |
| * @addr. However, for migration entries and shared zeropages @fw->page is |
| * set to NULL. Note that large folios might be mapped by multiple page table |
| * entries, and this function will always only lookup a single entry as |
| * specified by @addr, which might or might not cover more than a single page of |
| * the returned folio. |
| * |
| * This function must *not* be used as a naive replacement for |
| * get_user_pages() / pin_user_pages(), especially not to perform DMA or |
| * to carelessly modify page content. This function may *only* be used to grab |
| * short-term folio references, never to grab long-term folio references. |
| * |
| * Using the page table entry pointers in @fw for reading or modifying the |
| * entry should be avoided where possible: however, there might be valid |
| * use cases. |
| * |
| * WARNING: Modifying page table entries in hugetlb VMAs requires a lot of care. |
| * For example, PMD page table sharing might require prior unsharing. Also, |
| * logical hugetlb entries might span multiple physical page table entries, |
| * which *must* be modified in a single operation (set_huge_pte_at(), |
| * huge_ptep_set_*, ...). Note that the page table entry stored in @fw might |
| * not correspond to the first physical entry of a logical hugetlb entry. |
| * |
| * The mmap lock must be held in read mode. |
| * |
| * Return: folio pointer on success, otherwise NULL. |
| */ |
| struct folio *folio_walk_start(struct folio_walk *fw, |
| struct vm_area_struct *vma, unsigned long addr, |
| folio_walk_flags_t flags) |
| { |
| unsigned long entry_size; |
| bool expose_page = true; |
| struct page *page; |
| pud_t *pudp, pud; |
| pmd_t *pmdp, pmd; |
| pte_t *ptep, pte; |
| spinlock_t *ptl; |
| pgd_t *pgdp; |
| p4d_t *p4dp; |
| |
| mmap_assert_locked(vma->vm_mm); |
| vma_pgtable_walk_begin(vma); |
| |
| if (WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end)) |
| goto not_found; |
| |
| pgdp = pgd_offset(vma->vm_mm, addr); |
| if (pgd_none_or_clear_bad(pgdp)) |
| goto not_found; |
| |
| p4dp = p4d_offset(pgdp, addr); |
| if (p4d_none_or_clear_bad(p4dp)) |
| goto not_found; |
| |
| pudp = pud_offset(p4dp, addr); |
| pud = pudp_get(pudp); |
| if (pud_none(pud)) |
| goto not_found; |
| if (IS_ENABLED(CONFIG_PGTABLE_HAS_HUGE_LEAVES) && pud_leaf(pud)) { |
| ptl = pud_lock(vma->vm_mm, pudp); |
| pud = pudp_get(pudp); |
| |
| entry_size = PUD_SIZE; |
| fw->level = FW_LEVEL_PUD; |
| fw->pudp = pudp; |
| fw->pud = pud; |
| |
| if (!pud_present(pud) || pud_devmap(pud) || pud_special(pud)) { |
| spin_unlock(ptl); |
| goto not_found; |
| } else if (!pud_leaf(pud)) { |
| spin_unlock(ptl); |
| goto pmd_table; |
| } |
| /* |
| * TODO: vm_normal_page_pud() will be handy once we want to |
| * support PUD mappings in VM_PFNMAP|VM_MIXEDMAP VMAs. |
| */ |
| page = pud_page(pud); |
| goto found; |
| } |
| |
| pmd_table: |
| VM_WARN_ON_ONCE(pud_leaf(*pudp)); |
| pmdp = pmd_offset(pudp, addr); |
| pmd = pmdp_get_lockless(pmdp); |
| if (pmd_none(pmd)) |
| goto not_found; |
| if (IS_ENABLED(CONFIG_PGTABLE_HAS_HUGE_LEAVES) && pmd_leaf(pmd)) { |
| ptl = pmd_lock(vma->vm_mm, pmdp); |
| pmd = pmdp_get(pmdp); |
| |
| entry_size = PMD_SIZE; |
| fw->level = FW_LEVEL_PMD; |
| fw->pmdp = pmdp; |
| fw->pmd = pmd; |
| |
| if (pmd_none(pmd)) { |
| spin_unlock(ptl); |
| goto not_found; |
| } else if (!pmd_leaf(pmd)) { |
| spin_unlock(ptl); |
| goto pte_table; |
| } else if (pmd_present(pmd)) { |
| page = vm_normal_page_pmd(vma, addr, pmd); |
| if (page) { |
| goto found; |
| } else if ((flags & FW_ZEROPAGE) && |
| is_huge_zero_pmd(pmd)) { |
| page = pfn_to_page(pmd_pfn(pmd)); |
| expose_page = false; |
| goto found; |
| } |
| } else if ((flags & FW_MIGRATION) && |
| is_pmd_migration_entry(pmd)) { |
| swp_entry_t entry = pmd_to_swp_entry(pmd); |
| |
| page = pfn_swap_entry_to_page(entry); |
| expose_page = false; |
| goto found; |
| } |
| spin_unlock(ptl); |
| goto not_found; |
| } |
| |
| pte_table: |
| VM_WARN_ON_ONCE(pmd_leaf(pmdp_get_lockless(pmdp))); |
| ptep = pte_offset_map_lock(vma->vm_mm, pmdp, addr, &ptl); |
| if (!ptep) |
| goto not_found; |
| pte = ptep_get(ptep); |
| |
| entry_size = PAGE_SIZE; |
| fw->level = FW_LEVEL_PTE; |
| fw->ptep = ptep; |
| fw->pte = pte; |
| |
| if (pte_present(pte)) { |
| page = vm_normal_page(vma, addr, pte); |
| if (page) |
| goto found; |
| if ((flags & FW_ZEROPAGE) && |
| is_zero_pfn(pte_pfn(pte))) { |
| page = pfn_to_page(pte_pfn(pte)); |
| expose_page = false; |
| goto found; |
| } |
| } else if (!pte_none(pte)) { |
| swp_entry_t entry = pte_to_swp_entry(pte); |
| |
| if ((flags & FW_MIGRATION) && |
| is_migration_entry(entry)) { |
| page = pfn_swap_entry_to_page(entry); |
| expose_page = false; |
| goto found; |
| } |
| } |
| pte_unmap_unlock(ptep, ptl); |
| not_found: |
| vma_pgtable_walk_end(vma); |
| return NULL; |
| found: |
| if (expose_page) |
| /* Note: Offset from the mapped page, not the folio start. */ |
| fw->page = nth_page(page, (addr & (entry_size - 1)) >> PAGE_SHIFT); |
| else |
| fw->page = NULL; |
| fw->ptl = ptl; |
| return page_folio(page); |
| } |