| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * SLUB: A slab allocator that limits cache line use instead of queuing |
| * objects in per cpu and per node lists. |
| * |
| * The allocator synchronizes using per slab locks or atomic operations |
| * and only uses a centralized lock to manage a pool of partial slabs. |
| * |
| * (C) 2007 SGI, Christoph Lameter |
| * (C) 2011 Linux Foundation, Christoph Lameter |
| */ |
| |
| #include <linux/mm.h> |
| #include <linux/swap.h> /* mm_account_reclaimed_pages() */ |
| #include <linux/module.h> |
| #include <linux/bit_spinlock.h> |
| #include <linux/interrupt.h> |
| #include <linux/swab.h> |
| #include <linux/bitops.h> |
| #include <linux/slab.h> |
| #include "slab.h" |
| #include <linux/proc_fs.h> |
| #include <linux/seq_file.h> |
| #include <linux/kasan.h> |
| #include <linux/kmsan.h> |
| #include <linux/cpu.h> |
| #include <linux/cpuset.h> |
| #include <linux/mempolicy.h> |
| #include <linux/ctype.h> |
| #include <linux/stackdepot.h> |
| #include <linux/debugobjects.h> |
| #include <linux/kallsyms.h> |
| #include <linux/kfence.h> |
| #include <linux/memory.h> |
| #include <linux/math64.h> |
| #include <linux/fault-inject.h> |
| #include <linux/kmemleak.h> |
| #include <linux/stacktrace.h> |
| #include <linux/prefetch.h> |
| #include <linux/memcontrol.h> |
| #include <linux/random.h> |
| #include <kunit/test.h> |
| #include <kunit/test-bug.h> |
| #include <linux/sort.h> |
| |
| #include <linux/debugfs.h> |
| #include <trace/events/kmem.h> |
| |
| #include "internal.h" |
| |
| /* |
| * Lock order: |
| * 1. slab_mutex (Global Mutex) |
| * 2. node->list_lock (Spinlock) |
| * 3. kmem_cache->cpu_slab->lock (Local lock) |
| * 4. slab_lock(slab) (Only on some arches) |
| * 5. object_map_lock (Only for debugging) |
| * |
| * slab_mutex |
| * |
| * The role of the slab_mutex is to protect the list of all the slabs |
| * and to synchronize major metadata changes to slab cache structures. |
| * Also synchronizes memory hotplug callbacks. |
| * |
| * slab_lock |
| * |
| * The slab_lock is a wrapper around the page lock, thus it is a bit |
| * spinlock. |
| * |
| * The slab_lock is only used on arches that do not have the ability |
| * to do a cmpxchg_double. It only protects: |
| * |
| * A. slab->freelist -> List of free objects in a slab |
| * B. slab->inuse -> Number of objects in use |
| * C. slab->objects -> Number of objects in slab |
| * D. slab->frozen -> frozen state |
| * |
| * Frozen slabs |
| * |
| * If a slab is frozen then it is exempt from list management. It is |
| * the cpu slab which is actively allocated from by the processor that |
| * froze it and it is not on any list. The processor that froze the |
| * slab is the one who can perform list operations on the slab. Other |
| * processors may put objects onto the freelist but the processor that |
| * froze the slab is the only one that can retrieve the objects from the |
| * slab's freelist. |
| * |
| * CPU partial slabs |
| * |
| * The partially empty slabs cached on the CPU partial list are used |
| * for performance reasons, which speeds up the allocation process. |
| * These slabs are not frozen, but are also exempt from list management, |
| * by clearing the PG_workingset flag when moving out of the node |
| * partial list. Please see __slab_free() for more details. |
| * |
| * To sum up, the current scheme is: |
| * - node partial slab: PG_Workingset && !frozen |
| * - cpu partial slab: !PG_Workingset && !frozen |
| * - cpu slab: !PG_Workingset && frozen |
| * - full slab: !PG_Workingset && !frozen |
| * |
| * list_lock |
| * |
| * The list_lock protects the partial and full list on each node and |
| * the partial slab counter. If taken then no new slabs may be added or |
| * removed from the lists nor make the number of partial slabs be modified. |
| * (Note that the total number of slabs is an atomic value that may be |
| * modified without taking the list lock). |
| * |
| * The list_lock is a centralized lock and thus we avoid taking it as |
| * much as possible. As long as SLUB does not have to handle partial |
| * slabs, operations can continue without any centralized lock. F.e. |
| * allocating a long series of objects that fill up slabs does not require |
| * the list lock. |
| * |
| * For debug caches, all allocations are forced to go through a list_lock |
| * protected region to serialize against concurrent validation. |
| * |
| * cpu_slab->lock local lock |
| * |
| * This locks protect slowpath manipulation of all kmem_cache_cpu fields |
| * except the stat counters. This is a percpu structure manipulated only by |
| * the local cpu, so the lock protects against being preempted or interrupted |
| * by an irq. Fast path operations rely on lockless operations instead. |
| * |
| * On PREEMPT_RT, the local lock neither disables interrupts nor preemption |
| * which means the lockless fastpath cannot be used as it might interfere with |
| * an in-progress slow path operations. In this case the local lock is always |
| * taken but it still utilizes the freelist for the common operations. |
| * |
| * lockless fastpaths |
| * |
| * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free()) |
| * are fully lockless when satisfied from the percpu slab (and when |
| * cmpxchg_double is possible to use, otherwise slab_lock is taken). |
| * They also don't disable preemption or migration or irqs. They rely on |
| * the transaction id (tid) field to detect being preempted or moved to |
| * another cpu. |
| * |
| * irq, preemption, migration considerations |
| * |
| * Interrupts are disabled as part of list_lock or local_lock operations, or |
| * around the slab_lock operation, in order to make the slab allocator safe |
| * to use in the context of an irq. |
| * |
| * In addition, preemption (or migration on PREEMPT_RT) is disabled in the |
| * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the |
| * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer |
| * doesn't have to be revalidated in each section protected by the local lock. |
| * |
| * SLUB assigns one slab for allocation to each processor. |
| * Allocations only occur from these slabs called cpu slabs. |
| * |
| * Slabs with free elements are kept on a partial list and during regular |
| * operations no list for full slabs is used. If an object in a full slab is |
| * freed then the slab will show up again on the partial lists. |
| * We track full slabs for debugging purposes though because otherwise we |
| * cannot scan all objects. |
| * |
| * Slabs are freed when they become empty. Teardown and setup is |
| * minimal so we rely on the page allocators per cpu caches for |
| * fast frees and allocs. |
| * |
| * slab->frozen The slab is frozen and exempt from list processing. |
| * This means that the slab is dedicated to a purpose |
| * such as satisfying allocations for a specific |
| * processor. Objects may be freed in the slab while |
| * it is frozen but slab_free will then skip the usual |
| * list operations. It is up to the processor holding |
| * the slab to integrate the slab into the slab lists |
| * when the slab is no longer needed. |
| * |
| * One use of this flag is to mark slabs that are |
| * used for allocations. Then such a slab becomes a cpu |
| * slab. The cpu slab may be equipped with an additional |
| * freelist that allows lockless access to |
| * free objects in addition to the regular freelist |
| * that requires the slab lock. |
| * |
| * SLAB_DEBUG_FLAGS Slab requires special handling due to debug |
| * options set. This moves slab handling out of |
| * the fast path and disables lockless freelists. |
| */ |
| |
| /* |
| * We could simply use migrate_disable()/enable() but as long as it's a |
| * function call even on !PREEMPT_RT, use inline preempt_disable() there. |
| */ |
| #ifndef CONFIG_PREEMPT_RT |
| #define slub_get_cpu_ptr(var) get_cpu_ptr(var) |
| #define slub_put_cpu_ptr(var) put_cpu_ptr(var) |
| #define USE_LOCKLESS_FAST_PATH() (true) |
| #else |
| #define slub_get_cpu_ptr(var) \ |
| ({ \ |
| migrate_disable(); \ |
| this_cpu_ptr(var); \ |
| }) |
| #define slub_put_cpu_ptr(var) \ |
| do { \ |
| (void)(var); \ |
| migrate_enable(); \ |
| } while (0) |
| #define USE_LOCKLESS_FAST_PATH() (false) |
| #endif |
| |
| #ifndef CONFIG_SLUB_TINY |
| #define __fastpath_inline __always_inline |
| #else |
| #define __fastpath_inline |
| #endif |
| |
| #ifdef CONFIG_SLUB_DEBUG |
| #ifdef CONFIG_SLUB_DEBUG_ON |
| DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); |
| #else |
| DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); |
| #endif |
| #endif /* CONFIG_SLUB_DEBUG */ |
| |
| /* Structure holding parameters for get_partial() call chain */ |
| struct partial_context { |
| gfp_t flags; |
| unsigned int orig_size; |
| void *object; |
| }; |
| |
| static inline bool kmem_cache_debug(struct kmem_cache *s) |
| { |
| return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); |
| } |
| |
| static inline bool slub_debug_orig_size(struct kmem_cache *s) |
| { |
| return (kmem_cache_debug_flags(s, SLAB_STORE_USER) && |
| (s->flags & SLAB_KMALLOC)); |
| } |
| |
| void *fixup_red_left(struct kmem_cache *s, void *p) |
| { |
| if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) |
| p += s->red_left_pad; |
| |
| return p; |
| } |
| |
| static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) |
| { |
| #ifdef CONFIG_SLUB_CPU_PARTIAL |
| return !kmem_cache_debug(s); |
| #else |
| return false; |
| #endif |
| } |
| |
| /* |
| * Issues still to be resolved: |
| * |
| * - Support PAGE_ALLOC_DEBUG. Should be easy to do. |
| * |
| * - Variable sizing of the per node arrays |
| */ |
| |
| /* Enable to log cmpxchg failures */ |
| #undef SLUB_DEBUG_CMPXCHG |
| |
| #ifndef CONFIG_SLUB_TINY |
| /* |
| * Minimum number of partial slabs. These will be left on the partial |
| * lists even if they are empty. kmem_cache_shrink may reclaim them. |
| */ |
| #define MIN_PARTIAL 5 |
| |
| /* |
| * Maximum number of desirable partial slabs. |
| * The existence of more partial slabs makes kmem_cache_shrink |
| * sort the partial list by the number of objects in use. |
| */ |
| #define MAX_PARTIAL 10 |
| #else |
| #define MIN_PARTIAL 0 |
| #define MAX_PARTIAL 0 |
| #endif |
| |
| #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ |
| SLAB_POISON | SLAB_STORE_USER) |
| |
| /* |
| * These debug flags cannot use CMPXCHG because there might be consistency |
| * issues when checking or reading debug information |
| */ |
| #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ |
| SLAB_TRACE) |
| |
| |
| /* |
| * Debugging flags that require metadata to be stored in the slab. These get |
| * disabled when slab_debug=O is used and a cache's min order increases with |
| * metadata. |
| */ |
| #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) |
| |
| #define OO_SHIFT 16 |
| #define OO_MASK ((1 << OO_SHIFT) - 1) |
| #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */ |
| |
| /* Internal SLUB flags */ |
| /* Poison object */ |
| #define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON) |
| /* Use cmpxchg_double */ |
| |
| #ifdef system_has_freelist_aba |
| #define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE) |
| #else |
| #define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED |
| #endif |
| |
| /* |
| * Tracking user of a slab. |
| */ |
| #define TRACK_ADDRS_COUNT 16 |
| struct track { |
| unsigned long addr; /* Called from address */ |
| #ifdef CONFIG_STACKDEPOT |
| depot_stack_handle_t handle; |
| #endif |
| int cpu; /* Was running on cpu */ |
| int pid; /* Pid context */ |
| unsigned long when; /* When did the operation occur */ |
| }; |
| |
| enum track_item { TRACK_ALLOC, TRACK_FREE }; |
| |
| #ifdef SLAB_SUPPORTS_SYSFS |
| static int sysfs_slab_add(struct kmem_cache *); |
| static int sysfs_slab_alias(struct kmem_cache *, const char *); |
| #else |
| static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } |
| static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) |
| { return 0; } |
| #endif |
| |
| #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) |
| static void debugfs_slab_add(struct kmem_cache *); |
| #else |
| static inline void debugfs_slab_add(struct kmem_cache *s) { } |
| #endif |
| |
| enum stat_item { |
| ALLOC_FASTPATH, /* Allocation from cpu slab */ |
| ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */ |
| FREE_FASTPATH, /* Free to cpu slab */ |
| FREE_SLOWPATH, /* Freeing not to cpu slab */ |
| FREE_FROZEN, /* Freeing to frozen slab */ |
| FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */ |
| FREE_REMOVE_PARTIAL, /* Freeing removes last object */ |
| ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */ |
| ALLOC_SLAB, /* Cpu slab acquired from page allocator */ |
| ALLOC_REFILL, /* Refill cpu slab from slab freelist */ |
| ALLOC_NODE_MISMATCH, /* Switching cpu slab */ |
| FREE_SLAB, /* Slab freed to the page allocator */ |
| CPUSLAB_FLUSH, /* Abandoning of the cpu slab */ |
| DEACTIVATE_FULL, /* Cpu slab was full when deactivated */ |
| DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */ |
| DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */ |
| DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */ |
| DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */ |
| DEACTIVATE_BYPASS, /* Implicit deactivation */ |
| ORDER_FALLBACK, /* Number of times fallback was necessary */ |
| CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */ |
| CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */ |
| CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */ |
| CPU_PARTIAL_FREE, /* Refill cpu partial on free */ |
| CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */ |
| CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */ |
| NR_SLUB_STAT_ITEMS |
| }; |
| |
| #ifndef CONFIG_SLUB_TINY |
| /* |
| * When changing the layout, make sure freelist and tid are still compatible |
| * with this_cpu_cmpxchg_double() alignment requirements. |
| */ |
| struct kmem_cache_cpu { |
| union { |
| struct { |
| void **freelist; /* Pointer to next available object */ |
| unsigned long tid; /* Globally unique transaction id */ |
| }; |
| freelist_aba_t freelist_tid; |
| }; |
| struct slab *slab; /* The slab from which we are allocating */ |
| #ifdef CONFIG_SLUB_CPU_PARTIAL |
| struct slab *partial; /* Partially allocated slabs */ |
| #endif |
| local_lock_t lock; /* Protects the fields above */ |
| #ifdef CONFIG_SLUB_STATS |
| unsigned int stat[NR_SLUB_STAT_ITEMS]; |
| #endif |
| }; |
| #endif /* CONFIG_SLUB_TINY */ |
| |
| static inline void stat(const struct kmem_cache *s, enum stat_item si) |
| { |
| #ifdef CONFIG_SLUB_STATS |
| /* |
| * The rmw is racy on a preemptible kernel but this is acceptable, so |
| * avoid this_cpu_add()'s irq-disable overhead. |
| */ |
| raw_cpu_inc(s->cpu_slab->stat[si]); |
| #endif |
| } |
| |
| static inline |
| void stat_add(const struct kmem_cache *s, enum stat_item si, int v) |
| { |
| #ifdef CONFIG_SLUB_STATS |
| raw_cpu_add(s->cpu_slab->stat[si], v); |
| #endif |
| } |
| |
| /* |
| * The slab lists for all objects. |
| */ |
| struct kmem_cache_node { |
| spinlock_t list_lock; |
| unsigned long nr_partial; |
| struct list_head partial; |
| #ifdef CONFIG_SLUB_DEBUG |
| atomic_long_t nr_slabs; |
| atomic_long_t total_objects; |
| struct list_head full; |
| #endif |
| }; |
| |
| static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) |
| { |
| return s->node[node]; |
| } |
| |
| /* |
| * Iterator over all nodes. The body will be executed for each node that has |
| * a kmem_cache_node structure allocated (which is true for all online nodes) |
| */ |
| #define for_each_kmem_cache_node(__s, __node, __n) \ |
| for (__node = 0; __node < nr_node_ids; __node++) \ |
| if ((__n = get_node(__s, __node))) |
| |
| /* |
| * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. |
| * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily |
| * differ during memory hotplug/hotremove operations. |
| * Protected by slab_mutex. |
| */ |
| static nodemask_t slab_nodes; |
| |
| #ifndef CONFIG_SLUB_TINY |
| /* |
| * Workqueue used for flush_cpu_slab(). |
| */ |
| static struct workqueue_struct *flushwq; |
| #endif |
| |
| /******************************************************************** |
| * Core slab cache functions |
| *******************************************************************/ |
| |
| /* |
| * Returns freelist pointer (ptr). With hardening, this is obfuscated |
| * with an XOR of the address where the pointer is held and a per-cache |
| * random number. |
| */ |
| static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s, |
| void *ptr, unsigned long ptr_addr) |
| { |
| unsigned long encoded; |
| |
| #ifdef CONFIG_SLAB_FREELIST_HARDENED |
| encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr); |
| #else |
| encoded = (unsigned long)ptr; |
| #endif |
| return (freeptr_t){.v = encoded}; |
| } |
| |
| static inline void *freelist_ptr_decode(const struct kmem_cache *s, |
| freeptr_t ptr, unsigned long ptr_addr) |
| { |
| void *decoded; |
| |
| #ifdef CONFIG_SLAB_FREELIST_HARDENED |
| decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr)); |
| #else |
| decoded = (void *)ptr.v; |
| #endif |
| return decoded; |
| } |
| |
| static inline void *get_freepointer(struct kmem_cache *s, void *object) |
| { |
| unsigned long ptr_addr; |
| freeptr_t p; |
| |
| object = kasan_reset_tag(object); |
| ptr_addr = (unsigned long)object + s->offset; |
| p = *(freeptr_t *)(ptr_addr); |
| return freelist_ptr_decode(s, p, ptr_addr); |
| } |
| |
| #ifndef CONFIG_SLUB_TINY |
| static void prefetch_freepointer(const struct kmem_cache *s, void *object) |
| { |
| prefetchw(object + s->offset); |
| } |
| #endif |
| |
| /* |
| * When running under KMSAN, get_freepointer_safe() may return an uninitialized |
| * pointer value in the case the current thread loses the race for the next |
| * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in |
| * slab_alloc_node() will fail, so the uninitialized value won't be used, but |
| * KMSAN will still check all arguments of cmpxchg because of imperfect |
| * handling of inline assembly. |
| * To work around this problem, we apply __no_kmsan_checks to ensure that |
| * get_freepointer_safe() returns initialized memory. |
| */ |
| __no_kmsan_checks |
| static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) |
| { |
| unsigned long freepointer_addr; |
| freeptr_t p; |
| |
| if (!debug_pagealloc_enabled_static()) |
| return get_freepointer(s, object); |
| |
| object = kasan_reset_tag(object); |
| freepointer_addr = (unsigned long)object + s->offset; |
| copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p)); |
| return freelist_ptr_decode(s, p, freepointer_addr); |
| } |
| |
| static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) |
| { |
| unsigned long freeptr_addr = (unsigned long)object + s->offset; |
| |
| #ifdef CONFIG_SLAB_FREELIST_HARDENED |
| BUG_ON(object == fp); /* naive detection of double free or corruption */ |
| #endif |
| |
| freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); |
| *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr); |
| } |
| |
| /* |
| * See comment in calculate_sizes(). |
| */ |
| static inline bool freeptr_outside_object(struct kmem_cache *s) |
| { |
| return s->offset >= s->inuse; |
| } |
| |
| /* |
| * Return offset of the end of info block which is inuse + free pointer if |
| * not overlapping with object. |
| */ |
| static inline unsigned int get_info_end(struct kmem_cache *s) |
| { |
| if (freeptr_outside_object(s)) |
| return s->inuse + sizeof(void *); |
| else |
| return s->inuse; |
| } |
| |
| /* Loop over all objects in a slab */ |
| #define for_each_object(__p, __s, __addr, __objects) \ |
| for (__p = fixup_red_left(__s, __addr); \ |
| __p < (__addr) + (__objects) * (__s)->size; \ |
| __p += (__s)->size) |
| |
| static inline unsigned int order_objects(unsigned int order, unsigned int size) |
| { |
| return ((unsigned int)PAGE_SIZE << order) / size; |
| } |
| |
| static inline struct kmem_cache_order_objects oo_make(unsigned int order, |
| unsigned int size) |
| { |
| struct kmem_cache_order_objects x = { |
| (order << OO_SHIFT) + order_objects(order, size) |
| }; |
| |
| return x; |
| } |
| |
| static inline unsigned int oo_order(struct kmem_cache_order_objects x) |
| { |
| return x.x >> OO_SHIFT; |
| } |
| |
| static inline unsigned int oo_objects(struct kmem_cache_order_objects x) |
| { |
| return x.x & OO_MASK; |
| } |
| |
| #ifdef CONFIG_SLUB_CPU_PARTIAL |
| static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) |
| { |
| unsigned int nr_slabs; |
| |
| s->cpu_partial = nr_objects; |
| |
| /* |
| * We take the number of objects but actually limit the number of |
| * slabs on the per cpu partial list, in order to limit excessive |
| * growth of the list. For simplicity we assume that the slabs will |
| * be half-full. |
| */ |
| nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo)); |
| s->cpu_partial_slabs = nr_slabs; |
| } |
| |
| static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s) |
| { |
| return s->cpu_partial_slabs; |
| } |
| #else |
| static inline void |
| slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) |
| { |
| } |
| |
| static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s) |
| { |
| return 0; |
| } |
| #endif /* CONFIG_SLUB_CPU_PARTIAL */ |
| |
| /* |
| * Per slab locking using the pagelock |
| */ |
| static __always_inline void slab_lock(struct slab *slab) |
| { |
| bit_spin_lock(PG_locked, &slab->__page_flags); |
| } |
| |
| static __always_inline void slab_unlock(struct slab *slab) |
| { |
| bit_spin_unlock(PG_locked, &slab->__page_flags); |
| } |
| |
| static inline bool |
| __update_freelist_fast(struct slab *slab, |
| void *freelist_old, unsigned long counters_old, |
| void *freelist_new, unsigned long counters_new) |
| { |
| #ifdef system_has_freelist_aba |
| freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old }; |
| freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new }; |
| |
| return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full); |
| #else |
| return false; |
| #endif |
| } |
| |
| static inline bool |
| __update_freelist_slow(struct slab *slab, |
| void *freelist_old, unsigned long counters_old, |
| void *freelist_new, unsigned long counters_new) |
| { |
| bool ret = false; |
| |
| slab_lock(slab); |
| if (slab->freelist == freelist_old && |
| slab->counters == counters_old) { |
| slab->freelist = freelist_new; |
| slab->counters = counters_new; |
| ret = true; |
| } |
| slab_unlock(slab); |
| |
| return ret; |
| } |
| |
| /* |
| * Interrupts must be disabled (for the fallback code to work right), typically |
| * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is |
| * part of bit_spin_lock(), is sufficient because the policy is not to allow any |
| * allocation/ free operation in hardirq context. Therefore nothing can |
| * interrupt the operation. |
| */ |
| static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab, |
| void *freelist_old, unsigned long counters_old, |
| void *freelist_new, unsigned long counters_new, |
| const char *n) |
| { |
| bool ret; |
| |
| if (USE_LOCKLESS_FAST_PATH()) |
| lockdep_assert_irqs_disabled(); |
| |
| if (s->flags & __CMPXCHG_DOUBLE) { |
| ret = __update_freelist_fast(slab, freelist_old, counters_old, |
| freelist_new, counters_new); |
| } else { |
| ret = __update_freelist_slow(slab, freelist_old, counters_old, |
| freelist_new, counters_new); |
| } |
| if (likely(ret)) |
| return true; |
| |
| cpu_relax(); |
| stat(s, CMPXCHG_DOUBLE_FAIL); |
| |
| #ifdef SLUB_DEBUG_CMPXCHG |
| pr_info("%s %s: cmpxchg double redo ", n, s->name); |
| #endif |
| |
| return false; |
| } |
| |
| static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab, |
| void *freelist_old, unsigned long counters_old, |
| void *freelist_new, unsigned long counters_new, |
| const char *n) |
| { |
| bool ret; |
| |
| if (s->flags & __CMPXCHG_DOUBLE) { |
| ret = __update_freelist_fast(slab, freelist_old, counters_old, |
| freelist_new, counters_new); |
| } else { |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| ret = __update_freelist_slow(slab, freelist_old, counters_old, |
| freelist_new, counters_new); |
| local_irq_restore(flags); |
| } |
| if (likely(ret)) |
| return true; |
| |
| cpu_relax(); |
| stat(s, CMPXCHG_DOUBLE_FAIL); |
| |
| #ifdef SLUB_DEBUG_CMPXCHG |
| pr_info("%s %s: cmpxchg double redo ", n, s->name); |
| #endif |
| |
| return false; |
| } |
| |
| /* |
| * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API |
| * family will round up the real request size to these fixed ones, so |
| * there could be an extra area than what is requested. Save the original |
| * request size in the meta data area, for better debug and sanity check. |
| */ |
| static inline void set_orig_size(struct kmem_cache *s, |
| void *object, unsigned int orig_size) |
| { |
| void *p = kasan_reset_tag(object); |
| unsigned int kasan_meta_size; |
| |
| if (!slub_debug_orig_size(s)) |
| return; |
| |
| /* |
| * KASAN can save its free meta data inside of the object at offset 0. |
| * If this meta data size is larger than 'orig_size', it will overlap |
| * the data redzone in [orig_size+1, object_size]. Thus, we adjust |
| * 'orig_size' to be as at least as big as KASAN's meta data. |
| */ |
| kasan_meta_size = kasan_metadata_size(s, true); |
| if (kasan_meta_size > orig_size) |
| orig_size = kasan_meta_size; |
| |
| p += get_info_end(s); |
| p += sizeof(struct track) * 2; |
| |
| *(unsigned int *)p = orig_size; |
| } |
| |
| static inline unsigned int get_orig_size(struct kmem_cache *s, void *object) |
| { |
| void *p = kasan_reset_tag(object); |
| |
| if (!slub_debug_orig_size(s)) |
| return s->object_size; |
| |
| p += get_info_end(s); |
| p += sizeof(struct track) * 2; |
| |
| return *(unsigned int *)p; |
| } |
| |
| #ifdef CONFIG_SLUB_DEBUG |
| static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; |
| static DEFINE_SPINLOCK(object_map_lock); |
| |
| static void __fill_map(unsigned long *obj_map, struct kmem_cache *s, |
| struct slab *slab) |
| { |
| void *addr = slab_address(slab); |
| void *p; |
| |
| bitmap_zero(obj_map, slab->objects); |
| |
| for (p = slab->freelist; p; p = get_freepointer(s, p)) |
| set_bit(__obj_to_index(s, addr, p), obj_map); |
| } |
| |
| #if IS_ENABLED(CONFIG_KUNIT) |
| static bool slab_add_kunit_errors(void) |
| { |
| struct kunit_resource *resource; |
| |
| if (!kunit_get_current_test()) |
| return false; |
| |
| resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); |
| if (!resource) |
| return false; |
| |
| (*(int *)resource->data)++; |
| kunit_put_resource(resource); |
| return true; |
| } |
| |
| bool slab_in_kunit_test(void) |
| { |
| struct kunit_resource *resource; |
| |
| if (!kunit_get_current_test()) |
| return false; |
| |
| resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); |
| if (!resource) |
| return false; |
| |
| kunit_put_resource(resource); |
| return true; |
| } |
| #else |
| static inline bool slab_add_kunit_errors(void) { return false; } |
| #endif |
| |
| static inline unsigned int size_from_object(struct kmem_cache *s) |
| { |
| if (s->flags & SLAB_RED_ZONE) |
| return s->size - s->red_left_pad; |
| |
| return s->size; |
| } |
| |
| static inline void *restore_red_left(struct kmem_cache *s, void *p) |
| { |
| if (s->flags & SLAB_RED_ZONE) |
| p -= s->red_left_pad; |
| |
| return p; |
| } |
| |
| /* |
| * Debug settings: |
| */ |
| #if defined(CONFIG_SLUB_DEBUG_ON) |
| static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; |
| #else |
| static slab_flags_t slub_debug; |
| #endif |
| |
| static char *slub_debug_string; |
| static int disable_higher_order_debug; |
| |
| /* |
| * slub is about to manipulate internal object metadata. This memory lies |
| * outside the range of the allocated object, so accessing it would normally |
| * be reported by kasan as a bounds error. metadata_access_enable() is used |
| * to tell kasan that these accesses are OK. |
| */ |
| static inline void metadata_access_enable(void) |
| { |
| kasan_disable_current(); |
| kmsan_disable_current(); |
| } |
| |
| static inline void metadata_access_disable(void) |
| { |
| kmsan_enable_current(); |
| kasan_enable_current(); |
| } |
| |
| /* |
| * Object debugging |
| */ |
| |
| /* Verify that a pointer has an address that is valid within a slab page */ |
| static inline int check_valid_pointer(struct kmem_cache *s, |
| struct slab *slab, void *object) |
| { |
| void *base; |
| |
| if (!object) |
| return 1; |
| |
| base = slab_address(slab); |
| object = kasan_reset_tag(object); |
| object = restore_red_left(s, object); |
| if (object < base || object >= base + slab->objects * s->size || |
| (object - base) % s->size) { |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static void print_section(char *level, char *text, u8 *addr, |
| unsigned int length) |
| { |
| metadata_access_enable(); |
| print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, |
| 16, 1, kasan_reset_tag((void *)addr), length, 1); |
| metadata_access_disable(); |
| } |
| |
| static struct track *get_track(struct kmem_cache *s, void *object, |
| enum track_item alloc) |
| { |
| struct track *p; |
| |
| p = object + get_info_end(s); |
| |
| return kasan_reset_tag(p + alloc); |
| } |
| |
| #ifdef CONFIG_STACKDEPOT |
| static noinline depot_stack_handle_t set_track_prepare(void) |
| { |
| depot_stack_handle_t handle; |
| unsigned long entries[TRACK_ADDRS_COUNT]; |
| unsigned int nr_entries; |
| |
| nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); |
| handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); |
| |
| return handle; |
| } |
| #else |
| static inline depot_stack_handle_t set_track_prepare(void) |
| { |
| return 0; |
| } |
| #endif |
| |
| static void set_track_update(struct kmem_cache *s, void *object, |
| enum track_item alloc, unsigned long addr, |
| depot_stack_handle_t handle) |
| { |
| struct track *p = get_track(s, object, alloc); |
| |
| #ifdef CONFIG_STACKDEPOT |
| p->handle = handle; |
| #endif |
| p->addr = addr; |
| p->cpu = smp_processor_id(); |
| p->pid = current->pid; |
| p->when = jiffies; |
| } |
| |
| static __always_inline void set_track(struct kmem_cache *s, void *object, |
| enum track_item alloc, unsigned long addr) |
| { |
| depot_stack_handle_t handle = set_track_prepare(); |
| |
| set_track_update(s, object, alloc, addr, handle); |
| } |
| |
| static void init_tracking(struct kmem_cache *s, void *object) |
| { |
| struct track *p; |
| |
| if (!(s->flags & SLAB_STORE_USER)) |
| return; |
| |
| p = get_track(s, object, TRACK_ALLOC); |
| memset(p, 0, 2*sizeof(struct track)); |
| } |
| |
| static void print_track(const char *s, struct track *t, unsigned long pr_time) |
| { |
| depot_stack_handle_t handle __maybe_unused; |
| |
| if (!t->addr) |
| return; |
| |
| pr_err("%s in %pS age=%lu cpu=%u pid=%d\n", |
| s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); |
| #ifdef CONFIG_STACKDEPOT |
| handle = READ_ONCE(t->handle); |
| if (handle) |
| stack_depot_print(handle); |
| else |
| pr_err("object allocation/free stack trace missing\n"); |
| #endif |
| } |
| |
| void print_tracking(struct kmem_cache *s, void *object) |
| { |
| unsigned long pr_time = jiffies; |
| if (!(s->flags & SLAB_STORE_USER)) |
| return; |
| |
| print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); |
| print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); |
| } |
| |
| static void print_slab_info(const struct slab *slab) |
| { |
| pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n", |
| slab, slab->objects, slab->inuse, slab->freelist, |
| &slab->__page_flags); |
| } |
| |
| void skip_orig_size_check(struct kmem_cache *s, const void *object) |
| { |
| set_orig_size(s, (void *)object, s->object_size); |
| } |
| |
| static void slab_bug(struct kmem_cache *s, char *fmt, ...) |
| { |
| struct va_format vaf; |
| va_list args; |
| |
| va_start(args, fmt); |
| vaf.fmt = fmt; |
| vaf.va = &args; |
| pr_err("=============================================================================\n"); |
| pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); |
| pr_err("-----------------------------------------------------------------------------\n\n"); |
| va_end(args); |
| } |
| |
| __printf(2, 3) |
| static void slab_fix(struct kmem_cache *s, char *fmt, ...) |
| { |
| struct va_format vaf; |
| va_list args; |
| |
| if (slab_add_kunit_errors()) |
| return; |
| |
| va_start(args, fmt); |
| vaf.fmt = fmt; |
| vaf.va = &args; |
| pr_err("FIX %s: %pV\n", s->name, &vaf); |
| va_end(args); |
| } |
| |
| static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p) |
| { |
| unsigned int off; /* Offset of last byte */ |
| u8 *addr = slab_address(slab); |
| |
| print_tracking(s, p); |
| |
| print_slab_info(slab); |
| |
| pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n", |
| p, p - addr, get_freepointer(s, p)); |
| |
| if (s->flags & SLAB_RED_ZONE) |
| print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, |
| s->red_left_pad); |
| else if (p > addr + 16) |
| print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); |
| |
| print_section(KERN_ERR, "Object ", p, |
| min_t(unsigned int, s->object_size, PAGE_SIZE)); |
| if (s->flags & SLAB_RED_ZONE) |
| print_section(KERN_ERR, "Redzone ", p + s->object_size, |
| s->inuse - s->object_size); |
| |
| off = get_info_end(s); |
| |
| if (s->flags & SLAB_STORE_USER) |
| off += 2 * sizeof(struct track); |
| |
| if (slub_debug_orig_size(s)) |
| off += sizeof(unsigned int); |
| |
| off += kasan_metadata_size(s, false); |
| |
| if (off != size_from_object(s)) |
| /* Beginning of the filler is the free pointer */ |
| print_section(KERN_ERR, "Padding ", p + off, |
| size_from_object(s) - off); |
| |
| dump_stack(); |
| } |
| |
| static void object_err(struct kmem_cache *s, struct slab *slab, |
| u8 *object, char *reason) |
| { |
| if (slab_add_kunit_errors()) |
| return; |
| |
| slab_bug(s, "%s", reason); |
| print_trailer(s, slab, object); |
| add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
| } |
| |
| static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, |
| void **freelist, void *nextfree) |
| { |
| if ((s->flags & SLAB_CONSISTENCY_CHECKS) && |
| !check_valid_pointer(s, slab, nextfree) && freelist) { |
| object_err(s, slab, *freelist, "Freechain corrupt"); |
| *freelist = NULL; |
| slab_fix(s, "Isolate corrupted freechain"); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab, |
| const char *fmt, ...) |
| { |
| va_list args; |
| char buf[100]; |
| |
| if (slab_add_kunit_errors()) |
| return; |
| |
| va_start(args, fmt); |
| vsnprintf(buf, sizeof(buf), fmt, args); |
| va_end(args); |
| slab_bug(s, "%s", buf); |
| print_slab_info(slab); |
| dump_stack(); |
| add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
| } |
| |
| static void init_object(struct kmem_cache *s, void *object, u8 val) |
| { |
| u8 *p = kasan_reset_tag(object); |
| unsigned int poison_size = s->object_size; |
| |
| if (s->flags & SLAB_RED_ZONE) { |
| /* |
| * Here and below, avoid overwriting the KMSAN shadow. Keeping |
| * the shadow makes it possible to distinguish uninit-value |
| * from use-after-free. |
| */ |
| memset_no_sanitize_memory(p - s->red_left_pad, val, |
| s->red_left_pad); |
| |
| if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { |
| /* |
| * Redzone the extra allocated space by kmalloc than |
| * requested, and the poison size will be limited to |
| * the original request size accordingly. |
| */ |
| poison_size = get_orig_size(s, object); |
| } |
| } |
| |
| if (s->flags & __OBJECT_POISON) { |
| memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1); |
| memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1); |
| } |
| |
| if (s->flags & SLAB_RED_ZONE) |
| memset_no_sanitize_memory(p + poison_size, val, |
| s->inuse - poison_size); |
| } |
| |
| static void restore_bytes(struct kmem_cache *s, char *message, u8 data, |
| void *from, void *to) |
| { |
| slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data); |
| memset(from, data, to - from); |
| } |
| |
| #ifdef CONFIG_KMSAN |
| #define pad_check_attributes noinline __no_kmsan_checks |
| #else |
| #define pad_check_attributes |
| #endif |
| |
| static pad_check_attributes int |
| check_bytes_and_report(struct kmem_cache *s, struct slab *slab, |
| u8 *object, char *what, |
| u8 *start, unsigned int value, unsigned int bytes) |
| { |
| u8 *fault; |
| u8 *end; |
| u8 *addr = slab_address(slab); |
| |
| metadata_access_enable(); |
| fault = memchr_inv(kasan_reset_tag(start), value, bytes); |
| metadata_access_disable(); |
| if (!fault) |
| return 1; |
| |
| end = start + bytes; |
| while (end > fault && end[-1] == value) |
| end--; |
| |
| if (slab_add_kunit_errors()) |
| goto skip_bug_print; |
| |
| slab_bug(s, "%s overwritten", what); |
| pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", |
| fault, end - 1, fault - addr, |
| fault[0], value); |
| |
| skip_bug_print: |
| restore_bytes(s, what, value, fault, end); |
| return 0; |
| } |
| |
| /* |
| * Object layout: |
| * |
| * object address |
| * Bytes of the object to be managed. |
| * If the freepointer may overlay the object then the free |
| * pointer is at the middle of the object. |
| * |
| * Poisoning uses 0x6b (POISON_FREE) and the last byte is |
| * 0xa5 (POISON_END) |
| * |
| * object + s->object_size |
| * Padding to reach word boundary. This is also used for Redzoning. |
| * Padding is extended by another word if Redzoning is enabled and |
| * object_size == inuse. |
| * |
| * We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with |
| * 0xcc (SLUB_RED_ACTIVE) for objects in use. |
| * |
| * object + s->inuse |
| * Meta data starts here. |
| * |
| * A. Free pointer (if we cannot overwrite object on free) |
| * B. Tracking data for SLAB_STORE_USER |
| * C. Original request size for kmalloc object (SLAB_STORE_USER enabled) |
| * D. Padding to reach required alignment boundary or at minimum |
| * one word if debugging is on to be able to detect writes |
| * before the word boundary. |
| * |
| * Padding is done using 0x5a (POISON_INUSE) |
| * |
| * object + s->size |
| * Nothing is used beyond s->size. |
| * |
| * If slabcaches are merged then the object_size and inuse boundaries are mostly |
| * ignored. And therefore no slab options that rely on these boundaries |
| * may be used with merged slabcaches. |
| */ |
| |
| static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p) |
| { |
| unsigned long off = get_info_end(s); /* The end of info */ |
| |
| if (s->flags & SLAB_STORE_USER) { |
| /* We also have user information there */ |
| off += 2 * sizeof(struct track); |
| |
| if (s->flags & SLAB_KMALLOC) |
| off += sizeof(unsigned int); |
| } |
| |
| off += kasan_metadata_size(s, false); |
| |
| if (size_from_object(s) == off) |
| return 1; |
| |
| return check_bytes_and_report(s, slab, p, "Object padding", |
| p + off, POISON_INUSE, size_from_object(s) - off); |
| } |
| |
| /* Check the pad bytes at the end of a slab page */ |
| static pad_check_attributes void |
| slab_pad_check(struct kmem_cache *s, struct slab *slab) |
| { |
| u8 *start; |
| u8 *fault; |
| u8 *end; |
| u8 *pad; |
| int length; |
| int remainder; |
| |
| if (!(s->flags & SLAB_POISON)) |
| return; |
| |
| start = slab_address(slab); |
| length = slab_size(slab); |
| end = start + length; |
| remainder = length % s->size; |
| if (!remainder) |
| return; |
| |
| pad = end - remainder; |
| metadata_access_enable(); |
| fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); |
| metadata_access_disable(); |
| if (!fault) |
| return; |
| while (end > fault && end[-1] == POISON_INUSE) |
| end--; |
| |
| slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu", |
| fault, end - 1, fault - start); |
| print_section(KERN_ERR, "Padding ", pad, remainder); |
| |
| restore_bytes(s, "slab padding", POISON_INUSE, fault, end); |
| } |
| |
| static int check_object(struct kmem_cache *s, struct slab *slab, |
| void *object, u8 val) |
| { |
| u8 *p = object; |
| u8 *endobject = object + s->object_size; |
| unsigned int orig_size, kasan_meta_size; |
| int ret = 1; |
| |
| if (s->flags & SLAB_RED_ZONE) { |
| if (!check_bytes_and_report(s, slab, object, "Left Redzone", |
| object - s->red_left_pad, val, s->red_left_pad)) |
| ret = 0; |
| |
| if (!check_bytes_and_report(s, slab, object, "Right Redzone", |
| endobject, val, s->inuse - s->object_size)) |
| ret = 0; |
| |
| if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { |
| orig_size = get_orig_size(s, object); |
| |
| if (s->object_size > orig_size && |
| !check_bytes_and_report(s, slab, object, |
| "kmalloc Redzone", p + orig_size, |
| val, s->object_size - orig_size)) { |
| ret = 0; |
| } |
| } |
| } else { |
| if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { |
| if (!check_bytes_and_report(s, slab, p, "Alignment padding", |
| endobject, POISON_INUSE, |
| s->inuse - s->object_size)) |
| ret = 0; |
| } |
| } |
| |
| if (s->flags & SLAB_POISON) { |
| if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) { |
| /* |
| * KASAN can save its free meta data inside of the |
| * object at offset 0. Thus, skip checking the part of |
| * the redzone that overlaps with the meta data. |
| */ |
| kasan_meta_size = kasan_metadata_size(s, true); |
| if (kasan_meta_size < s->object_size - 1 && |
| !check_bytes_and_report(s, slab, p, "Poison", |
| p + kasan_meta_size, POISON_FREE, |
| s->object_size - kasan_meta_size - 1)) |
| ret = 0; |
| if (kasan_meta_size < s->object_size && |
| !check_bytes_and_report(s, slab, p, "End Poison", |
| p + s->object_size - 1, POISON_END, 1)) |
| ret = 0; |
| } |
| /* |
| * check_pad_bytes cleans up on its own. |
| */ |
| if (!check_pad_bytes(s, slab, p)) |
| ret = 0; |
| } |
| |
| /* |
| * Cannot check freepointer while object is allocated if |
| * object and freepointer overlap. |
| */ |
| if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) && |
| !check_valid_pointer(s, slab, get_freepointer(s, p))) { |
| object_err(s, slab, p, "Freepointer corrupt"); |
| /* |
| * No choice but to zap it and thus lose the remainder |
| * of the free objects in this slab. May cause |
| * another error because the object count is now wrong. |
| */ |
| set_freepointer(s, p, NULL); |
| ret = 0; |
| } |
| |
| if (!ret && !slab_in_kunit_test()) { |
| print_trailer(s, slab, object); |
| add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
| } |
| |
| return ret; |
| } |
| |
| static int check_slab(struct kmem_cache *s, struct slab *slab) |
| { |
| int maxobj; |
| |
| if (!folio_test_slab(slab_folio(slab))) { |
| slab_err(s, slab, "Not a valid slab page"); |
| return 0; |
| } |
| |
| maxobj = order_objects(slab_order(slab), s->size); |
| if (slab->objects > maxobj) { |
| slab_err(s, slab, "objects %u > max %u", |
| slab->objects, maxobj); |
| return 0; |
| } |
| if (slab->inuse > slab->objects) { |
| slab_err(s, slab, "inuse %u > max %u", |
| slab->inuse, slab->objects); |
| return 0; |
| } |
| /* Slab_pad_check fixes things up after itself */ |
| slab_pad_check(s, slab); |
| return 1; |
| } |
| |
| /* |
| * Determine if a certain object in a slab is on the freelist. Must hold the |
| * slab lock to guarantee that the chains are in a consistent state. |
| */ |
| static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search) |
| { |
| int nr = 0; |
| void *fp; |
| void *object = NULL; |
| int max_objects; |
| |
| fp = slab->freelist; |
| while (fp && nr <= slab->objects) { |
| if (fp == search) |
| return 1; |
| if (!check_valid_pointer(s, slab, fp)) { |
| if (object) { |
| object_err(s, slab, object, |
| "Freechain corrupt"); |
| set_freepointer(s, object, NULL); |
| } else { |
| slab_err(s, slab, "Freepointer corrupt"); |
| slab->freelist = NULL; |
| slab->inuse = slab->objects; |
| slab_fix(s, "Freelist cleared"); |
| return 0; |
| } |
| break; |
| } |
| object = fp; |
| fp = get_freepointer(s, object); |
| nr++; |
| } |
| |
| max_objects = order_objects(slab_order(slab), s->size); |
| if (max_objects > MAX_OBJS_PER_PAGE) |
| max_objects = MAX_OBJS_PER_PAGE; |
| |
| if (slab->objects != max_objects) { |
| slab_err(s, slab, "Wrong number of objects. Found %d but should be %d", |
| slab->objects, max_objects); |
| slab->objects = max_objects; |
| slab_fix(s, "Number of objects adjusted"); |
| } |
| if (slab->inuse != slab->objects - nr) { |
| slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d", |
| slab->inuse, slab->objects - nr); |
| slab->inuse = slab->objects - nr; |
| slab_fix(s, "Object count adjusted"); |
| } |
| return search == NULL; |
| } |
| |
| static void trace(struct kmem_cache *s, struct slab *slab, void *object, |
| int alloc) |
| { |
| if (s->flags & SLAB_TRACE) { |
| pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", |
| s->name, |
| alloc ? "alloc" : "free", |
| object, slab->inuse, |
| slab->freelist); |
| |
| if (!alloc) |
| print_section(KERN_INFO, "Object ", (void *)object, |
| s->object_size); |
| |
| dump_stack(); |
| } |
| } |
| |
| /* |
| * Tracking of fully allocated slabs for debugging purposes. |
| */ |
| static void add_full(struct kmem_cache *s, |
| struct kmem_cache_node *n, struct slab *slab) |
| { |
| if (!(s->flags & SLAB_STORE_USER)) |
| return; |
| |
| lockdep_assert_held(&n->list_lock); |
| list_add(&slab->slab_list, &n->full); |
| } |
| |
| static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab) |
| { |
| if (!(s->flags & SLAB_STORE_USER)) |
| return; |
| |
| lockdep_assert_held(&n->list_lock); |
| list_del(&slab->slab_list); |
| } |
| |
| static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) |
| { |
| return atomic_long_read(&n->nr_slabs); |
| } |
| |
| static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) |
| { |
| struct kmem_cache_node *n = get_node(s, node); |
| |
| atomic_long_inc(&n->nr_slabs); |
| atomic_long_add(objects, &n->total_objects); |
| } |
| static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) |
| { |
| struct kmem_cache_node *n = get_node(s, node); |
| |
| atomic_long_dec(&n->nr_slabs); |
| atomic_long_sub(objects, &n->total_objects); |
| } |
| |
| /* Object debug checks for alloc/free paths */ |
| static void setup_object_debug(struct kmem_cache *s, void *object) |
| { |
| if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) |
| return; |
| |
| init_object(s, object, SLUB_RED_INACTIVE); |
| init_tracking(s, object); |
| } |
| |
| static |
| void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) |
| { |
| if (!kmem_cache_debug_flags(s, SLAB_POISON)) |
| return; |
| |
| metadata_access_enable(); |
| memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab)); |
| metadata_access_disable(); |
| } |
| |
| static inline int alloc_consistency_checks(struct kmem_cache *s, |
| struct slab *slab, void *object) |
| { |
| if (!check_slab(s, slab)) |
| return 0; |
| |
| if (!check_valid_pointer(s, slab, object)) { |
| object_err(s, slab, object, "Freelist Pointer check fails"); |
| return 0; |
| } |
| |
| if (!check_object(s, slab, object, SLUB_RED_INACTIVE)) |
| return 0; |
| |
| return 1; |
| } |
| |
| static noinline bool alloc_debug_processing(struct kmem_cache *s, |
| struct slab *slab, void *object, int orig_size) |
| { |
| if (s->flags & SLAB_CONSISTENCY_CHECKS) { |
| if (!alloc_consistency_checks(s, slab, object)) |
| goto bad; |
| } |
| |
| /* Success. Perform special debug activities for allocs */ |
| trace(s, slab, object, 1); |
| set_orig_size(s, object, orig_size); |
| init_object(s, object, SLUB_RED_ACTIVE); |
| return true; |
| |
| bad: |
| if (folio_test_slab(slab_folio(slab))) { |
| /* |
| * If this is a slab page then lets do the best we can |
| * to avoid issues in the future. Marking all objects |
| * as used avoids touching the remaining objects. |
| */ |
| slab_fix(s, "Marking all objects used"); |
| slab->inuse = slab->objects; |
| slab->freelist = NULL; |
| } |
| return false; |
| } |
| |
| static inline int free_consistency_checks(struct kmem_cache *s, |
| struct slab *slab, void *object, unsigned long addr) |
| { |
| if (!check_valid_pointer(s, slab, object)) { |
| slab_err(s, slab, "Invalid object pointer 0x%p", object); |
| return 0; |
| } |
| |
| if (on_freelist(s, slab, object)) { |
| object_err(s, slab, object, "Object already free"); |
| return 0; |
| } |
| |
| if (!check_object(s, slab, object, SLUB_RED_ACTIVE)) |
| return 0; |
| |
| if (unlikely(s != slab->slab_cache)) { |
| if (!folio_test_slab(slab_folio(slab))) { |
| slab_err(s, slab, "Attempt to free object(0x%p) outside of slab", |
| object); |
| } else if (!slab->slab_cache) { |
| pr_err("SLUB <none>: no slab for object 0x%p.\n", |
| object); |
| dump_stack(); |
| } else |
| object_err(s, slab, object, |
| "page slab pointer corrupt."); |
| return 0; |
| } |
| return 1; |
| } |
| |
| /* |
| * Parse a block of slab_debug options. Blocks are delimited by ';' |
| * |
| * @str: start of block |
| * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified |
| * @slabs: return start of list of slabs, or NULL when there's no list |
| * @init: assume this is initial parsing and not per-kmem-create parsing |
| * |
| * returns the start of next block if there's any, or NULL |
| */ |
| static char * |
| parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) |
| { |
| bool higher_order_disable = false; |
| |
| /* Skip any completely empty blocks */ |
| while (*str && *str == ';') |
| str++; |
| |
| if (*str == ',') { |
| /* |
| * No options but restriction on slabs. This means full |
| * debugging for slabs matching a pattern. |
| */ |
| *flags = DEBUG_DEFAULT_FLAGS; |
| goto check_slabs; |
| } |
| *flags = 0; |
| |
| /* Determine which debug features should be switched on */ |
| for (; *str && *str != ',' && *str != ';'; str++) { |
| switch (tolower(*str)) { |
| case '-': |
| *flags = 0; |
| break; |
| case 'f': |
| *flags |= SLAB_CONSISTENCY_CHECKS; |
| break; |
| case 'z': |
| *flags |= SLAB_RED_ZONE; |
| break; |
| case 'p': |
| *flags |= SLAB_POISON; |
| break; |
| case 'u': |
| *flags |= SLAB_STORE_USER; |
| break; |
| case 't': |
| *flags |= SLAB_TRACE; |
| break; |
| case 'a': |
| *flags |= SLAB_FAILSLAB; |
| break; |
| case 'o': |
| /* |
| * Avoid enabling debugging on caches if its minimum |
| * order would increase as a result. |
| */ |
| higher_order_disable = true; |
| break; |
| default: |
| if (init) |
| pr_err("slab_debug option '%c' unknown. skipped\n", *str); |
| } |
| } |
| check_slabs: |
| if (*str == ',') |
| *slabs = ++str; |
| else |
| *slabs = NULL; |
| |
| /* Skip over the slab list */ |
| while (*str && *str != ';') |
| str++; |
| |
| /* Skip any completely empty blocks */ |
| while (*str && *str == ';') |
| str++; |
| |
| if (init && higher_order_disable) |
| disable_higher_order_debug = 1; |
| |
| if (*str) |
| return str; |
| else |
| return NULL; |
| } |
| |
| static int __init setup_slub_debug(char *str) |
| { |
| slab_flags_t flags; |
| slab_flags_t global_flags; |
| char *saved_str; |
| char *slab_list; |
| bool global_slub_debug_changed = false; |
| bool slab_list_specified = false; |
| |
| global_flags = DEBUG_DEFAULT_FLAGS; |
| if (*str++ != '=' || !*str) |
| /* |
| * No options specified. Switch on full debugging. |
| */ |
| goto out; |
| |
| saved_str = str; |
| while (str) { |
| str = parse_slub_debug_flags(str, &flags, &slab_list, true); |
| |
| if (!slab_list) { |
| global_flags = flags; |
| global_slub_debug_changed = true; |
| } else { |
| slab_list_specified = true; |
| if (flags & SLAB_STORE_USER) |
| stack_depot_request_early_init(); |
| } |
| } |
| |
| /* |
| * For backwards compatibility, a single list of flags with list of |
| * slabs means debugging is only changed for those slabs, so the global |
| * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending |
| * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as |
| * long as there is no option specifying flags without a slab list. |
| */ |
| if (slab_list_specified) { |
| if (!global_slub_debug_changed) |
| global_flags = slub_debug; |
| slub_debug_string = saved_str; |
| } |
| out: |
| slub_debug = global_flags; |
| if (slub_debug & SLAB_STORE_USER) |
| stack_depot_request_early_init(); |
| if (slub_debug != 0 || slub_debug_string) |
| static_branch_enable(&slub_debug_enabled); |
| else |
| static_branch_disable(&slub_debug_enabled); |
| if ((static_branch_unlikely(&init_on_alloc) || |
| static_branch_unlikely(&init_on_free)) && |
| (slub_debug & SLAB_POISON)) |
| pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); |
| return 1; |
| } |
| |
| __setup("slab_debug", setup_slub_debug); |
| __setup_param("slub_debug", slub_debug, setup_slub_debug, 0); |
| |
| /* |
| * kmem_cache_flags - apply debugging options to the cache |
| * @flags: flags to set |
| * @name: name of the cache |
| * |
| * Debug option(s) are applied to @flags. In addition to the debug |
| * option(s), if a slab name (or multiple) is specified i.e. |
| * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ... |
| * then only the select slabs will receive the debug option(s). |
| */ |
| slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name) |
| { |
| char *iter; |
| size_t len; |
| char *next_block; |
| slab_flags_t block_flags; |
| slab_flags_t slub_debug_local = slub_debug; |
| |
| if (flags & SLAB_NO_USER_FLAGS) |
| return flags; |
| |
| /* |
| * If the slab cache is for debugging (e.g. kmemleak) then |
| * don't store user (stack trace) information by default, |
| * but let the user enable it via the command line below. |
| */ |
| if (flags & SLAB_NOLEAKTRACE) |
| slub_debug_local &= ~SLAB_STORE_USER; |
| |
| len = strlen(name); |
| next_block = slub_debug_string; |
| /* Go through all blocks of debug options, see if any matches our slab's name */ |
| while (next_block) { |
| next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); |
| if (!iter) |
| continue; |
| /* Found a block that has a slab list, search it */ |
| while (*iter) { |
| char *end, *glob; |
| size_t cmplen; |
| |
| end = strchrnul(iter, ','); |
| if (next_block && next_block < end) |
| end = next_block - 1; |
| |
| glob = strnchr(iter, end - iter, '*'); |
| if (glob) |
| cmplen = glob - iter; |
| else |
| cmplen = max_t(size_t, len, (end - iter)); |
| |
| if (!strncmp(name, iter, cmplen)) { |
| flags |= block_flags; |
| return flags; |
| } |
| |
| if (!*end || *end == ';') |
| break; |
| iter = end + 1; |
| } |
| } |
| |
| return flags | slub_debug_local; |
| } |
| #else /* !CONFIG_SLUB_DEBUG */ |
| static inline void setup_object_debug(struct kmem_cache *s, void *object) {} |
| static inline |
| void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {} |
| |
| static inline bool alloc_debug_processing(struct kmem_cache *s, |
| struct slab *slab, void *object, int orig_size) { return true; } |
| |
| static inline bool free_debug_processing(struct kmem_cache *s, |
| struct slab *slab, void *head, void *tail, int *bulk_cnt, |
| unsigned long addr, depot_stack_handle_t handle) { return true; } |
| |
| static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {} |
| static inline int check_object(struct kmem_cache *s, struct slab *slab, |
| void *object, u8 val) { return 1; } |
| static inline depot_stack_handle_t set_track_prepare(void) { return 0; } |
| static inline void set_track(struct kmem_cache *s, void *object, |
| enum track_item alloc, unsigned long addr) {} |
| static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, |
| struct slab *slab) {} |
| static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, |
| struct slab *slab) {} |
| slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name) |
| { |
| return flags; |
| } |
| #define slub_debug 0 |
| |
| #define disable_higher_order_debug 0 |
| |
| static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) |
| { return 0; } |
| static inline void inc_slabs_node(struct kmem_cache *s, int node, |
| int objects) {} |
| static inline void dec_slabs_node(struct kmem_cache *s, int node, |
| int objects) {} |
| #ifndef CONFIG_SLUB_TINY |
| static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, |
| void **freelist, void *nextfree) |
| { |
| return false; |
| } |
| #endif |
| #endif /* CONFIG_SLUB_DEBUG */ |
| |
| #ifdef CONFIG_SLAB_OBJ_EXT |
| |
| #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG |
| |
| static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) |
| { |
| struct slabobj_ext *slab_exts; |
| struct slab *obj_exts_slab; |
| |
| obj_exts_slab = virt_to_slab(obj_exts); |
| slab_exts = slab_obj_exts(obj_exts_slab); |
| if (slab_exts) { |
| unsigned int offs = obj_to_index(obj_exts_slab->slab_cache, |
| obj_exts_slab, obj_exts); |
| /* codetag should be NULL */ |
| WARN_ON(slab_exts[offs].ref.ct); |
| set_codetag_empty(&slab_exts[offs].ref); |
| } |
| } |
| |
| static inline void mark_failed_objexts_alloc(struct slab *slab) |
| { |
| slab->obj_exts = OBJEXTS_ALLOC_FAIL; |
| } |
| |
| static inline void handle_failed_objexts_alloc(unsigned long obj_exts, |
| struct slabobj_ext *vec, unsigned int objects) |
| { |
| /* |
| * If vector previously failed to allocate then we have live |
| * objects with no tag reference. Mark all references in this |
| * vector as empty to avoid warnings later on. |
| */ |
| if (obj_exts & OBJEXTS_ALLOC_FAIL) { |
| unsigned int i; |
| |
| for (i = 0; i < objects; i++) |
| set_codetag_empty(&vec[i].ref); |
| } |
| } |
| |
| #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */ |
| |
| static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {} |
| static inline void mark_failed_objexts_alloc(struct slab *slab) {} |
| static inline void handle_failed_objexts_alloc(unsigned long obj_exts, |
| struct slabobj_ext *vec, unsigned int objects) {} |
| |
| #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */ |
| |
| /* |
| * The allocated objcg pointers array is not accounted directly. |
| * Moreover, it should not come from DMA buffer and is not readily |
| * reclaimable. So those GFP bits should be masked off. |
| */ |
| #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \ |
| __GFP_ACCOUNT | __GFP_NOFAIL) |
| |
| int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s, |
| gfp_t gfp, bool new_slab) |
| { |
| unsigned int objects = objs_per_slab(s, slab); |
| unsigned long new_exts; |
| unsigned long old_exts; |
| struct slabobj_ext *vec; |
| |
| gfp &= ~OBJCGS_CLEAR_MASK; |
| /* Prevent recursive extension vector allocation */ |
| gfp |= __GFP_NO_OBJ_EXT; |
| vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp, |
| slab_nid(slab)); |
| if (!vec) { |
| /* Mark vectors which failed to allocate */ |
| if (new_slab) |
| mark_failed_objexts_alloc(slab); |
| |
| return -ENOMEM; |
| } |
| |
| new_exts = (unsigned long)vec; |
| #ifdef CONFIG_MEMCG |
| new_exts |= MEMCG_DATA_OBJEXTS; |
| #endif |
| old_exts = READ_ONCE(slab->obj_exts); |
| handle_failed_objexts_alloc(old_exts, vec, objects); |
| if (new_slab) { |
| /* |
| * If the slab is brand new and nobody can yet access its |
| * obj_exts, no synchronization is required and obj_exts can |
| * be simply assigned. |
| */ |
| slab->obj_exts = new_exts; |
| } else if ((old_exts & ~OBJEXTS_FLAGS_MASK) || |
| cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) { |
| /* |
| * If the slab is already in use, somebody can allocate and |
| * assign slabobj_exts in parallel. In this case the existing |
| * objcg vector should be reused. |
| */ |
| mark_objexts_empty(vec); |
| kfree(vec); |
| return 0; |
| } |
| |
| kmemleak_not_leak(vec); |
| return 0; |
| } |
| |
| static inline void free_slab_obj_exts(struct slab *slab) |
| { |
| struct slabobj_ext *obj_exts; |
| |
| obj_exts = slab_obj_exts(slab); |
| if (!obj_exts) |
| return; |
| |
| /* |
| * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its |
| * corresponding extension will be NULL. alloc_tag_sub() will throw a |
| * warning if slab has extensions but the extension of an object is |
| * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that |
| * the extension for obj_exts is expected to be NULL. |
| */ |
| mark_objexts_empty(obj_exts); |
| kfree(obj_exts); |
| slab->obj_exts = 0; |
| } |
| |
| static inline bool need_slab_obj_ext(void) |
| { |
| if (mem_alloc_profiling_enabled()) |
| return true; |
| |
| /* |
| * CONFIG_MEMCG creates vector of obj_cgroup objects conditionally |
| * inside memcg_slab_post_alloc_hook. No other users for now. |
| */ |
| return false; |
| } |
| |
| #else /* CONFIG_SLAB_OBJ_EXT */ |
| |
| static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s, |
| gfp_t gfp, bool new_slab) |
| { |
| return 0; |
| } |
| |
| static inline void free_slab_obj_exts(struct slab *slab) |
| { |
| } |
| |
| static inline bool need_slab_obj_ext(void) |
| { |
| return false; |
| } |
| |
| #endif /* CONFIG_SLAB_OBJ_EXT */ |
| |
| #ifdef CONFIG_MEM_ALLOC_PROFILING |
| |
| static inline struct slabobj_ext * |
| prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p) |
| { |
| struct slab *slab; |
| |
| if (!p) |
| return NULL; |
| |
| if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE)) |
| return NULL; |
| |
| if (flags & __GFP_NO_OBJ_EXT) |
| return NULL; |
| |
| slab = virt_to_slab(p); |
| if (!slab_obj_exts(slab) && |
| WARN(alloc_slab_obj_exts(slab, s, flags, false), |
| "%s, %s: Failed to create slab extension vector!\n", |
| __func__, s->name)) |
| return NULL; |
| |
| return slab_obj_exts(slab) + obj_to_index(s, slab, p); |
| } |
| |
| static inline void |
| alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags) |
| { |
| if (need_slab_obj_ext()) { |
| struct slabobj_ext *obj_exts; |
| |
| obj_exts = prepare_slab_obj_exts_hook(s, flags, object); |
| /* |
| * Currently obj_exts is used only for allocation profiling. |
| * If other users appear then mem_alloc_profiling_enabled() |
| * check should be added before alloc_tag_add(). |
| */ |
| if (likely(obj_exts)) |
| alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size); |
| } |
| } |
| |
| static inline void |
| alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, |
| int objects) |
| { |
| struct slabobj_ext *obj_exts; |
| int i; |
| |
| if (!mem_alloc_profiling_enabled()) |
| return; |
| |
| /* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */ |
| if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE)) |
| return; |
| |
| obj_exts = slab_obj_exts(slab); |
| if (!obj_exts) |
| return; |
| |
| for (i = 0; i < objects; i++) { |
| unsigned int off = obj_to_index(s, slab, p[i]); |
| |
| alloc_tag_sub(&obj_exts[off].ref, s->size); |
| } |
| } |
| |
| #else /* CONFIG_MEM_ALLOC_PROFILING */ |
| |
| static inline void |
| alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags) |
| { |
| } |
| |
| static inline void |
| alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, |
| int objects) |
| { |
| } |
| |
| #endif /* CONFIG_MEM_ALLOC_PROFILING */ |
| |
| |
| #ifdef CONFIG_MEMCG |
| |
| static void memcg_alloc_abort_single(struct kmem_cache *s, void *object); |
| |
| static __fastpath_inline |
| bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, |
| gfp_t flags, size_t size, void **p) |
| { |
| if (likely(!memcg_kmem_online())) |
| return true; |
| |
| if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))) |
| return true; |
| |
| if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p))) |
| return true; |
| |
| if (likely(size == 1)) { |
| memcg_alloc_abort_single(s, *p); |
| *p = NULL; |
| } else { |
| kmem_cache_free_bulk(s, size, p); |
| } |
| |
| return false; |
| } |
| |
| static __fastpath_inline |
| void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, |
| int objects) |
| { |
| struct slabobj_ext *obj_exts; |
| |
| if (!memcg_kmem_online()) |
| return; |
| |
| obj_exts = slab_obj_exts(slab); |
| if (likely(!obj_exts)) |
| return; |
| |
| __memcg_slab_free_hook(s, slab, p, objects, obj_exts); |
| } |
| |
| static __fastpath_inline |
| bool memcg_slab_post_charge(void *p, gfp_t flags) |
| { |
| struct slabobj_ext *slab_exts; |
| struct kmem_cache *s; |
| struct folio *folio; |
| struct slab *slab; |
| unsigned long off; |
| |
| folio = virt_to_folio(p); |
| if (!folio_test_slab(folio)) { |
| return folio_memcg_kmem(folio) || |
| (__memcg_kmem_charge_page(folio_page(folio, 0), flags, |
| folio_order(folio)) == 0); |
| } |
| |
| slab = folio_slab(folio); |
| s = slab->slab_cache; |
| |
| /* |
| * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency |
| * of slab_obj_exts being allocated from the same slab and thus the slab |
| * becoming effectively unfreeable. |
| */ |
| if (is_kmalloc_normal(s)) |
| return true; |
| |
| /* Ignore already charged objects. */ |
| slab_exts = slab_obj_exts(slab); |
| if (slab_exts) { |
| off = obj_to_index(s, slab, p); |
| if (unlikely(slab_exts[off].objcg)) |
| return true; |
| } |
| |
| return __memcg_slab_post_alloc_hook(s, NULL, flags, 1, &p); |
| } |
| |
| #else /* CONFIG_MEMCG */ |
| static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s, |
| struct list_lru *lru, |
| gfp_t flags, size_t size, |
| void **p) |
| { |
| return true; |
| } |
| |
| static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, |
| void **p, int objects) |
| { |
| } |
| |
| static inline bool memcg_slab_post_charge(void *p, gfp_t flags) |
| { |
| return true; |
| } |
| #endif /* CONFIG_MEMCG */ |
| |
| #ifdef CONFIG_SLUB_RCU_DEBUG |
| static void slab_free_after_rcu_debug(struct rcu_head *rcu_head); |
| |
| struct rcu_delayed_free { |
| struct rcu_head head; |
| void *object; |
| }; |
| #endif |
| |
| /* |
| * Hooks for other subsystems that check memory allocations. In a typical |
| * production configuration these hooks all should produce no code at all. |
| * |
| * Returns true if freeing of the object can proceed, false if its reuse |
| * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned |
| * to KFENCE. |
| */ |
| static __always_inline |
| bool slab_free_hook(struct kmem_cache *s, void *x, bool init, |
| bool after_rcu_delay) |
| { |
| /* Are the object contents still accessible? */ |
| bool still_accessible = (s->flags & SLAB_TYPESAFE_BY_RCU) && !after_rcu_delay; |
| |
| kmemleak_free_recursive(x, s->flags); |
| kmsan_slab_free(s, x); |
| |
| debug_check_no_locks_freed(x, s->object_size); |
| |
| if (!(s->flags & SLAB_DEBUG_OBJECTS)) |
| debug_check_no_obj_freed(x, s->object_size); |
| |
| /* Use KCSAN to help debug racy use-after-free. */ |
| if (!still_accessible) |
| __kcsan_check_access(x, s->object_size, |
| KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); |
| |
| if (kfence_free(x)) |
| return false; |
| |
| /* |
| * Give KASAN a chance to notice an invalid free operation before we |
| * modify the object. |
| */ |
| if (kasan_slab_pre_free(s, x)) |
| return false; |
| |
| #ifdef CONFIG_SLUB_RCU_DEBUG |
| if (still_accessible) { |
| struct rcu_delayed_free *delayed_free; |
| |
| delayed_free = kmalloc(sizeof(*delayed_free), GFP_NOWAIT); |
| if (delayed_free) { |
| /* |
| * Let KASAN track our call stack as a "related work |
| * creation", just like if the object had been freed |
| * normally via kfree_rcu(). |
| * We have to do this manually because the rcu_head is |
| * not located inside the object. |
| */ |
| kasan_record_aux_stack_noalloc(x); |
| |
| delayed_free->object = x; |
| call_rcu(&delayed_free->head, slab_free_after_rcu_debug); |
| return false; |
| } |
| } |
| #endif /* CONFIG_SLUB_RCU_DEBUG */ |
| |
| /* |
| * As memory initialization might be integrated into KASAN, |
| * kasan_slab_free and initialization memset's must be |
| * kept together to avoid discrepancies in behavior. |
| * |
| * The initialization memset's clear the object and the metadata, |
| * but don't touch the SLAB redzone. |
| * |
| * The object's freepointer is also avoided if stored outside the |
| * object. |
| */ |
| if (unlikely(init)) { |
| int rsize; |
| unsigned int inuse, orig_size; |
| |
| inuse = get_info_end(s); |
| orig_size = get_orig_size(s, x); |
| if (!kasan_has_integrated_init()) |
| memset(kasan_reset_tag(x), 0, orig_size); |
| rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; |
| memset((char *)kasan_reset_tag(x) + inuse, 0, |
| s->size - inuse - rsize); |
| /* |
| * Restore orig_size, otherwize kmalloc redzone overwritten |
| * would be reported |
| */ |
| set_orig_size(s, x, orig_size); |
| |
| } |
| /* KASAN might put x into memory quarantine, delaying its reuse. */ |
| return !kasan_slab_free(s, x, init, still_accessible); |
| } |
| |
| static __fastpath_inline |
| bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail, |
| int *cnt) |
| { |
| |
| void *object; |
| void *next = *head; |
| void *old_tail = *tail; |
| bool init; |
| |
| if (is_kfence_address(next)) { |
| slab_free_hook(s, next, false, false); |
| return false; |
| } |
| |
| /* Head and tail of the reconstructed freelist */ |
| *head = NULL; |
| *tail = NULL; |
| |
| init = slab_want_init_on_free(s); |
| |
| do { |
| object = next; |
| next = get_freepointer(s, object); |
| |
| /* If object's reuse doesn't have to be delayed */ |
| if (likely(slab_free_hook(s, object, init, false))) { |
| /* Move object to the new freelist */ |
| set_freepointer(s, object, *head); |
| *head = object; |
| if (!*tail) |
| *tail = object; |
| } else { |
| /* |
| * Adjust the reconstructed freelist depth |
| * accordingly if object's reuse is delayed. |
| */ |
| --(*cnt); |
| } |
| } while (object != old_tail); |
| |
| return *head != NULL; |
| } |
| |
| static void *setup_object(struct kmem_cache *s, void *object) |
| { |
| setup_object_debug(s, object); |
| object = kasan_init_slab_obj(s, object); |
| if (unlikely(s->ctor)) { |
| kasan_unpoison_new_object(s, object); |
| s->ctor(object); |
| kasan_poison_new_object(s, object); |
| } |
| return object; |
| } |
| |
| /* |
| * Slab allocation and freeing |
| */ |
| static inline struct slab *alloc_slab_page(gfp_t flags, int node, |
| struct kmem_cache_order_objects oo) |
| { |
| struct folio *folio; |
| struct slab *slab; |
| unsigned int order = oo_order(oo); |
| |
| if (node == NUMA_NO_NODE) |
| folio = (struct folio *)alloc_pages(flags, order); |
| else |
| folio = (struct folio *)__alloc_pages_node(node, flags, order); |
| |
| if (!folio) |
| return NULL; |
| |
| slab = folio_slab(folio); |
| __folio_set_slab(folio); |
| /* Make the flag visible before any changes to folio->mapping */ |
| smp_wmb(); |
| if (folio_is_pfmemalloc(folio)) |
| slab_set_pfmemalloc(slab); |
| |
| return slab; |
| } |
| |
| #ifdef CONFIG_SLAB_FREELIST_RANDOM |
| /* Pre-initialize the random sequence cache */ |
| static int init_cache_random_seq(struct kmem_cache *s) |
| { |
| unsigned int count = oo_objects(s->oo); |
| int err; |
| |
| /* Bailout if already initialised */ |
| if (s->random_seq) |
| return 0; |
| |
| err = cache_random_seq_create(s, count, GFP_KERNEL); |
| if (err) { |
| pr_err("SLUB: Unable to initialize free list for %s\n", |
| s->name); |
| return err; |
| } |
| |
| /* Transform to an offset on the set of pages */ |
| if (s->random_seq) { |
| unsigned int i; |
| |
| for (i = 0; i < count; i++) |
| s->random_seq[i] *= s->size; |
| } |
| return 0; |
| } |
| |
| /* Initialize each random sequence freelist per cache */ |
| static void __init init_freelist_randomization(void) |
| { |
| struct kmem_cache *s; |
| |
| mutex_lock(&slab_mutex); |
| |
| list_for_each_entry(s, &slab_caches, list) |
| init_cache_random_seq(s); |
| |
| mutex_unlock(&slab_mutex); |
| } |
| |
| /* Get the next entry on the pre-computed freelist randomized */ |
| static void *next_freelist_entry(struct kmem_cache *s, |
| unsigned long *pos, void *start, |
| unsigned long page_limit, |
| unsigned long freelist_count) |
| { |
| unsigned int idx; |
| |
| /* |
| * If the target page allocation failed, the number of objects on the |
| * page might be smaller than the usual size defined by the cache. |
| */ |
| do { |
| idx = s->random_seq[*pos]; |
| *pos += 1; |
| if (*pos >= freelist_count) |
| *pos = 0; |
| } while (unlikely(idx >= page_limit)); |
| |
| return (char *)start + idx; |
| } |
| |
| /* Shuffle the single linked freelist based on a random pre-computed sequence */ |
| static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) |
| { |
| void *start; |
| void *cur; |
| void *next; |
| unsigned long idx, pos, page_limit, freelist_count; |
| |
| if (slab->objects < 2 || !s->random_seq) |
| return false; |
| |
| freelist_count = oo_objects(s->oo); |
| pos = get_random_u32_below(freelist_count); |
| |
| page_limit = slab->objects * s->size; |
| start = fixup_red_left(s, slab_address(slab)); |
| |
| /* First entry is used as the base of the freelist */ |
| cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count); |
| cur = setup_object(s, cur); |
| slab->freelist = cur; |
| |
| for (idx = 1; idx < slab->objects; idx++) { |
| next = next_freelist_entry(s, &pos, start, page_limit, |
| freelist_count); |
| next = setup_object(s, next); |
| set_freepointer(s, cur, next); |
| cur = next; |
| } |
| set_freepointer(s, cur, NULL); |
| |
| return true; |
| } |
| #else |
| static inline int init_cache_random_seq(struct kmem_cache *s) |
| { |
| return 0; |
| } |
| static inline void init_freelist_randomization(void) { } |
| static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) |
| { |
| return false; |
| } |
| #endif /* CONFIG_SLAB_FREELIST_RANDOM */ |
| |
| static __always_inline void account_slab(struct slab *slab, int order, |
| struct kmem_cache *s, gfp_t gfp) |
| { |
| if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT)) |
| alloc_slab_obj_exts(slab, s, gfp, true); |
| |
| mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), |
| PAGE_SIZE << order); |
| } |
| |
| static __always_inline void unaccount_slab(struct slab *slab, int order, |
| struct kmem_cache *s) |
| { |
| if (memcg_kmem_online() || need_slab_obj_ext()) |
| free_slab_obj_exts(slab); |
| |
| mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), |
| -(PAGE_SIZE << order)); |
| } |
| |
| static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) |
| { |
| struct slab *slab; |
| struct kmem_cache_order_objects oo = s->oo; |
| gfp_t alloc_gfp; |
| void *start, *p, *next; |
| int idx; |
| bool shuffle; |
| |
| flags &= gfp_allowed_mask; |
| |
| flags |= s->allocflags; |
| |
| /* |
| * Let the initial higher-order allocation fail under memory pressure |
| * so we fall-back to the minimum order allocation. |
| */ |
| alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; |
| if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) |
| alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM; |
| |
| slab = alloc_slab_page(alloc_gfp, node, oo); |
| if (unlikely(!slab)) { |
| oo = s->min; |
| alloc_gfp = flags; |
| /* |
| * Allocation may have failed due to fragmentation. |
| * Try a lower order alloc if possible |
| */ |
| slab = alloc_slab_page(alloc_gfp, node, oo); |
| if (unlikely(!slab)) |
| return NULL; |
| stat(s, ORDER_FALLBACK); |
| } |
| |
| slab->objects = oo_objects(oo); |
| slab->inuse = 0; |
| slab->frozen = 0; |
| |
| account_slab(slab, oo_order(oo), s, flags); |
| |
| slab->slab_cache = s; |
| |
| kasan_poison_slab(slab); |
| |
| start = slab_address(slab); |
| |
| setup_slab_debug(s, slab, start); |
| |
| shuffle = shuffle_freelist(s, slab); |
| |
| if (!shuffle) { |
| start = fixup_red_left(s, start); |
| start = setup_object(s, start); |
| slab->freelist = start; |
| for (idx = 0, p = start; idx < slab->objects - 1; idx++) { |
| next = p + s->size; |
| next = setup_object(s, next); |
| set_freepointer(s, p, next); |
| p = next; |
| } |
| set_freepointer(s, p, NULL); |
| } |
| |
| return slab; |
| } |
| |
| static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node) |
| { |
| if (unlikely(flags & GFP_SLAB_BUG_MASK)) |
| flags = kmalloc_fix_flags(flags); |
| |
| WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); |
| |
| return allocate_slab(s, |
| flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); |
| } |
| |
| static void __free_slab(struct kmem_cache *s, struct slab *slab) |
| { |
| struct folio *folio = slab_folio(slab); |
| int order = folio_order(folio); |
| int pages = 1 << order; |
| |
| __slab_clear_pfmemalloc(slab); |
| folio->mapping = NULL; |
| /* Make the mapping reset visible before clearing the flag */ |
| smp_wmb(); |
| __folio_clear_slab(folio); |
| mm_account_reclaimed_pages(pages); |
| unaccount_slab(slab, order, s); |
| __free_pages(&folio->page, order); |
| } |
| |
| static void rcu_free_slab(struct rcu_head *h) |
| { |
| struct slab *slab = container_of(h, struct slab, rcu_head); |
| |
| __free_slab(slab->slab_cache, slab); |
| } |
| |
| static void free_slab(struct kmem_cache *s, struct slab *slab) |
| { |
| if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { |
| void *p; |
| |
| slab_pad_check(s, slab); |
| for_each_object(p, s, slab_address(slab), slab->objects) |
| check_object(s, slab, p, SLUB_RED_INACTIVE); |
| } |
| |
| if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) |
| call_rcu(&slab->rcu_head, rcu_free_slab); |
| else |
| __free_slab(s, slab); |
| } |
| |
| static void discard_slab(struct kmem_cache *s, struct slab *slab) |
| { |
| dec_slabs_node(s, slab_nid(slab), slab->objects); |
| free_slab(s, slab); |
| } |
| |
| /* |
| * SLUB reuses PG_workingset bit to keep track of whether it's on |
| * the per-node partial list. |
| */ |
| static inline bool slab_test_node_partial(const struct slab *slab) |
| { |
| return folio_test_workingset(slab_folio(slab)); |
| } |
| |
| static inline void slab_set_node_partial(struct slab *slab) |
| { |
| set_bit(PG_workingset, folio_flags(slab_folio(slab), 0)); |
| } |
| |
| static inline void slab_clear_node_partial(struct slab *slab) |
| { |
| clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0)); |
| } |
| |
| /* |
| * Management of partially allocated slabs. |
| */ |
| static inline void |
| __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail) |
| { |
| n->nr_partial++; |
| if (tail == DEACTIVATE_TO_TAIL) |
| list_add_tail(&slab->slab_list, &n->partial); |
| else |
| list_add(&slab->slab_list, &n->partial); |
| slab_set_node_partial(slab); |
| } |
| |
| static inline void add_partial(struct kmem_cache_node *n, |
| struct slab *slab, int tail) |
| { |
| lockdep_assert_held(&n->list_lock); |
| __add_partial(n, slab, tail); |
| } |
| |
| static inline void remove_partial(struct kmem_cache_node *n, |
| struct slab *slab) |
| { |
| lockdep_assert_held(&n->list_lock); |
| list_del(&slab->slab_list); |
| slab_clear_node_partial(slab); |
| n->nr_partial--; |
| } |
| |
| /* |
| * Called only for kmem_cache_debug() caches instead of remove_partial(), with a |
| * slab from the n->partial list. Remove only a single object from the slab, do |
| * the alloc_debug_processing() checks and leave the slab on the list, or move |
| * it to full list if it was the last free object. |
| */ |
| static void *alloc_single_from_partial(struct kmem_cache *s, |
| struct kmem_cache_node *n, struct slab *slab, int orig_size) |
| { |
| void *object; |
| |
| lockdep_assert_held(&n->list_lock); |
| |
| object = slab->freelist; |
| slab->freelist = get_freepointer(s, object); |
| slab->inuse++; |
| |
| if (!alloc_debug_processing(s, slab, object, orig_size)) { |
| remove_partial(n, slab); |
| return NULL; |
| } |
| |
| if (slab->inuse == slab->objects) { |
| remove_partial(n, slab); |
| add_full(s, n, slab); |
| } |
| |
| return object; |
| } |
| |
| /* |
| * Called only for kmem_cache_debug() caches to allocate from a freshly |
| * allocated slab. Allocate a single object instead of whole freelist |
| * and put the slab to the partial (or full) list. |
| */ |
| static void *alloc_single_from_new_slab(struct kmem_cache *s, |
| struct slab *slab, int orig_size) |
| { |
| int nid = slab_nid(slab); |
| struct kmem_cache_node *n = get_node(s, nid); |
| unsigned long flags; |
| void *object; |
| |
| |
| object = slab->freelist; |
| slab->freelist = get_freepointer(s, object); |
| slab->inuse = 1; |
| |
| if (!alloc_debug_processing(s, slab, object, orig_size)) |
| /* |
| * It's not really expected that this would fail on a |
| * freshly allocated slab, but a concurrent memory |
| * corruption in theory could cause that. |
| */ |
| return NULL; |
| |
| spin_lock_irqsave(&n->list_lock, flags); |
| |
| if (slab->inuse == slab->objects) |
| add_full(s, n, slab); |
| else |
| add_partial(n, slab, DEACTIVATE_TO_HEAD); |
| |
| inc_slabs_node(s, nid, slab->objects); |
| spin_unlock_irqrestore(&n->list_lock, flags); |
| |
| return object; |
| } |
| |
| #ifdef CONFIG_SLUB_CPU_PARTIAL |
| static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain); |
| #else |
| static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab, |
| int drain) { } |
| #endif |
| static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags); |
| |
| /* |
| * Try to allocate a partial slab from a specific node. |
| */ |
| static struct slab *get_partial_node(struct kmem_cache *s, |
| struct kmem_cache_node *n, |
| struct partial_context *pc) |
| { |
| struct slab *slab, *slab2, *partial = NULL; |
| unsigned long flags; |
| unsigned int partial_slabs = 0; |
| |
| /* |
| * Racy check. If we mistakenly see no partial slabs then we |
| * just allocate an empty slab. If we mistakenly try to get a |
| * partial slab and there is none available then get_partial() |
| * will return NULL. |
| */ |
| if (!n || !n->nr_partial) |
| return NULL; |
| |
| spin_lock_irqsave(&n->list_lock, flags); |
| list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) { |
| if (!pfmemalloc_match(slab, pc->flags)) |
| continue; |
| |
| if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { |
| void *object = alloc_single_from_partial(s, n, slab, |
| pc->orig_size); |
| if (object) { |
| partial = slab; |
| pc->object = object; |
| break; |
| } |
| continue; |
| } |
| |
| remove_partial(n, slab); |
| |
| if (!partial) { |
| partial = slab; |
| stat(s, ALLOC_FROM_PARTIAL); |
| |
| if ((slub_get_cpu_partial(s) == 0)) { |
| break; |
| } |
| } else { |
| put_cpu_partial(s, slab, 0); |
| stat(s, CPU_PARTIAL_NODE); |
| |
| if (++partial_slabs > slub_get_cpu_partial(s) / 2) { |
| break; |
| } |
| } |
| } |
| spin_unlock_irqrestore(&n->list_lock, flags); |
| return partial; |
| } |
| |
| /* |
| * Get a slab from somewhere. Search in increasing NUMA distances. |
| */ |
| static struct slab *get_any_partial(struct kmem_cache *s, |
| struct partial_context *pc) |
| { |
| #ifdef CONFIG_NUMA |
| struct zonelist *zonelist; |
| struct zoneref *z; |
| struct zone *zone; |
| enum zone_type highest_zoneidx = gfp_zone(pc->flags); |
| struct slab *slab; |
| unsigned int cpuset_mems_cookie; |
| |
| /* |
| * The defrag ratio allows a configuration of the tradeoffs between |
| * inter node defragmentation and node local allocations. A lower |
| * defrag_ratio increases the tendency to do local allocations |
| * instead of attempting to obtain partial slabs from other nodes. |
| * |
| * If the defrag_ratio is set to 0 then kmalloc() always |
| * returns node local objects. If the ratio is higher then kmalloc() |
| * may return off node objects because partial slabs are obtained |
| * from other nodes and filled up. |
| * |
| * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 |
| * (which makes defrag_ratio = 1000) then every (well almost) |
| * allocation will first attempt to defrag slab caches on other nodes. |
| * This means scanning over all nodes to look for partial slabs which |
| * may be expensive if we do it every time we are trying to find a slab |
| * with available objects. |
| */ |
| if (!s->remote_node_defrag_ratio || |
| get_cycles() % 1024 > s->remote_node_defrag_ratio) |
| return NULL; |
| |
| do { |
| cpuset_mems_cookie = read_mems_allowed_begin(); |
| zonelist = node_zonelist(mempolicy_slab_node(), pc->flags); |
| for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { |
| struct kmem_cache_node *n; |
| |
| n = get_node(s, zone_to_nid(zone)); |
| |
| if (n && cpuset_zone_allowed(zone, pc->flags) && |
| n->nr_partial > s->min_partial) { |
| slab = get_partial_node(s, n, pc); |
| if (slab) { |
| /* |
| * Don't check read_mems_allowed_retry() |
| * here - if mems_allowed was updated in |
| * parallel, that was a harmless race |
| * between allocation and the cpuset |
| * update |
| */ |
| return slab; |
| } |
| } |
| } |
| } while (read_mems_allowed_retry(cpuset_mems_cookie)); |
| #endif /* CONFIG_NUMA */ |
| return NULL; |
| } |
| |
| /* |
| * Get a partial slab, lock it and return it. |
| */ |
| static struct slab *get_partial(struct kmem_cache *s, int node, |
| struct partial_context *pc) |
| { |
| struct slab *slab; |
| int searchnode = node; |
| |
| if (node == NUMA_NO_NODE) |
| searchnode = numa_mem_id(); |
| |
| slab = get_partial_node(s, get_node(s, searchnode), pc); |
| if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE))) |
| return slab; |
| |
| return get_any_partial(s, pc); |
| } |
| |
| #ifndef CONFIG_SLUB_TINY |
| |
| #ifdef CONFIG_PREEMPTION |
| /* |
| * Calculate the next globally unique transaction for disambiguation |
| * during cmpxchg. The transactions start with the cpu number and are then |
| * incremented by CONFIG_NR_CPUS. |
| */ |
| #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) |
| #else |
| /* |
| * No preemption supported therefore also no need to check for |
| * different cpus. |
| */ |
| #define TID_STEP 1 |
| #endif /* CONFIG_PREEMPTION */ |
| |
| static inline unsigned long next_tid(unsigned long tid) |
| { |
| return tid + TID_STEP; |
| } |
| |
| #ifdef SLUB_DEBUG_CMPXCHG |
| static inline unsigned int tid_to_cpu(unsigned long tid) |
| { |
| return tid % TID_STEP; |
| } |
| |
| static inline unsigned long tid_to_event(unsigned long tid) |
| { |
| return tid / TID_STEP; |
| } |
| #endif |
| |
| static inline unsigned int init_tid(int cpu) |
| { |
| return cpu; |
| } |
| |
| static inline void note_cmpxchg_failure(const char *n, |
| const struct kmem_cache *s, unsigned long tid) |
| { |
| #ifdef SLUB_DEBUG_CMPXCHG |
| unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); |
| |
| pr_info("%s %s: cmpxchg redo ", n, s->name); |
| |
| #ifdef CONFIG_PREEMPTION |
| if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) |
| pr_warn("due to cpu change %d -> %d\n", |
| tid_to_cpu(tid), tid_to_cpu(actual_tid)); |
| else |
| #endif |
| if (tid_to_event(tid) != tid_to_event(actual_tid)) |
| pr_warn("due to cpu running other code. Event %ld->%ld\n", |
| tid_to_event(tid), tid_to_event(actual_tid)); |
| else |
| pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", |
| actual_tid, tid, next_tid(tid)); |
| #endif |
| stat(s, CMPXCHG_DOUBLE_CPU_FAIL); |
| } |
| |
| static void init_kmem_cache_cpus(struct kmem_cache *s) |
| { |
| int cpu; |
| struct kmem_cache_cpu *c; |
| |
| for_each_possible_cpu(cpu) { |
| c = per_cpu_ptr(s->cpu_slab, cpu); |
| local_lock_init(&c->lock); |
| c->tid = init_tid(cpu); |
| } |
| } |
| |
| /* |
| * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist, |
| * unfreezes the slabs and puts it on the proper list. |
| * Assumes the slab has been already safely taken away from kmem_cache_cpu |
| * by the caller. |
| */ |
| static void deactivate_slab(struct kmem_cache *s, struct slab *slab, |
| void *freelist) |
| { |
| struct kmem_cache_node *n = get_node(s, slab_nid(slab)); |
| int free_delta = 0; |
| void *nextfree, *freelist_iter, *freelist_tail; |
| int tail = DEACTIVATE_TO_HEAD; |
| unsigned long flags = 0; |
| struct slab new; |
| struct slab old; |
| |
| if (READ_ONCE(slab->freelist)) { |
| stat(s, DEACTIVATE_REMOTE_FREES); |
| tail = DEACTIVATE_TO_TAIL; |
| } |
| |
| /* |
| * Stage one: Count the objects on cpu's freelist as free_delta and |
| * remember the last object in freelist_tail for later splicing. |
| */ |
| freelist_tail = NULL; |
| freelist_iter = freelist; |
| while (freelist_iter) { |
| nextfree = get_freepointer(s, freelist_iter); |
| |
| /* |
| * If 'nextfree' is invalid, it is possible that the object at |
| * 'freelist_iter' is already corrupted. So isolate all objects |
| * starting at 'freelist_iter' by skipping them. |
| */ |
| if (freelist_corrupted(s, slab, &freelist_iter, nextfree)) |
| break; |
| |
| freelist_tail = freelist_iter; |
| free_delta++; |
| |
| freelist_iter = nextfree; |
| } |
| |
| /* |
| * Stage two: Unfreeze the slab while splicing the per-cpu |
| * freelist to the head of slab's freelist. |
| */ |
| do { |
| old.freelist = READ_ONCE(slab->freelist); |
| old.counters = READ_ONCE(slab->counters); |
| VM_BUG_ON(!old.frozen); |
| |
| /* Determine target state of the slab */ |
| new.counters = old.counters; |
| new.frozen = 0; |
| if (freelist_tail) { |
| new.inuse -= free_delta; |
| set_freepointer(s, freelist_tail, old.freelist); |
| new.freelist = freelist; |
| } else { |
| new.freelist = old.freelist; |
| } |
| } while (!slab_update_freelist(s, slab, |
| old.freelist, old.counters, |
| new.freelist, new.counters, |
| "unfreezing slab")); |
| |
| /* |
| * Stage three: Manipulate the slab list based on the updated state. |
| */ |
| if (!new.inuse && n->nr_partial >= s->min_partial) { |
| stat(s, DEACTIVATE_EMPTY); |
| discard_slab(s, slab); |
| stat(s, FREE_SLAB); |
| } else if (new.freelist) { |
| spin_lock_irqsave(&n->list_lock, flags); |
| add_partial(n, slab, tail); |
| spin_unlock_irqrestore(&n->list_lock, flags); |
| stat(s, tail); |
| } else { |
| stat(s, DEACTIVATE_FULL); |
| } |
| } |
| |
| #ifdef CONFIG_SLUB_CPU_PARTIAL |
| static void __put_partials(struct kmem_cache *s, struct slab *partial_slab) |
| { |
| struct kmem_cache_node *n = NULL, *n2 = NULL; |
| struct slab *slab, *slab_to_discard = NULL; |
| unsigned long flags = 0; |
| |
| while (partial_slab) { |
| slab = partial_slab; |
| partial_slab = slab->next; |
| |
| n2 = get_node(s, slab_nid(slab)); |
| if (n != n2) { |
| if (n) |
| spin_unlock_irqrestore(&n->list_lock, flags); |
| |
| n = n2; |
| spin_lock_irqsave(&n->list_lock, flags); |
| } |
| |
| if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) { |
| slab->next = slab_to_discard; |
| slab_to_discard = slab; |
| } else { |
| add_partial(n, slab, DEACTIVATE_TO_TAIL); |
| stat(s, FREE_ADD_PARTIAL); |
| } |
| } |
| |
| if (n) |
| spin_unlock_irqrestore(&n->list_lock, flags); |
| |
| while (slab_to_discard) { |
| slab = slab_to_discard; |
| slab_to_discard = slab_to_discard->next; |
| |
| stat(s, DEACTIVATE_EMPTY); |
| discard_slab(s, slab); |
| stat(s, FREE_SLAB); |
| } |
| } |
| |
| /* |
| * Put all the cpu partial slabs to the node partial list. |
| */ |
| static void put_partials(struct kmem_cache *s) |
| { |
| struct slab *partial_slab; |
| unsigned long flags; |
| |
| local_lock_irqsave(&s->cpu_slab->lock, flags); |
| partial_slab = this_cpu_read(s->cpu_slab->partial); |
| this_cpu_write(s->cpu_slab->partial, NULL); |
| local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
| |
| if (partial_slab) |
| __put_partials(s, partial_slab); |
| } |
| |
| static void put_partials_cpu(struct kmem_cache *s, |
| struct kmem_cache_cpu *c) |
| { |
| struct slab *partial_slab; |
| |
| partial_slab = slub_percpu_partial(c); |
| c->partial = NULL; |
| |
| if (partial_slab) |
| __put_partials(s, partial_slab); |
| } |
| |
| /* |
| * Put a slab into a partial slab slot if available. |
| * |
| * If we did not find a slot then simply move all the partials to the |
| * per node partial list. |
| */ |
| static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain) |
| { |
| struct slab *oldslab; |
| struct slab *slab_to_put = NULL; |
| unsigned long flags; |
| int slabs = 0; |
| |
| local_lock_irqsave(&s->cpu_slab->lock, flags); |
| |
| oldslab = this_cpu_read(s->cpu_slab->partial); |
| |
| if (oldslab) { |
| if (drain && oldslab->slabs >= s->cpu_partial_slabs) { |
| /* |
| * Partial array is full. Move the existing set to the |
| * per node partial list. Postpone the actual unfreezing |
| * outside of the critical section. |
| */ |
| slab_to_put = oldslab; |
| oldslab = NULL; |
| } else { |
| slabs = oldslab->slabs; |
| } |
| } |
| |
| slabs++; |
| |
| slab->slabs = slabs; |
| slab->next = oldslab; |
| |
| this_cpu_write(s->cpu_slab->partial, slab); |
| |
| local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
| |
| if (slab_to_put) { |
| __put_partials(s, slab_to_put); |
| stat(s, CPU_PARTIAL_DRAIN); |
| } |
| } |
| |
| #else /* CONFIG_SLUB_CPU_PARTIAL */ |
| |
| static inline void put_partials(struct kmem_cache *s) { } |
| static inline void put_partials_cpu(struct kmem_cache *s, |
| struct kmem_cache_cpu *c) { } |
| |
| #endif /* CONFIG_SLUB_CPU_PARTIAL */ |
| |
| static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) |
| { |
| unsigned long flags; |
| struct slab *slab; |
| void *freelist; |
| |
| local_lock_irqsave(&s->cpu_slab->lock, flags); |
| |
| slab = c->slab; |
| freelist = c->freelist; |
| |
| c->slab = NULL; |
| c->freelist = NULL; |
| c->tid = next_tid(c->tid); |
| |
| local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
| |
| if (slab) { |
| deactivate_slab(s, slab, freelist); |
| stat(s, CPUSLAB_FLUSH); |
| } |
| } |
| |
| static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) |
| { |
| struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); |
| void *freelist = c->freelist; |
| struct slab *slab = c->slab; |
| |
| c->slab = NULL; |
| c->freelist = NULL; |
| c->tid = next_tid(c->tid); |
| |
| if (slab) { |
| deactivate_slab(s, slab, freelist); |
| stat(s, CPUSLAB_FLUSH); |
| } |
| |
| put_partials_cpu(s, c); |
| } |
| |
| struct slub_flush_work { |
| struct work_struct work; |
| struct kmem_cache *s; |
| bool skip; |
| }; |
| |
| /* |
| * Flush cpu slab. |
| * |
| * Called from CPU work handler with migration disabled. |
| */ |
| static void flush_cpu_slab(struct work_struct *w) |
| { |
| struct kmem_cache *s; |
| struct kmem_cache_cpu *c; |
| struct slub_flush_work *sfw; |
| |
| sfw = container_of(w, struct slub_flush_work, work); |
| |
| s = sfw->s; |
| c = this_cpu_ptr(s->cpu_slab); |
| |
| if (c->slab) |
| flush_slab(s, c); |
| |
| put_partials(s); |
| } |
| |
| static bool has_cpu_slab(int cpu, struct kmem_cache *s) |
| { |
| struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); |
| |
| return c->slab || slub_percpu_partial(c); |
| } |
| |
| static DEFINE_MUTEX(flush_lock); |
| static DEFINE_PER_CPU(struct slub_flush_work, slub_flush); |
| |
| static void flush_all_cpus_locked(struct kmem_cache *s) |
| { |
| struct slub_flush_work *sfw; |
| unsigned int cpu; |
| |
| lockdep_assert_cpus_held(); |
| mutex_lock(&flush_lock); |
| |
| for_each_online_cpu(cpu) { |
| sfw = &per_cpu(slub_flush, cpu); |
| if (!has_cpu_slab(cpu, s)) { |
| sfw->skip = true; |
| continue; |
| } |
| INIT_WORK(&sfw->work, flush_cpu_slab); |
| sfw->skip = false; |
| sfw->s = s; |
| queue_work_on(cpu, flushwq, &sfw->work); |
| } |
| |
| for_each_online_cpu(cpu) { |
| sfw = &per_cpu(slub_flush, cpu); |
| if (sfw->skip) |
| continue; |
| flush_work(&sfw->work); |
| } |
| |
| mutex_unlock(&flush_lock); |
| } |
| |
| static void flush_all(struct kmem_cache *s) |
| { |
| cpus_read_lock(); |
| flush_all_cpus_locked(s); |
| cpus_read_unlock(); |
| } |
| |
| /* |
| * Use the cpu notifier to insure that the cpu slabs are flushed when |
| * necessary. |
| */ |
| static int slub_cpu_dead(unsigned int cpu) |
| { |
| struct kmem_cache *s; |
| |
| mutex_lock(&slab_mutex); |
| list_for_each_entry(s, &slab_caches, list) |
| __flush_cpu_slab(s, cpu); |
| mutex_unlock(&slab_mutex); |
| return 0; |
| } |
| |
| #else /* CONFIG_SLUB_TINY */ |
| static inline void flush_all_cpus_locked(struct kmem_cache *s) { } |
| static inline void flush_all(struct kmem_cache *s) { } |
| static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { } |
| static inline int slub_cpu_dead(unsigned int cpu) { return 0; } |
| #endif /* CONFIG_SLUB_TINY */ |
| |
| /* |
| * Check if the objects in a per cpu structure fit numa |
| * locality expectations. |
| */ |
| static inline int node_match(struct slab *slab, int node) |
| { |
| #ifdef CONFIG_NUMA |
| if (node != NUMA_NO_NODE && slab_nid(slab) != node) |
| return 0; |
| #endif |
| return 1; |
| } |
| |
| #ifdef CONFIG_SLUB_DEBUG |
| static int count_free(struct slab *slab) |
| { |
| return slab->objects - slab->inuse; |
| } |
| |
| static inline unsigned long node_nr_objs(struct kmem_cache_node *n) |
| { |
| return atomic_long_read(&n->total_objects); |
| } |
| |
| /* Supports checking bulk free of a constructed freelist */ |
| static inline bool free_debug_processing(struct kmem_cache *s, |
| struct slab *slab, void *head, void *tail, int *bulk_cnt, |
| unsigned long addr, depot_stack_handle_t handle) |
| { |
| bool checks_ok = false; |
| void *object = head; |
| int cnt = 0; |
| |
| if (s->flags & SLAB_CONSISTENCY_CHECKS) { |
| if (!check_slab(s, slab)) |
| goto out; |
| } |
| |
| if (slab->inuse < *bulk_cnt) { |
| slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n", |
| slab->inuse, *bulk_cnt); |
| goto out; |
| } |
| |
| next_object: |
| |
| if (++cnt > *bulk_cnt) |
| goto out_cnt; |
| |
| if (s->flags & SLAB_CONSISTENCY_CHECKS) { |
| if (!free_consistency_checks(s, slab, object, addr)) |
| goto out; |
| } |
| |
| if (s->flags & SLAB_STORE_USER) |
| set_track_update(s, object, TRACK_FREE, addr, handle); |
| trace(s, slab, object, 0); |
| /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ |
| init_object(s, object, SLUB_RED_INACTIVE); |
| |
| /* Reached end of constructed freelist yet? */ |
| if (object != tail) { |
| object = get_freepointer(s, object); |
| goto next_object; |
| } |
| checks_ok = true; |
| |
| out_cnt: |
| if (cnt != *bulk_cnt) { |
| slab_err(s, slab, "Bulk free expected %d objects but found %d\n", |
| *bulk_cnt, cnt); |
| *bulk_cnt = cnt; |
| } |
| |
| out: |
| |
| if (!checks_ok) |
| slab_fix(s, "Object at 0x%p not freed", object); |
| |
| return checks_ok; |
| } |
| #endif /* CONFIG_SLUB_DEBUG */ |
| |
| #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS) |
| static unsigned long count_partial(struct kmem_cache_node *n, |
| int (*get_count)(struct slab *)) |
| { |
| unsigned long flags; |
| unsigned long x = 0; |
| struct slab *slab; |
| |
| spin_lock_irqsave(&n->list_lock, flags); |
| list_for_each_entry(slab, &n->partial, slab_list) |
| x += get_count(slab); |
| spin_unlock_irqrestore(&n->list_lock, flags); |
| return x; |
| } |
| #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */ |
| |
| #ifdef CONFIG_SLUB_DEBUG |
| #define MAX_PARTIAL_TO_SCAN 10000 |
| |
| static unsigned long count_partial_free_approx(struct kmem_cache_node *n) |
| { |
| unsigned long flags; |
| unsigned long x = 0; |
| struct slab *slab; |
| |
| spin_lock_irqsave(&n->list_lock, flags); |
| if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) { |
| list_for_each_entry(slab, &n->partial, slab_list) |
| x += slab->objects - slab->inuse; |
| } else { |
| /* |
| * For a long list, approximate the total count of objects in |
| * it to meet the limit on the number of slabs to scan. |
| * Scan from both the list's head and tail for better accuracy. |
| */ |
| unsigned long scanned = 0; |
| |
| list_for_each_entry(slab, &n->partial, slab_list) { |
| x += slab->objects - slab->inuse; |
| if (++scanned == MAX_PARTIAL_TO_SCAN / 2) |
| break; |
| } |
| list_for_each_entry_reverse(slab, &n->partial, slab_list) { |
| x += slab->objects - slab->inuse; |
| if (++scanned == MAX_PARTIAL_TO_SCAN) |
| break; |
| } |
| x = mult_frac(x, n->nr_partial, scanned); |
| x = min(x, node_nr_objs(n)); |
| } |
| spin_unlock_irqrestore(&n->list_lock, flags); |
| return x; |
| } |
| |
| static noinline void |
| slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) |
| { |
| static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, |
| DEFAULT_RATELIMIT_BURST); |
| int cpu = raw_smp_processor_id(); |
| int node; |
| struct kmem_cache_node *n; |
| |
| if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) |
| return; |
| |
| pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n", |
| cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags); |
| pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", |
| s->name, s->object_size, s->size, oo_order(s->oo), |
| oo_order(s->min)); |
| |
| if (oo_order(s->min) > get_order(s->object_size)) |
| pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n", |
| s->name); |
| |
| for_each_kmem_cache_node(s, node, n) { |
| unsigned long nr_slabs; |
| unsigned long nr_objs; |
| unsigned long nr_free; |
| |
| nr_free = count_partial_free_approx(n); |
| nr_slabs = node_nr_slabs(n); |
| nr_objs = node_nr_objs(n); |
| |
| pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", |
| node, nr_slabs, nr_objs, nr_free); |
| } |
| } |
| #else /* CONFIG_SLUB_DEBUG */ |
| static inline void |
| slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { } |
| #endif |
| |
| static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags) |
| { |
| if (unlikely(slab_test_pfmemalloc(slab))) |
| return gfp_pfmemalloc_allowed(gfpflags); |
| |
| return true; |
| } |
| |
| #ifndef CONFIG_SLUB_TINY |
| static inline bool |
| __update_cpu_freelist_fast(struct kmem_cache *s, |
| void *freelist_old, void *freelist_new, |
| unsigned long tid) |
| { |
| freelist_aba_t old = { .freelist = freelist_old, .counter = tid }; |
| freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) }; |
| |
| return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full, |
| &old.full, new.full); |
| } |
| |
| /* |
| * Check the slab->freelist and either transfer the freelist to the |
| * per cpu freelist or deactivate the slab. |
| * |
| * The slab is still frozen if the return value is not NULL. |
| * |
| * If this function returns NULL then the slab has been unfrozen. |
| */ |
| static inline void *get_freelist(struct kmem_cache *s, struct slab *slab) |
| { |
| struct slab new; |
| unsigned long counters; |
| void *freelist; |
| |
| lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); |
| |
| do { |
| freelist = slab->freelist; |
| counters = slab->counters; |
| |
| new.counters = counters; |
| |
| new.inuse = slab->objects; |
| new.frozen = freelist != NULL; |
| |
| } while (!__slab_update_freelist(s, slab, |
| freelist, counters, |
| NULL, new.counters, |
| "get_freelist")); |
| |
| return freelist; |
| } |
| |
| /* |
| * Freeze the partial slab and return the pointer to the freelist. |
| */ |
| static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab) |
| { |
| struct slab new; |
| unsigned long counters; |
| void *freelist; |
| |
| do { |
| freelist = slab->freelist; |
| counters = slab->counters; |
| |
| new.counters = counters; |
| VM_BUG_ON(new.frozen); |
| |
| new.inuse = slab->objects; |
| new.frozen = 1; |
| |
| } while (!slab_update_freelist(s, slab, |
| freelist, counters, |
| NULL, new.counters, |
| "freeze_slab")); |
| |
| return freelist; |
| } |
| |
| /* |
| * Slow path. The lockless freelist is empty or we need to perform |
| * debugging duties. |
| * |
| * Processing is still very fast if new objects have been freed to the |
| * regular freelist. In that case we simply take over the regular freelist |
| * as the lockless freelist and zap the regular freelist. |
| * |
| * If that is not working then we fall back to the partial lists. We take the |
| * first element of the freelist as the object to allocate now and move the |
| * rest of the freelist to the lockless freelist. |
| * |
| * And if we were unable to get a new slab from the partial slab lists then |
| * we need to allocate a new slab. This is the slowest path since it involves |
| * a call to the page allocator and the setup of a new slab. |
| * |
| * Version of __slab_alloc to use when we know that preemption is |
| * already disabled (which is the case for bulk allocation). |
| */ |
| static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, |
| unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) |
| { |
| void *freelist; |
| struct slab *slab; |
| unsigned long flags; |
| struct partial_context pc; |
| bool try_thisnode = true; |
| |
| stat(s, ALLOC_SLOWPATH); |
| |
| reread_slab: |
| |
| slab = READ_ONCE(c->slab); |
| if (!slab) { |
| /* |
| * if the node is not online or has no normal memory, just |
| * ignore the node constraint |
| */ |
| if (unlikely(node != NUMA_NO_NODE && |
| !node_isset(node, slab_nodes))) |
| node = NUMA_NO_NODE; |
| goto new_slab; |
| } |
| |
| if (unlikely(!node_match(slab, node))) { |
| /* |
| * same as above but node_match() being false already |
| * implies node != NUMA_NO_NODE |
| */ |
| if (!node_isset(node, slab_nodes)) { |
| node = NUMA_NO_NODE; |
| } else { |
| stat(s, ALLOC_NODE_MISMATCH); |
| goto deactivate_slab; |
| } |
| } |
| |
| /* |
| * By rights, we should be searching for a slab page that was |
| * PFMEMALLOC but right now, we are losing the pfmemalloc |
| * information when the page leaves the per-cpu allocator |
| */ |
| if (unlikely(!pfmemalloc_match(slab, gfpflags))) |
| goto deactivate_slab; |
| |
| /* must check again c->slab in case we got preempted and it changed */ |
| local_lock_irqsave(&s->cpu_slab->lock, flags); |
| if (unlikely(slab != c->slab)) { |
| local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
| goto reread_slab; |
| } |
| freelist = c->freelist; |
| if (freelist) |
| goto load_freelist; |
| |
| freelist = get_freelist(s, slab); |
| |
| if (!freelist) { |
| c->slab = NULL; |
| c->tid = next_tid(c->tid); |
| local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
| stat(s, DEACTIVATE_BYPASS); |
| goto new_slab; |
| } |
| |
| stat(s, ALLOC_REFILL); |
| |
| load_freelist: |
| |
| lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); |
| |
| /* |
| * freelist is pointing to the list of objects to be used. |
| * slab is pointing to the slab from which the objects are obtained. |
| * That slab must be frozen for per cpu allocations to work. |
| */ |
| VM_BUG_ON(!c->slab->frozen); |
| c->freelist = get_freepointer(s, freelist); |
| c->tid = next_tid(c->tid); |
| local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
| return freelist; |
| |
| deactivate_slab: |
| |
| local_lock_irqsave(&s->cpu_slab->lock, flags); |
| if (slab != c->slab) { |
| local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
| goto reread_slab; |
| } |
| freelist = c->freelist; |
| c->slab = NULL; |
| c->freelist = NULL; |
| c->tid = next_tid(c->tid); |
| local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
| deactivate_slab(s, slab, freelist); |
| |
| new_slab: |
| |
| #ifdef CONFIG_SLUB_CPU_PARTIAL |
| while (slub_percpu_partial(c)) { |
| local_lock_irqsave(&s->cpu_slab->lock, flags); |
| if (unlikely(c->slab)) { |
| local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
| goto reread_slab; |
| } |
| if (unlikely(!slub_percpu_partial(c))) { |
| local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
| /* we were preempted and partial list got empty */ |
| goto new_objects; |
| } |
| |
| slab = slub_percpu_partial(c); |
| slub_set_percpu_partial(c, slab); |
| |
| if (likely(node_match(slab, node) && |
| pfmemalloc_match(slab, gfpflags))) { |
| c->slab = slab; |
| freelist = get_freelist(s, slab); |
| VM_BUG_ON(!freelist); |
| stat(s, CPU_PARTIAL_ALLOC); |
| goto load_freelist; |
| } |
| |
| local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
| |
| slab->next = NULL; |
| __put_partials(s, slab); |
| } |
| #endif |
| |
| new_objects: |
| |
| pc.flags = gfpflags; |
| /* |
| * When a preferred node is indicated but no __GFP_THISNODE |
| * |
| * 1) try to get a partial slab from target node only by having |
| * __GFP_THISNODE in pc.flags for get_partial() |
| * 2) if 1) failed, try to allocate a new slab from target node with |
| * GPF_NOWAIT | __GFP_THISNODE opportunistically |
| * 3) if 2) failed, retry with original gfpflags which will allow |
| * get_partial() try partial lists of other nodes before potentially |
| * allocating new page from other nodes |
| */ |
| if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE) |
| && try_thisnode)) |
| pc.flags = GFP_NOWAIT | __GFP_THISNODE; |
| |
| pc.orig_size = orig_size; |
| slab = get_partial(s, node, &pc); |
| if (slab) { |
| if (kmem_cache_debug(s)) { |
| freelist = pc.object; |
| /* |
| * For debug caches here we had to go through |
| * alloc_single_from_partial() so just store the |
| * tracking info and return the object. |
| */ |
| if (s->flags & SLAB_STORE_USER) |
| set_track(s, freelist, TRACK_ALLOC, addr); |
| |
| return freelist; |
| } |
| |
| freelist = freeze_slab(s, slab); |
| goto retry_load_slab; |
| } |
| |
| slub_put_cpu_ptr(s->cpu_slab); |
| slab = new_slab(s, pc.flags, node); |
| c = slub_get_cpu_ptr(s->cpu_slab); |
| |
| if (unlikely(!slab)) { |
| if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE) |
| && try_thisnode) { |
| try_thisnode = false; |
| goto new_objects; |
| } |
| slab_out_of_memory(s, gfpflags, node); |
| return NULL; |
| } |
| |
| stat(s, ALLOC_SLAB); |
| |
| if (kmem_cache_debug(s)) { |
| freelist = alloc_single_from_new_slab(s, slab, orig_size); |
| |
| if (unlikely(!freelist)) |
| goto new_objects; |
| |
| if (s->flags & SLAB_STORE_USER) |
| set_track(s, freelist, TRACK_ALLOC, addr); |
| |
| return freelist; |
| } |
| |
| /* |
| * No other reference to the slab yet so we can |
| * muck around with it freely without cmpxchg |
| */ |
| freelist = slab->freelist; |
| slab->freelist = NULL; |
| slab->inuse = slab->objects; |
| slab->frozen = 1; |
| |
| inc_slabs_node(s, slab_nid(slab), slab->objects); |
| |
| if (unlikely(!pfmemalloc_match(slab, gfpflags))) { |
| /* |
| * For !pfmemalloc_match() case we don't load freelist so that |
| * we don't make further mismatched allocations easier. |
| */ |
| deactivate_slab(s, slab, get_freepointer(s, freelist)); |
| return freelist; |
| } |
| |
| retry_load_slab: |
| |
| local_lock_irqsave(&s->cpu_slab->lock, flags); |
| if (unlikely(c->slab)) { |
| void *flush_freelist = c->freelist; |
| struct slab *flush_slab = c->slab; |
| |
| c->slab = NULL; |
| c->freelist = NULL; |
| c->tid = next_tid(c->tid); |
| |
| local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
| |
| deactivate_slab(s, flush_slab, flush_freelist); |
| |
| stat(s, CPUSLAB_FLUSH); |
| |
| goto retry_load_slab; |
| } |
| c->slab = slab; |
| |
| goto load_freelist; |
| } |
| |
| /* |
| * A wrapper for ___slab_alloc() for contexts where preemption is not yet |
| * disabled. Compensates for possible cpu changes by refetching the per cpu area |
| * pointer. |
| */ |
| static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, |
| unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) |
| { |
| void *p; |
| |
| #ifdef CONFIG_PREEMPT_COUNT |
| /* |
| * We may have been preempted and rescheduled on a different |
| * cpu before disabling preemption. Need to reload cpu area |
| * pointer. |
| */ |
| c = slub_get_cpu_ptr(s->cpu_slab); |
| #endif |
| |
| p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size); |
| #ifdef CONFIG_PREEMPT_COUNT |
| slub_put_cpu_ptr(s->cpu_slab); |
| #endif |
| return p; |
| } |
| |
| static __always_inline void *__slab_alloc_node(struct kmem_cache *s, |
| gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) |
| { |
| struct kmem_cache_cpu *c; |
| struct slab *slab; |
| unsigned long tid; |
| void *object; |
| |
| redo: |
| /* |
| * Must read kmem_cache cpu data via this cpu ptr. Preemption is |
| * enabled. We may switch back and forth between cpus while |
| * reading from one cpu area. That does not matter as long |
| * as we end up on the original cpu again when doing the cmpxchg. |
| * |
| * We must guarantee that tid and kmem_cache_cpu are retrieved on the |
| * same cpu. We read first the kmem_cache_cpu pointer and use it to read |
| * the tid. If we are preempted and switched to another cpu between the |
| * two reads, it's OK as the two are still associated with the same cpu |
| * and cmpxchg later will validate the cpu. |
| */ |
| c = raw_cpu_ptr(s->cpu_slab); |
| tid = READ_ONCE(c->tid); |
| |
| /* |
| * Irqless object alloc/free algorithm used here depends on sequence |
| * of fetching cpu_slab's data. tid should be fetched before anything |
| * on c to guarantee that object and slab associated with previous tid |
| * won't be used with current tid. If we fetch tid first, object and |
| * slab could be one associated with next tid and our alloc/free |
| * request will be failed. In this case, we will retry. So, no problem. |
| */ |
| barrier(); |
| |
| /* |
| * The transaction ids are globally unique per cpu and per operation on |
| * a per cpu queue. Thus they can be guarantee that the cmpxchg_double |
| * occurs on the right processor and that there was no operation on the |
| * linked list in between. |
| */ |
| |
| object = c->freelist; |
| slab = c->slab; |
| |
| if (!USE_LOCKLESS_FAST_PATH() || |
| unlikely(!object || !slab || !node_match(slab, node))) { |
| object = __slab_alloc(s, gfpflags, node, addr, c, orig_size); |
| } else { |
| void *next_object = get_freepointer_safe(s, object); |
| |
| /* |
| * The cmpxchg will only match if there was no additional |
| * operation and if we are on the right processor. |
| * |
| * The cmpxchg does the following atomically (without lock |
| * semantics!) |
| * 1. Relocate first pointer to the current per cpu area. |
| * 2. Verify that tid and freelist have not been changed |
| * 3. If they were not changed replace tid and freelist |
| * |
| * Since this is without lock semantics the protection is only |
| * against code executing on this cpu *not* from access by |
| * other cpus. |
| */ |
| if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) { |
| note_cmpxchg_failure("slab_alloc", s, tid); |
| goto redo; |
| } |
| prefetch_freepointer(s, next_object); |
| stat(s, ALLOC_FASTPATH); |
| } |
| |
| return object; |
| } |
| #else /* CONFIG_SLUB_TINY */ |
| static void *__slab_alloc_node(struct kmem_cache *s, |
| gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) |
| { |
| struct partial_context pc; |
| struct slab *slab; |
| void *object; |
| |
| pc.flags = gfpflags; |
| pc.orig_size = orig_size; |
| slab = get_partial(s, node, &pc); |
| |
| if (slab) |
| return pc.object; |
| |
| slab = new_slab(s, gfpflags, node); |
| if (unlikely(!slab)) { |
| slab_out_of_memory(s, gfpflags, node); |
| return NULL; |
| } |
| |
| object = alloc_single_from_new_slab(s, slab, orig_size); |
| |
| return object; |
| } |
| #endif /* CONFIG_SLUB_TINY */ |
| |
| /* |
| * If the object has been wiped upon free, make sure it's fully initialized by |
| * zeroing out freelist pointer. |
| * |
| * Note that we also wipe custom freelist pointers. |
| */ |
| static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, |
| void *obj) |
| { |
| if (unlikely(slab_want_init_on_free(s)) && obj && |
| !freeptr_outside_object(s)) |
| memset((void *)((char *)kasan_reset_tag(obj) + s->offset), |
| 0, sizeof(void *)); |
| } |
| |
| static __fastpath_inline |
| struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) |
| { |
| flags &= gfp_allowed_mask; |
| |
| might_alloc(flags); |
| |
| if (unlikely(should_failslab(s, flags))) |
| return NULL; |
| |
| return s; |
| } |
| |
| static __fastpath_inline |
| bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, |
| gfp_t flags, size_t size, void **p, bool init, |
| unsigned int orig_size) |
| { |
| unsigned int zero_size = s->object_size; |
| bool kasan_init = init; |
| size_t i; |
| gfp_t init_flags = flags & gfp_allowed_mask; |
| |
| /* |
| * For kmalloc object, the allocated memory size(object_size) is likely |
| * larger than the requested size(orig_size). If redzone check is |
| * enabled for the extra space, don't zero it, as it will be redzoned |
| * soon. The redzone operation for this extra space could be seen as a |
| * replacement of current poisoning under certain debug option, and |
| * won't break other sanity checks. |
| */ |
| if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) && |
| (s->flags & SLAB_KMALLOC)) |
| zero_size = orig_size; |
| |
| /* |
| * When slab_debug is enabled, avoid memory initialization integrated |
| * into KASAN and instead zero out the memory via the memset below with |
| * the proper size. Otherwise, KASAN might overwrite SLUB redzones and |
| * cause false-positive reports. This does not lead to a performance |
| * penalty on production builds, as slab_debug is not intended to be |
| * enabled there. |
| */ |
| if (__slub_debug_enabled()) |
| kasan_init = false; |
| |
| /* |
| * As memory initialization might be integrated into KASAN, |
| * kasan_slab_alloc and initialization memset must be |
| * kept together to avoid discrepancies in behavior. |
| * |
| * As p[i] might get tagged, memset and kmemleak hook come after KASAN. |
| */ |
| for (i = 0; i < size; i++) { |
| p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init); |
| if (p[i] && init && (!kasan_init || |
| !kasan_has_integrated_init())) |
| memset(p[i], 0, zero_size); |
| kmemleak_alloc_recursive(p[i], s->object_size, 1, |
| s->flags, init_flags); |
| kmsan_slab_alloc(s, p[i], init_flags); |
| alloc_tagging_slab_alloc_hook(s, p[i], flags); |
| } |
| |
| return memcg_slab_post_alloc_hook(s, lru, flags, size, p); |
| } |
| |
| /* |
| * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) |
| * have the fastpath folded into their functions. So no function call |
| * overhead for requests that can be satisfied on the fastpath. |
| * |
| * The fastpath works by first checking if the lockless freelist can be used. |
| * If not then __slab_alloc is called for slow processing. |
| * |
| * Otherwise we can simply pick the next object from the lockless free list. |
| */ |
| static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru, |
| gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) |
| { |
| void *object; |
| bool init = false; |
| |
| s = slab_pre_alloc_hook(s, gfpflags); |
| if (unlikely(!s)) |
| return NULL; |
| |
| object = kfence_alloc(s, orig_size, gfpflags); |
| if (unlikely(object)) |
| goto out; |
| |
| object = __slab_alloc_node(s, gfpflags, node, addr, orig_size); |
| |
| maybe_wipe_obj_freeptr(s, object); |
| init = slab_want_init_on_alloc(gfpflags, s); |
| |
| out: |
| /* |
| * When init equals 'true', like for kzalloc() family, only |
| * @orig_size bytes might be zeroed instead of s->object_size |
| * In case this fails due to memcg_slab_post_alloc_hook(), |
| * object is set to NULL |
| */ |
| slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size); |
| |
| return object; |
| } |
| |
| void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags) |
| { |
| void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_, |
| s->object_size); |
| |
| trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(kmem_cache_alloc_noprof); |
| |
| void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru, |
| gfp_t gfpflags) |
| { |
| void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_, |
| s->object_size); |
| |
| trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof); |
| |
| bool kmem_cache_charge(void *objp, gfp_t gfpflags) |
| { |
| if (!memcg_kmem_online()) |
| return true; |
| |
| return memcg_slab_post_charge(objp, gfpflags); |
| } |
| EXPORT_SYMBOL(kmem_cache_charge); |
| |
| /** |
| * kmem_cache_alloc_node - Allocate an object on the specified node |
| * @s: The cache to allocate from. |
| * @gfpflags: See kmalloc(). |
| * @node: node number of the target node. |
| * |
| * Identical to kmem_cache_alloc but it will allocate memory on the given |
| * node, which can improve the performance for cpu bound structures. |
| * |
| * Fallback to other node is possible if __GFP_THISNODE is not set. |
| * |
| * Return: pointer to the new object or %NULL in case of error |
| */ |
| void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node) |
| { |
| void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size); |
| |
| trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(kmem_cache_alloc_node_noprof); |
| |
| /* |
| * To avoid unnecessary overhead, we pass through large allocation requests |
| * directly to the page allocator. We use __GFP_COMP, because we will need to |
| * know the allocation order to free the pages properly in kfree. |
| */ |
| static void *___kmalloc_large_node(size_t size, gfp_t flags, int node) |
| { |
| struct folio *folio; |
| void *ptr = NULL; |
| unsigned int order = get_order(size); |
| |
| if (unlikely(flags & GFP_SLAB_BUG_MASK)) |
| flags = kmalloc_fix_flags(flags); |
| |
| flags |= __GFP_COMP; |
| folio = (struct folio *)alloc_pages_node_noprof(node, flags, order); |
| if (folio) { |
| ptr = folio_address(folio); |
| lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, |
| PAGE_SIZE << order); |
| } |
| |
| ptr = kasan_kmalloc_large(ptr, size, flags); |
| /* As ptr might get tagged, call kmemleak hook after KASAN. */ |
| kmemleak_alloc(ptr, size, 1, flags); |
| kmsan_kmalloc_large(ptr, size, flags); |
| |
| return ptr; |
| } |
| |
| void *__kmalloc_large_noprof(size_t size, gfp_t flags) |
| { |
| void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE); |
| |
| trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), |
| flags, NUMA_NO_NODE); |
| return ret; |
| } |
| EXPORT_SYMBOL(__kmalloc_large_noprof); |
| |
| void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node) |
| { |
| void *ret = ___kmalloc_large_node(size, flags, node); |
| |
| trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), |
| flags, node); |
| return ret; |
| } |
| EXPORT_SYMBOL(__kmalloc_large_node_noprof); |
| |
| static __always_inline |
| void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node, |
| unsigned long caller) |
| { |
| struct kmem_cache *s; |
| void *ret; |
| |
| if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { |
| ret = __kmalloc_large_node_noprof(size, flags, node); |
| trace_kmalloc(caller, ret, size, |
| PAGE_SIZE << get_order(size), flags, node); |
| return ret; |
| } |
| |
| if (unlikely(!size)) |
| return ZERO_SIZE_PTR; |
| |
| s = kmalloc_slab(size, b, flags, caller); |
| |
| ret = slab_alloc_node(s, NULL, flags, node, caller, size); |
| ret = kasan_kmalloc(s, ret, size, flags); |
| trace_kmalloc(caller, ret, size, s->size, flags, node); |
| return ret; |
| } |
| void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) |
| { |
| return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_); |
| } |
| EXPORT_SYMBOL(__kmalloc_node_noprof); |
| |
| void *__kmalloc_noprof(size_t size, gfp_t flags) |
| { |
| return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_); |
| } |
| EXPORT_SYMBOL(__kmalloc_noprof); |
| |
| void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, |
| int node, unsigned long caller) |
| { |
| return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller); |
| |
| } |
| EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof); |
| |
| void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size) |
| { |
| void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, |
| _RET_IP_, size); |
| |
| trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE); |
| |
| ret = kasan_kmalloc(s, ret, size, gfpflags); |
| return ret; |
| } |
| EXPORT_SYMBOL(__kmalloc_cache_noprof); |
| |
| void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags, |
| int node, size_t size) |
| { |
| void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size); |
| |
| trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node); |
| |
| ret = kasan_kmalloc(s, ret, size, gfpflags); |
| return ret; |
| } |
| EXPORT_SYMBOL(__kmalloc_cache_node_noprof); |
| |
| static noinline void free_to_partial_list( |
| struct kmem_cache *s, struct slab *slab, |
| void *head, void *tail, int bulk_cnt, |
| unsigned long addr) |
| { |
| struct kmem_cache_node *n = get_node(s, slab_nid(slab)); |
| struct slab *slab_free = NULL; |
| int cnt = bulk_cnt; |
| unsigned long flags; |
| depot_stack_handle_t handle = 0; |
| |
| if (s->flags & SLAB_STORE_USER) |
| handle = set_track_prepare(); |
| |
| spin_lock_irqsave(&n->list_lock, flags); |
| |
| if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) { |
| void *prior = slab->freelist; |
| |
| /* Perform the actual freeing while we still hold the locks */ |
| slab->inuse -= cnt; |
| set_freepointer(s, tail, prior); |
| slab->freelist = head; |
| |
| /* |
| * If the slab is empty, and node's partial list is full, |
| * it should be discarded anyway no matter it's on full or |
| * partial list. |
| */ |
| if (slab->inuse == 0 && n->nr_partial >= s->min_partial) |
| slab_free = slab; |
| |
| if (!prior) { |
| /* was on full list */ |
| remove_full(s, n, slab); |
| if (!slab_free) { |
| add_partial(n, slab, DEACTIVATE_TO_TAIL); |
| stat(s, FREE_ADD_PARTIAL); |
| } |
| } else if (slab_free) { |
| remove_partial(n, slab); |
| stat(s, FREE_REMOVE_PARTIAL); |
| } |
| } |
| |
| if (slab_free) { |
| /* |
| * Update the counters while still holding n->list_lock to |
| * prevent spurious validation warnings |
| */ |
| dec_slabs_node(s, slab_nid(slab_free), slab_free->objects); |
| } |
| |
| spin_unlock_irqrestore(&n->list_lock, flags); |
| |
| if (slab_free) { |
| stat(s, FREE_SLAB); |
| free_slab(s, slab_free); |
| } |
| } |
| |
| /* |
| * Slow path handling. This may still be called frequently since objects |
| * have a longer lifetime than the cpu slabs in most processing loads. |
| * |
| * So we still attempt to reduce cache line usage. Just take the slab |
| * lock and free the item. If there is no additional partial slab |
| * handling required then we can return immediately. |
| */ |
| static void __slab_free(struct kmem_cache *s, struct slab *slab, |
| void *head, void *tail, int cnt, |
| unsigned long addr) |
| |
| { |
| void *prior; |
| int was_frozen; |
| struct slab new; |
| unsigned long counters; |
| struct kmem_cache_node *n = NULL; |
| unsigned long flags; |
| bool on_node_partial; |
| |
| stat(s, FREE_SLOWPATH); |
| |
| if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { |
| free_to_partial_list(s, slab, head, tail, cnt, addr); |
| return; |
| } |
| |
| do { |
| if (unlikely(n)) { |
| spin_unlock_irqrestore(&n->list_lock, flags); |
| n = NULL; |
| } |
| prior = slab->freelist; |
| counters = slab->counters; |
| set_freepointer(s, tail, prior); |
| new.counters = counters; |
| was_frozen = new.frozen; |
| new.inuse -= cnt; |
| if ((!new.inuse || !prior) && !was_frozen) { |
| /* Needs to be taken off a list */ |
| if (!kmem_cache_has_cpu_partial(s) || prior) { |
| |
| n = get_node(s, slab_nid(slab)); |
| /* |
| * Speculatively acquire the list_lock. |
| * If the cmpxchg does not succeed then we may |
| * drop the list_lock without any processing. |
| * |
| * Otherwise the list_lock will synchronize with |
| * other processors updating the list of slabs. |
| */ |
| spin_lock_irqsave(&n->list_lock, flags); |
| |
| on_node_partial = slab_test_node_partial(slab); |
| } |
| } |
| |
| } while (!slab_update_freelist(s, slab, |
| prior, counters, |
| head, new.counters, |
| "__slab_free")); |
| |
| if (likely(!n)) { |
| |
| if (likely(was_frozen)) { |
| /* |
| * The list lock was not taken therefore no list |
| * activity can be necessary. |
| */ |
| stat(s, FREE_FROZEN); |
| } else if (kmem_cache_has_cpu_partial(s) && !prior) { |
| /* |
| * If we started with a full slab then put it onto the |
| * per cpu partial list. |
| */ |
| put_cpu_partial(s, slab, 1); |
| stat(s, CPU_PARTIAL_FREE); |
| } |
| |
| return; |
| } |
| |
| /* |
| * This slab was partially empty but not on the per-node partial list, |
| * in which case we shouldn't manipulate its list, just return. |
| */ |
| if (prior && !on_node_partial) { |
| spin_unlock_irqrestore(&n->list_lock, flags); |
| return; |
| } |
| |
| if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) |
| goto slab_empty; |
| |
| /* |
| * Objects left in the slab. If it was not on the partial list before |
| * then add it. |
| */ |
| if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { |
| add_partial(n, slab, DEACTIVATE_TO_TAIL); |
| stat(s, FREE_ADD_PARTIAL); |
| } |
| spin_unlock_irqrestore(&n->list_lock, flags); |
| return; |
| |
| slab_empty: |
| if (prior) { |
| /* |
| * Slab on the partial list. |
| */ |
| remove_partial(n, slab); |
| stat(s, FREE_REMOVE_PARTIAL); |
| } |
| |
| spin_unlock_irqrestore(&n->list_lock, flags); |
| stat(s, FREE_SLAB); |
| discard_slab(s, slab); |
| } |
| |
| #ifndef CONFIG_SLUB_TINY |
| /* |
| * Fastpath with forced inlining to produce a kfree and kmem_cache_free that |
| * can perform fastpath freeing without additional function calls. |
| * |
| * The fastpath is only possible if we are freeing to the current cpu slab |
| * of this processor. This typically the case if we have just allocated |
| * the item before. |
| * |
| * If fastpath is not possible then fall back to __slab_free where we deal |
| * with all sorts of special processing. |
| * |
| * Bulk free of a freelist with several objects (all pointing to the |
| * same slab) possible by specifying head and tail ptr, plus objects |
| * count (cnt). Bulk free indicated by tail pointer being set. |
| */ |
| static __always_inline void do_slab_free(struct kmem_cache *s, |
| struct slab *slab, void *head, void *tail, |
| int cnt, unsigned long addr) |
| { |
| struct kmem_cache_cpu *c; |
| unsigned long tid; |
| void **freelist; |
| |
| redo: |
| /* |
| * Determine the currently cpus per cpu slab. |
| * The cpu may change afterward. However that does not matter since |
| * data is retrieved via this pointer. If we are on the same cpu |
| * during the cmpxchg then the free will succeed. |
| */ |
| c = raw_cpu_ptr(s->cpu_slab); |
| tid = READ_ONCE(c->tid); |
| |
| /* Same with comment on barrier() in __slab_alloc_node() */ |
| barrier(); |
| |
| if (unlikely(slab != c->slab)) { |
| __slab_free(s, slab, head, tail, cnt, addr); |
| return; |
| } |
| |
| if (USE_LOCKLESS_FAST_PATH()) { |
| freelist = READ_ONCE(c->freelist); |
| |
| set_freepointer(s, tail, freelist); |
| |
| if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) { |
| note_cmpxchg_failure("slab_free", s, tid); |
| goto redo; |
| } |
| } else { |
| /* Update the free list under the local lock */ |
| local_lock(&s->cpu_slab->lock); |
| c = this_cpu_ptr(s->cpu_slab); |
| if (unlikely(slab != c->slab)) { |
| local_unlock(&s->cpu_slab->lock); |
| goto redo; |
| } |
| tid = c->tid; |
| freelist = c->freelist; |
| |
| set_freepointer(s, tail, freelist); |
| c->freelist = head; |
| c->tid = next_tid(tid); |
| |
| local_unlock(&s->cpu_slab->lock); |
| } |
| stat_add(s, FREE_FASTPATH, cnt); |
| } |
| #else /* CONFIG_SLUB_TINY */ |
| static void do_slab_free(struct kmem_cache *s, |
| struct slab *slab, void *head, void *tail, |
| int cnt, unsigned long addr) |
| { |
| __slab_free(s, slab, head, tail, cnt, addr); |
| } |
| #endif /* CONFIG_SLUB_TINY */ |
| |
| static __fastpath_inline |
| void slab_free(struct kmem_cache *s, struct slab *slab, void *object, |
| unsigned long addr) |
| { |
| memcg_slab_free_hook(s, slab, &object, 1); |
| alloc_tagging_slab_free_hook(s, slab, &object, 1); |
| |
| if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false))) |
| do_slab_free(s, slab, object, object, 1, addr); |
| } |
| |
| #ifdef CONFIG_MEMCG |
| /* Do not inline the rare memcg charging failed path into the allocation path */ |
| static noinline |
| void memcg_alloc_abort_single(struct kmem_cache *s, void *object) |
| { |
| if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false))) |
| do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_); |
| } |
| #endif |
| |
| static __fastpath_inline |
| void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head, |
| void *tail, void **p, int cnt, unsigned long addr) |
| { |
| memcg_slab_free_hook(s, slab, p, cnt); |
| alloc_tagging_slab_free_hook(s, slab, p, cnt); |
| /* |
| * With KASAN enabled slab_free_freelist_hook modifies the freelist |
| * to remove objects, whose reuse must be delayed. |
| */ |
| if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt))) |
| do_slab_free(s, slab, head, tail, cnt, addr); |
| } |
| |
| #ifdef CONFIG_SLUB_RCU_DEBUG |
| static void slab_free_after_rcu_debug(struct rcu_head *rcu_head) |
| { |
| struct rcu_delayed_free *delayed_free = |
| container_of(rcu_head, struct rcu_delayed_free, head); |
| void *object = delayed_free->object; |
| struct slab *slab = virt_to_slab(object); |
| struct kmem_cache *s; |
| |
| kfree(delayed_free); |
| |
| if (WARN_ON(is_kfence_address(object))) |
| return; |
| |
| /* find the object and the cache again */ |
| if (WARN_ON(!slab)) |
| return; |
| s = slab->slab_cache; |
| if (WARN_ON(!(s->flags & SLAB_TYPESAFE_BY_RCU))) |
| return; |
| |
| /* resume freeing */ |
| if (slab_free_hook(s, object, slab_want_init_on_free(s), true)) |
| do_slab_free(s, slab, object, object, 1, _THIS_IP_); |
| } |
| #endif /* CONFIG_SLUB_RCU_DEBUG */ |
| |
| #ifdef CONFIG_KASAN_GENERIC |
| void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) |
| { |
| do_slab_free(cache, virt_to_slab(x), x, x, 1, addr); |
| } |
| #endif |
| |
| static inline struct kmem_cache *virt_to_cache(const void *obj) |
| { |
| struct slab *slab; |
| |
| slab = virt_to_slab(obj); |
| if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__)) |
| return NULL; |
| return slab->slab_cache; |
| } |
| |
| static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) |
| { |
| struct kmem_cache *cachep; |
| |
| if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && |
| !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) |
| return s; |
| |
| cachep = virt_to_cache(x); |
| if (WARN(cachep && cachep != s, |
| "%s: Wrong slab cache. %s but object is from %s\n", |
| __func__, s->name, cachep->name)) |
| print_tracking(cachep, x); |
| return cachep; |
| } |
| |
| /** |
| * kmem_cache_free - Deallocate an object |
| * @s: The cache the allocation was from. |
| * @x: The previously allocated object. |
| * |
| * Free an object which was previously allocated from this |
| * cache. |
| */ |
| void kmem_cache_free(struct kmem_cache *s, void *x) |
| { |
| s = cache_from_obj(s, x); |
| if (!s) |
| return; |
| trace_kmem_cache_free(_RET_IP_, x, s); |
| slab_free(s, virt_to_slab(x), x, _RET_IP_); |
| } |
| EXPORT_SYMBOL(kmem_cache_free); |
| |
| static void free_large_kmalloc(struct folio *folio, void *object) |
| { |
| unsigned int order = folio_order(folio); |
| |
| if (WARN_ON_ONCE(order == 0)) |
| pr_warn_once("object pointer: 0x%p\n", object); |
| |
| kmemleak_free(object); |
| kasan_kfree_large(object); |
| kmsan_kfree_large(object); |
| |
| lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, |
| -(PAGE_SIZE << order)); |
| folio_put(folio); |
| } |
| |
| /** |
| * kfree - free previously allocated memory |
| * @object: pointer returned by kmalloc() or kmem_cache_alloc() |
| * |
| * If @object is NULL, no operation is performed. |
| */ |
| void kfree(const void *object) |
| { |
| struct folio *folio; |
| struct slab *slab; |
| struct kmem_cache *s; |
| void *x = (void *)object; |
| |
| trace_kfree(_RET_IP_, object); |
| |
| if (unlikely(ZERO_OR_NULL_PTR(object))) |
| return; |
| |
| folio = virt_to_folio(object); |
| if (unlikely(!folio_test_slab(folio))) { |
| free_large_kmalloc(folio, (void *)object); |
| return; |
| } |
| |
| slab = folio_slab(folio); |
| s = slab->slab_cache; |
| slab_free(s, slab, x, _RET_IP_); |
| } |
| EXPORT_SYMBOL(kfree); |
| |
| struct detached_freelist { |
| struct slab *slab; |
| void *tail; |
| void *freelist; |
| int cnt; |
| struct kmem_cache *s; |
| }; |
| |
| /* |
| * This function progressively scans the array with free objects (with |
| * a limited look ahead) and extract objects belonging to the same |
| * slab. It builds a detached freelist directly within the given |
| * slab/objects. This can happen without any need for |
| * synchronization, because the objects are owned by running process. |
| * The freelist is build up as a single linked list in the objects. |
| * The idea is, that this detached freelist can then be bulk |
| * transferred to the real freelist(s), but only requiring a single |
| * synchronization primitive. Look ahead in the array is limited due |
| * to performance reasons. |
| */ |
| static inline |
| int build_detached_freelist(struct kmem_cache *s, size_t size, |
| void **p, struct detached_freelist *df) |
| { |
| int lookahead = 3; |
| void *object; |
| struct folio *folio; |
| size_t same; |
| |
| object = p[--size]; |
| folio = virt_to_folio(object); |
| if (!s) { |
| /* Handle kalloc'ed objects */ |
| if (unlikely(!folio_test_slab(folio))) { |
| free_large_kmalloc(folio, object); |
| df->slab = NULL; |
| return size; |
| } |
| /* Derive kmem_cache from object */ |
| df->slab = folio_slab(folio); |
| df->s = df->slab->slab_cache; |
| } else { |
| df->slab = folio_slab(folio); |
| df->s = cache_from_obj(s, object); /* Support for memcg */ |
| } |
| |
| /* Start new detached freelist */ |
| df->tail = object; |
| df->freelist = object; |
| df->cnt = 1; |
| |
| if (is_kfence_address(object)) |
| return size; |
| |
| set_freepointer(df->s, object, NULL); |
| |
| same = size; |
| while (size) { |
| object = p[--size]; |
| /* df->slab is always set at this point */ |
| if (df->slab == virt_to_slab(object)) { |
| /* Opportunity build freelist */ |
| set_freepointer(df->s, object, df->freelist); |
| df->freelist = object; |
| df->cnt++; |
| same--; |
| if (size != same) |
| swap(p[size], p[same]); |
| continue; |
| } |
| |
| /* Limit look ahead search */ |
| if (!--lookahead) |
| break; |
| } |
| |
| return same; |
| } |
| |
| /* |
| * Internal bulk free of objects that were not initialised by the post alloc |
| * hooks and thus should not be processed by the free hooks |
| */ |
| static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) |
| { |
| if (!size) |
| return; |
| |
| do { |
| struct detached_freelist df; |
| |
| size = build_detached_freelist(s, size, p, &df); |
| if (!df.slab) |
| continue; |
| |
| if (kfence_free(df.freelist)) |
| continue; |
| |
| do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt, |
| _RET_IP_); |
| } while (likely(size)); |
| } |
| |
| /* Note that interrupts must be enabled when calling this function. */ |
| void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) |
| { |
| if (!size) |
| return; |
| |
| do { |
| struct detached_freelist df; |
| |
| size = build_detached_freelist(s, size, p, &df); |
| if (!df.slab) |
| continue; |
| |
| slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size], |
| df.cnt, _RET_IP_); |
| } while (likely(size)); |
| } |
| EXPORT_SYMBOL(kmem_cache_free_bulk); |
| |
| #ifndef CONFIG_SLUB_TINY |
| static inline |
| int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, |
| void **p) |
| { |
| struct kmem_cache_cpu *c; |
| unsigned long irqflags; |
| int i; |
| |
| /* |
| * Drain objects in the per cpu slab, while disabling local |
| * IRQs, which protects against PREEMPT and interrupts |
| * handlers invoking normal fastpath. |
| */ |
| c = slub_get_cpu_ptr(s->cpu_slab); |
| local_lock_irqsave(&s->cpu_slab->lock, irqflags); |
| |
| for (i = 0; i < size; i++) { |
| void *object = kfence_alloc(s, s->object_size, flags); |
| |
| if (unlikely(object)) { |
| p[i] = object; |
| continue; |
| } |
| |
| object = c->freelist; |
| if (unlikely(!object)) { |
| /* |
| * We may have removed an object from c->freelist using |
| * the fastpath in the previous iteration; in that case, |
| * c->tid has not been bumped yet. |
| * Since ___slab_alloc() may reenable interrupts while |
| * allocating memory, we should bump c->tid now. |
| */ |
| c->tid = next_tid(c->tid); |
| |
| local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); |
| |
| /* |
| * Invoking slow path likely have side-effect |
| * of re-populating per CPU c->freelist |
| */ |
| p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, |
| _RET_IP_, c, s->object_size); |
| if (unlikely(!p[i])) |
| goto error; |
| |
| c = this_cpu_ptr(s->cpu_slab); |
| maybe_wipe_obj_freeptr(s, p[i]); |
| |
| local_lock_irqsave(&s->cpu_slab->lock, irqflags); |
| |
| continue; /* goto for-loop */ |
| } |
| c->freelist = get_freepointer(s, object); |
| p[i] = object; |
| maybe_wipe_obj_freeptr(s, p[i]); |
| stat(s, ALLOC_FASTPATH); |
| } |
| c->tid = next_tid(c->tid); |
| local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); |
| slub_put_cpu_ptr(s->cpu_slab); |
| |
| return i; |
| |
| error: |
| slub_put_cpu_ptr(s->cpu_slab); |
| __kmem_cache_free_bulk(s, i, p); |
| return 0; |
| |
| } |
| #else /* CONFIG_SLUB_TINY */ |
| static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, |
| size_t size, void **p) |
| { |
| int i; |
| |
| for (i = 0; i < size; i++) { |
| void *object = kfence_alloc(s, s->object_size, flags); |
| |
| if (unlikely(object)) { |
| p[i] = object; |
| continue; |
| } |
| |
| p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE, |
| _RET_IP_, s->object_size); |
| if (unlikely(!p[i])) |
| goto error; |
| |
| maybe_wipe_obj_freeptr(s, p[i]); |
| } |
| |
| return i; |
| |
| error: |
| __kmem_cache_free_bulk(s, i, p); |
| return 0; |
| } |
| #endif /* CONFIG_SLUB_TINY */ |
| |
| /* Note that interrupts must be enabled when calling this function. */ |
| int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size, |
| void **p) |
| { |
| int i; |
| |
| if (!size) |
| return 0; |
| |
| s = slab_pre_alloc_hook(s, flags); |
| if (unlikely(!s)) |
| return 0; |
| |
| i = __kmem_cache_alloc_bulk(s, flags, size, p); |
| if (unlikely(i == 0)) |
| return 0; |
| |
| /* |
| * memcg and kmem_cache debug support and memory initialization. |
| * Done outside of the IRQ disabled fastpath loop. |
| */ |
| if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p, |
| slab_want_init_on_alloc(flags, s), s->object_size))) { |
| return 0; |
| } |
| return i; |
| } |
| EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof); |
| |
| |
| /* |
| * Object placement in a slab is made very easy because we always start at |
| * offset 0. If we tune the size of the object to the alignment then we can |
| * get the required alignment by putting one properly sized object after |
| * another. |
| * |
| * Notice that the allocation order determines the sizes of the per cpu |
| * caches. Each processor has always one slab available for allocations. |
| * Increasing the allocation order reduces the number of times that slabs |
| * must be moved on and off the partial lists and is therefore a factor in |
| * locking overhead. |
| */ |
| |
| /* |
| * Minimum / Maximum order of slab pages. This influences locking overhead |
| * and slab fragmentation. A higher order reduces the number of partial slabs |
| * and increases the number of allocations possible without having to |
| * take the list_lock. |
| */ |
| static unsigned int slub_min_order; |
| static unsigned int slub_max_order = |
| IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER; |
| static unsigned int slub_min_objects; |
| |
| /* |
| * Calculate the order of allocation given an slab object size. |
| * |
| * The order of allocation has significant impact on performance and other |
| * system components. Generally order 0 allocations should be preferred since |
| * order 0 does not cause fragmentation in the page allocator. Larger objects |
| * be problematic to put into order 0 slabs because there may be too much |
| * unused space left. We go to a higher order if more than 1/16th of the slab |
| * would be wasted. |
| * |
| * In order to reach satisfactory performance we must ensure that a minimum |
| * number of objects is in one slab. Otherwise we may generate too much |
| * activity on the partial lists which requires taking the list_lock. This is |
| * less a concern for large slabs though which are rarely used. |
| * |
| * slab_max_order specifies the order where we begin to stop considering the |
| * number of objects in a slab as critical. If we reach slab_max_order then |
| * we try to keep the page order as low as possible. So we accept more waste |
| * of space in favor of a small page order. |
| * |
| * Higher order allocations also allow the placement of more objects in a |
| * slab and thereby reduce object handling overhead. If the user has |
| * requested a higher minimum order then we start with that one instead of |
| * the smallest order which will fit the object. |
| */ |
| static inline unsigned int calc_slab_order(unsigned int size, |
| unsigned int min_order, unsigned int max_order, |
| unsigned int fract_leftover) |
| { |
| unsigned int order; |
| |
| for (order = min_order; order <= max_order; order++) { |
| |
| unsigned int slab_size = (unsigned int)PAGE_SIZE << order; |
| unsigned int rem; |
| |
| rem = slab_size % size; |
| |
| if (rem <= slab_size / fract_leftover) |
| break; |
| } |
| |
| return order; |
| } |
| |
| static inline int calculate_order(unsigned int size) |
| { |
| unsigned int order; |
| unsigned int min_objects; |
| unsigned int max_objects; |
| unsigned int min_order; |
| |
| min_objects = slub_min_objects; |
| if (!min_objects) { |
| /* |
| * Some architectures will only update present cpus when |
| * onlining them, so don't trust the number if it's just 1. But |
| * we also don't want to use nr_cpu_ids always, as on some other |
| * architectures, there can be many possible cpus, but never |
| * onlined. Here we compromise between trying to avoid too high |
| * order on systems that appear larger than they are, and too |
| * low order on systems that appear smaller than they are. |
| */ |
| unsigned int nr_cpus = num_present_cpus(); |
| if (nr_cpus <= 1) |
| nr_cpus = nr_cpu_ids; |
| min_objects = 4 * (fls(nr_cpus) + 1); |
| } |
| /* min_objects can't be 0 because get_order(0) is undefined */ |
| max_objects = max(order_objects(slub_max_order, size), 1U); |
| min_objects = min(min_objects, max_objects); |
| |
| min_order = max_t(unsigned int, slub_min_order, |
| get_order(min_objects * size)); |
| if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) |
| return get_order(size * MAX_OBJS_PER_PAGE) - 1; |
| |
| /* |
| * Attempt to find best configuration for a slab. This works by first |
| * attempting to generate a layout with the best possible configuration |
| * and backing off gradually. |
| * |
| * We start with accepting at most 1/16 waste and try to find the |
| * smallest order from min_objects-derived/slab_min_order up to |
| * slab_max_order that will satisfy the constraint. Note that increasing |
| * the order can only result in same or less fractional waste, not more. |
| * |
| * If that fails, we increase the acceptable fraction of waste and try |
| * again. The last iteration with fraction of 1/2 would effectively |
| * accept any waste and give us the order determined by min_objects, as |
| * long as at least single object fits within slab_max_order. |
| */ |
| for (unsigned int fraction = 16; fraction > 1; fraction /= 2) { |
| order = calc_slab_order(size, min_order, slub_max_order, |
| fraction); |
| if (order <= slub_max_order) |
| return order; |
| } |
| |
| /* |
| * Doh this slab cannot be placed using slab_max_order. |
| */ |
| order = get_order(size); |
| if (order <= MAX_PAGE_ORDER) |
| return order; |
| return -ENOSYS; |
| } |
| |
| static void |
| init_kmem_cache_node(struct kmem_cache_node *n) |
| { |
| n->nr_partial = 0; |
| spin_lock_init(&n->list_lock); |
| INIT_LIST_HEAD(&n->partial); |
| #ifdef CONFIG_SLUB_DEBUG |
| atomic_long_set(&n->nr_slabs, 0); |
| atomic_long_set(&n->total_objects, 0); |
| INIT_LIST_HEAD(&n->full); |
| #endif |
| } |
| |
| #ifndef CONFIG_SLUB_TINY |
| static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) |
| { |
| BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < |
| NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH * |
| sizeof(struct kmem_cache_cpu)); |
| |
| /* |
| * Must align to double word boundary for the double cmpxchg |
| * instructions to work; see __pcpu_double_call_return_bool(). |
| */ |
| s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), |
| 2 * sizeof(void *)); |
| |
| if (!s->cpu_slab) |
| return 0; |
| |
| init_kmem_cache_cpus(s); |
| |
| return 1; |
| } |
| #else |
| static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) |
| { |
| return 1; |
| } |
| #endif /* CONFIG_SLUB_TINY */ |
| |
| static struct kmem_cache *kmem_cache_node; |
| |
| /* |
| * No kmalloc_node yet so do it by hand. We know that this is the first |
| * slab on the node for this slabcache. There are no concurrent accesses |
| * possible. |
| * |
| * Note that this function only works on the kmem_cache_node |
| * when allocating for the kmem_cache_node. This is used for bootstrapping |
| * memory on a fresh node that has no slab structures yet. |
| */ |
| static void early_kmem_cache_node_alloc(int node) |
| { |
| struct slab *slab; |
| struct kmem_cache_node *n; |
| |
| BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); |
| |
| slab = new_slab(kmem_cache_node, GFP_NOWAIT, node); |
| |
| BUG_ON(!slab); |
| if (slab_nid(slab) != node) { |
| pr_err("SLUB: Unable to allocate memory from node %d\n", node); |
| pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); |
| } |
| |
| n = slab->freelist; |
| BUG_ON(!n); |
| #ifdef CONFIG_SLUB_DEBUG |
| init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); |
| #endif |
| n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false); |
| slab->freelist = get_freepointer(kmem_cache_node, n); |
| slab->inuse = 1; |
| kmem_cache_node->node[node] = n; |
| init_kmem_cache_node(n); |
| inc_slabs_node(kmem_cache_node, node, slab->objects); |
| |
| /* |
| * No locks need to be taken here as it has just been |
| * initialized and there is no concurrent access. |
| */ |
| __add_partial(n, slab, DEACTIVATE_TO_HEAD); |
| } |
| |
| static void free_kmem_cache_nodes(struct kmem_cache *s) |
| { |
| int node; |
| struct kmem_cache_node *n; |
| |
| for_each_kmem_cache_node(s, node, n) { |
| s->node[node] = NULL; |
| kmem_cache_free(kmem_cache_node, n); |
| } |
| } |
| |
| void __kmem_cache_release(struct kmem_cache *s) |
| { |
| cache_random_seq_destroy(s); |
| #ifndef CONFIG_SLUB_TINY |
| free_percpu(s->cpu_slab); |
| #endif |
| free_kmem_cache_nodes(s); |
| } |
| |
| static int init_kmem_cache_nodes(struct kmem_cache *s) |
| { |
| int node; |
| |
| for_each_node_mask(node, slab_nodes) { |
| struct kmem_cache_node *n; |
| |
| if (slab_state == DOWN) { |
| early_kmem_cache_node_alloc(node); |
| continue; |
| } |
| n = kmem_cache_alloc_node(kmem_cache_node, |
| GFP_KERNEL, node); |
| |
| if (!n) { |
| free_kmem_cache_nodes(s); |
| return 0; |
| } |
| |
| init_kmem_cache_node(n); |
| s->node[node] = n; |
| } |
| return 1; |
| } |
| |
| static void set_cpu_partial(struct kmem_cache *s) |
| { |
| #ifdef CONFIG_SLUB_CPU_PARTIAL |
| unsigned int nr_objects; |
| |
| /* |
| * cpu_partial determined the maximum number of objects kept in the |
| * per cpu partial lists of a processor. |
| * |
| * Per cpu partial lists mainly contain slabs that just have one |
| * object freed. If they are used for allocation then they can be |
| * filled up again with minimal effort. The slab will never hit the |
| * per node partial lists and therefore no locking will be required. |
| * |
| * For backwards compatibility reasons, this is determined as number |
| * of objects, even though we now limit maximum number of pages, see |
| * slub_set_cpu_partial() |
| */ |
| if (!kmem_cache_has_cpu_partial(s)) |
| nr_objects = 0; |
| else if (s->size >= PAGE_SIZE) |
| nr_objects = 6; |
| else if (s->size >= 1024) |
| nr_objects = 24; |
| else if (s->size >= 256) |
| nr_objects = 52; |
| else |
| nr_objects = 120; |
| |
| slub_set_cpu_partial(s, nr_objects); |
| #endif |
| } |
| |
| /* |
| * calculate_sizes() determines the order and the distribution of data within |
| * a slab object. |
| */ |
| static int calculate_sizes(struct kmem_cache_args *args, struct kmem_cache *s) |
| { |
| slab_flags_t flags = s->flags; |
| unsigned int size = s->object_size; |
| unsigned int order; |
| |
| /* |
| * Round up object size to the next word boundary. We can only |
| * place the free pointer at word boundaries and this determines |
| * the possible location of the free pointer. |
| */ |
| size = ALIGN(size, sizeof(void *)); |
| |
| #ifdef CONFIG_SLUB_DEBUG |
| /* |
| * Determine if we can poison the object itself. If the user of |
| * the slab may touch the object after free or before allocation |
| * then we should never poison the object itself. |
| */ |
| if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && |
| !s->ctor) |
| s->flags |= __OBJECT_POISON; |
| else |
| s->flags &= ~__OBJECT_POISON; |
| |
| |
| /* |
| * If we are Redzoning then check if there is some space between the |
| * end of the object and the free pointer. If not then add an |
| * additional word to have some bytes to store Redzone information. |
| */ |
| if ((flags & SLAB_RED_ZONE) && size == s->object_size) |
| size += sizeof(void *); |
| #endif |
| |
| /* |
| * With that we have determined the number of bytes in actual use |
| * by the object and redzoning. |
| */ |
| s->inuse = size; |
| |
| if (((flags & SLAB_TYPESAFE_BY_RCU) && !args->use_freeptr_offset) || |
| (flags & SLAB_POISON) || s->ctor || |
| ((flags & SLAB_RED_ZONE) && |
| (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) { |
| /* |
| * Relocate free pointer after the object if it is not |
| * permitted to overwrite the first word of the object on |
| * kmem_cache_free. |
| * |
| * This is the case if we do RCU, have a constructor or |
| * destructor, are poisoning the objects, or are |
| * redzoning an object smaller than sizeof(void *) or are |
| * redzoning an object with slub_debug_orig_size() enabled, |
| * in which case the right redzone may be extended. |
| * |
| * The assumption that s->offset >= s->inuse means free |
| * pointer is outside of the object is used in the |
| * freeptr_outside_object() function. If that is no |
| * longer true, the function needs to be modified. |
| */ |
| s->offset = size; |
| size += sizeof(void *); |
| } else if ((flags & SLAB_TYPESAFE_BY_RCU) && args->use_freeptr_offset) { |
| s->offset = args->freeptr_offset; |
| } else { |
| /* |
| * Store freelist pointer near middle of object to keep |
| * it away from the edges of the object to avoid small |
| * sized over/underflows from neighboring allocations. |
| */ |
| s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *)); |
| } |
| |
| #ifdef CONFIG_SLUB_DEBUG |
| if (flags & SLAB_STORE_USER) { |
| /* |
| * Need to store information about allocs and frees after |
| * the object. |
| */ |
| size += 2 * sizeof(struct track); |
| |
| /* Save the original kmalloc request size */ |
| if (flags & SLAB_KMALLOC) |
| size += sizeof(unsigned int); |
| } |
| #endif |
| |
| kasan_cache_create(s, &size, &s->flags); |
| #ifdef CONFIG_SLUB_DEBUG |
| if (flags & SLAB_RED_ZONE) { |
| /* |
| * Add some empty padding so that we can catch |
| * overwrites from earlier objects rather than let |
| * tracking information or the free pointer be |
| * corrupted if a user writes before the start |
| * of the object. |
| */ |
| size += sizeof(void *); |
| |
| s->red_left_pad = sizeof(void *); |
| s->red_left_pad = ALIGN(s->red_left_pad, s->align); |
| size += s->red_left_pad; |
| } |
| #endif |
| |
| /* |
| * SLUB stores one object immediately after another beginning from |
| * offset 0. In order to align the objects we have to simply size |
| * each object to conform to the alignment. |
| */ |
| size = ALIGN(size, s->align); |
| s->size = size; |
| s->reciprocal_size = reciprocal_value(size); |
| order = calculate_order(size); |
| |
| if ((int)order < 0) |
| return 0; |
| |
| s->allocflags = __GFP_COMP; |
| |
| if (s->flags & SLAB_CACHE_DMA) |
| s->allocflags |= GFP_DMA; |
| |
| if (s->flags & SLAB_CACHE_DMA32) |
| s->allocflags |= GFP_DMA32; |
| |
| if (s->flags & SLAB_RECLAIM_ACCOUNT) |
| s->allocflags |= __GFP_RECLAIMABLE; |
| |
| /* |
| * Determine the number of objects per slab |
| */ |
| s->oo = oo_make(order, size); |
| s->min = oo_make(get_order(size), size); |
| |
| return !!oo_objects(s->oo); |
| } |
| |
| static void list_slab_objects(struct kmem_cache *s, struct slab *slab, |
| const char *text) |
| { |
| #ifdef CONFIG_SLUB_DEBUG |
| void *addr = slab_address(slab); |
| void *p; |
| |
| slab_err(s, slab, text, s->name); |
| |
| spin_lock(&object_map_lock); |
| __fill_map(object_map, s, slab); |
| |
| for_each_object(p, s, addr, slab->objects) { |
| |
| if (!test_bit(__obj_to_index(s, addr, p), object_map)) { |
| if (slab_add_kunit_errors()) |
| continue; |
| pr_err("Object 0x%p @offset=%tu\n", p, p - addr); |
| print_tracking(s, p); |
| } |
| } |
| spin_unlock(&object_map_lock); |
| #endif |
| } |
| |
| /* |
| * Attempt to free all partial slabs on a node. |
| * This is called from __kmem_cache_shutdown(). We must take list_lock |
| * because sysfs file might still access partial list after the shutdowning. |
| */ |
| static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) |
| { |
| LIST_HEAD(discard); |
| struct slab *slab, *h; |
| |
| BUG_ON(irqs_disabled()); |
| spin_lock_irq(&n->list_lock); |
| list_for_each_entry_safe(slab, h, &n->partial, slab_list) { |
| if (!slab->inuse) { |
| remove_partial(n, slab); |
| list_add(&slab->slab_list, &discard); |
| } else { |
| list_slab_objects(s, slab, |
| "Objects remaining in %s on __kmem_cache_shutdown()"); |
| } |
| } |
| spin_unlock_irq(&n->list_lock); |
| |
| list_for_each_entry_safe(slab, h, &discard, slab_list) |
| discard_slab(s, slab); |
| } |
| |
| bool __kmem_cache_empty(struct kmem_cache *s) |
| { |
| int node; |
| struct kmem_cache_node *n; |
| |
| for_each_kmem_cache_node(s, node, n) |
| if (n->nr_partial || node_nr_slabs(n)) |
| return false; |
| return true; |
| } |
| |
| /* |
| * Release all resources used by a slab cache. |
| */ |
| int __kmem_cache_shutdown(struct kmem_cache *s) |
| { |
| int node; |
| struct kmem_cache_node *n; |
| |
| flush_all_cpus_locked(s); |
| /* Attempt to free all objects */ |
| for_each_kmem_cache_node(s, node, n) { |
| free_partial(s, n); |
| if (n->nr_partial || node_nr_slabs(n)) |
| return 1; |
| } |
| return 0; |
| } |
| |
| #ifdef CONFIG_PRINTK |
| void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) |
| { |
| void *base; |
| int __maybe_unused i; |
| unsigned int objnr; |
| void *objp; |
| void *objp0; |
| struct kmem_cache *s = slab->slab_cache; |
| struct track __maybe_unused *trackp; |
| |
| kpp->kp_ptr = object; |
| kpp->kp_slab = slab; |
| kpp->kp_slab_cache = s; |
| base = slab_address(slab); |
| objp0 = kasan_reset_tag(object); |
| #ifdef CONFIG_SLUB_DEBUG |
| objp = restore_red_left(s, objp0); |
| #else |
| objp = objp0; |
| #endif |
| objnr = obj_to_index(s, slab, objp); |
| kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); |
| objp = base + s->size * objnr; |
| kpp->kp_objp = objp; |
| if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size |
| || (objp - base) % s->size) || |
| !(s->flags & SLAB_STORE_USER)) |
| return; |
| #ifdef CONFIG_SLUB_DEBUG |
| objp = fixup_red_left(s, objp); |
| trackp = get_track(s, objp, TRACK_ALLOC); |
| kpp->kp_ret = (void *)trackp->addr; |
| #ifdef CONFIG_STACKDEPOT |
| { |
| depot_stack_handle_t handle; |
| unsigned long *entries; |
| unsigned int nr_entries; |
| |
| handle = READ_ONCE(trackp->handle); |
| if (handle) { |
| nr_entries = stack_depot_fetch(handle, &entries); |
| for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) |
| kpp->kp_stack[i] = (void *)entries[i]; |
| } |
| |
| trackp = get_track(s, objp, TRACK_FREE); |
| handle = READ_ONCE(trackp->handle); |
| if (handle) { |
| nr_entries = stack_depot_fetch(handle, &entries); |
| for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) |
| kpp->kp_free_stack[i] = (void *)entries[i]; |
| } |
| } |
| #endif |
| #endif |
| } |
| #endif |
| |
| /******************************************************************** |
| * Kmalloc subsystem |
| *******************************************************************/ |
| |
| static int __init setup_slub_min_order(char *str) |
| { |
| get_option(&str, (int *)&slub_min_order); |
| |
| if (slub_min_order > slub_max_order) |
| slub_max_order = slub_min_order; |
| |
| return 1; |
| } |
| |
| __setup("slab_min_order=", setup_slub_min_order); |
| __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0); |
| |
| |
| static int __init setup_slub_max_order(char *str) |
| { |
| get_option(&str, (int *)&slub_max_order); |
| slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER); |
| |
| if (slub_min_order > slub_max_order) |
| slub_min_order = slub_max_order; |
| |
| return 1; |
| } |
| |
| __setup("slab_max_order=", setup_slub_max_order); |
| __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0); |
| |
| static int __init setup_slub_min_objects(char *str) |
| { |
| get_option(&str, (int *)&slub_min_objects); |
| |
| return 1; |
| } |
| |
| __setup("slab_min_objects=", setup_slub_min_objects); |
| __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0); |
| |
| #ifdef CONFIG_HARDENED_USERCOPY |
| /* |
| * Rejects incorrectly sized objects and objects that are to be copied |
| * to/from userspace but do not fall entirely within the containing slab |
| * cache's usercopy region. |
| * |
| * Returns NULL if check passes, otherwise const char * to name of cache |
| * to indicate an error. |
| */ |
| void __check_heap_object(const void *ptr, unsigned long n, |
| const struct slab *slab, bool to_user) |
| { |
| struct kmem_cache *s; |
| unsigned int offset; |
| bool is_kfence = is_kfence_address(ptr); |
| |
| ptr = kasan_reset_tag(ptr); |
| |
| /* Find object and usable object size. */ |
| s = slab->slab_cache; |
| |
| /* Reject impossible pointers. */ |
| if (ptr < slab_address(slab)) |
| usercopy_abort("SLUB object not in SLUB page?!", NULL, |
| to_user, 0, n); |
| |
| /* Find offset within object. */ |
| if (is_kfence) |
| offset = ptr - kfence_object_start(ptr); |
| else |
| offset = (ptr - slab_address(slab)) % s->size; |
| |
| /* Adjust for redzone and reject if within the redzone. */ |
| if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { |
| if (offset < s->red_left_pad) |
| usercopy_abort("SLUB object in left red zone", |
| s->name, to_user, offset, n); |
| offset -= s->red_left_pad; |
| } |
| |
| /* Allow address range falling entirely within usercopy region. */ |
| if (offset >= s->useroffset && |
| offset - s->useroffset <= s->usersize && |
| n <= s->useroffset - offset + s->usersize) |
| return; |
| |
| usercopy_abort("SLUB object", s->name, to_user, offset, n); |
| } |
| #endif /* CONFIG_HARDENED_USERCOPY */ |
| |
| #define SHRINK_PROMOTE_MAX 32 |
| |
| /* |
| * kmem_cache_shrink discards empty slabs and promotes the slabs filled |
| * up most to the head of the partial lists. New allocations will then |
| * fill those up and thus they can be removed from the partial lists. |
| * |
| * The slabs with the least items are placed last. This results in them |
| * being allocated from last increasing the chance that the last objects |
| * are freed in them. |
| */ |
| static int __kmem_cache_do_shrink(struct kmem_cache *s) |
| { |
| int node; |
| int i; |
| struct kmem_cache_node *n; |
| struct slab *slab; |
| struct slab *t; |
| struct list_head discard; |
| struct list_head promote[SHRINK_PROMOTE_MAX]; |
| unsigned long flags; |
| int ret = 0; |
| |
| for_each_kmem_cache_node(s, node, n) { |
| INIT_LIST_HEAD(&discard); |
| for (i = 0; i < SHRINK_PROMOTE_MAX; i++) |
| INIT_LIST_HEAD(promote + i); |
| |
| spin_lock_irqsave(&n->list_lock, flags); |
| |
| /* |
| * Build lists of slabs to discard or promote. |
| * |
| * Note that concurrent frees may occur while we hold the |
| * list_lock. slab->inuse here is the upper limit. |
| */ |
| list_for_each_entry_safe(slab, t, &n->partial, slab_list) { |
| int free = slab->objects - slab->inuse; |
| |
| /* Do not reread slab->inuse */ |
| barrier(); |
| |
| /* We do not keep full slabs on the list */ |
| BUG_ON(free <= 0); |
| |
| if (free == slab->objects) { |
| list_move(&slab->slab_list, &discard); |
| slab_clear_node_partial(slab); |
| n->nr_partial--; |
| dec_slabs_node(s, node, slab->objects); |
| } else if (free <= SHRINK_PROMOTE_MAX) |
| list_move(&slab->slab_list, promote + free - 1); |
| } |
| |
| /* |
| * Promote the slabs filled up most to the head of the |
| * partial list. |
| */ |
| for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) |
| list_splice(promote + i, &n->partial); |
| |
| spin_unlock_irqrestore(&n->list_lock, flags); |
| |
| /* Release empty slabs */ |
| list_for_each_entry_safe(slab, t, &discard, slab_list) |
| free_slab(s, slab); |
| |
| if (node_nr_slabs(n)) |
| ret = 1; |
| } |
| |
| return ret; |
| } |
| |
| int __kmem_cache_shrink(struct kmem_cache *s) |
| { |
| flush_all(s); |
| return __kmem_cache_do_shrink(s); |
| } |
| |
| static int slab_mem_going_offline_callback(void *arg) |
| { |
| struct kmem_cache *s; |
| |
| mutex_lock(&slab_mutex); |
| list_for_each_entry(s, &slab_caches, list) { |
| flush_all_cpus_locked(s); |
| __kmem_cache_do_shrink(s); |
| } |
| mutex_unlock(&slab_mutex); |
| |
| return 0; |
| } |
| |
| static void slab_mem_offline_callback(void *arg) |
| { |
| struct memory_notify *marg = arg; |
| int offline_node; |
| |
| offline_node = marg->status_change_nid_normal; |
| |
| /* |
| * If the node still has available memory. we need kmem_cache_node |
| * for it yet. |
| */ |
| if (offline_node < 0) |
| return; |
| |
| mutex_lock(&slab_mutex); |
| node_clear(offline_node, slab_nodes); |
| /* |
| * We no longer free kmem_cache_node structures here, as it would be |
| * racy with all get_node() users, and infeasible to protect them with |
| * slab_mutex. |
| */ |
| mutex_unlock(&slab_mutex); |
| } |
| |
| static int slab_mem_going_online_callback(void *arg) |
| { |
| struct kmem_cache_node *n; |
| struct kmem_cache *s; |
| struct memory_notify *marg = arg; |
| int nid = marg->status_change_nid_normal; |
| int ret = 0; |
| |
| /* |
| * If the node's memory is already available, then kmem_cache_node is |
| * already created. Nothing to do. |
| */ |
| if (nid < 0) |
| return 0; |
| |
| /* |
| * We are bringing a node online. No memory is available yet. We must |
| * allocate a kmem_cache_node structure in order to bring the node |
| * online. |
| */ |
| mutex_lock(&slab_mutex); |
| list_for_each_entry(s, &slab_caches, list) { |
| /* |
| * The structure may already exist if the node was previously |
| * onlined and offlined. |
| */ |
| if (get_node(s, nid)) |
| continue; |
| /* |
| * XXX: kmem_cache_alloc_node will fallback to other nodes |
| * since memory is not yet available from the node that |
| * is brought up. |
| */ |
| n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); |
| if (!n) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| init_kmem_cache_node(n); |
| s->node[nid] = n; |
| } |
| /* |
| * Any cache created after this point will also have kmem_cache_node |
| * initialized for the new node. |
| */ |
| node_set(nid, slab_nodes); |
| out: |
| mutex_unlock(&slab_mutex); |
| return ret; |
| } |
| |
| static int slab_memory_callback(struct notifier_block *self, |
| unsigned long action, void *arg) |
| { |
| int ret = 0; |
| |
| switch (action) { |
| case MEM_GOING_ONLINE: |
| ret = slab_mem_going_online_callback(arg); |
| break; |
| case MEM_GOING_OFFLINE: |
| ret = slab_mem_going_offline_callback(arg); |
| break; |
| case MEM_OFFLINE: |
| case MEM_CANCEL_ONLINE: |
| slab_mem_offline_callback(arg); |
| break; |
| case MEM_ONLINE: |
| case MEM_CANCEL_OFFLINE: |
| break; |
| } |
| if (ret) |
| ret = notifier_from_errno(ret); |
| else |
| ret = NOTIFY_OK; |
| return ret; |
| } |
| |
| /******************************************************************** |
| * Basic setup of slabs |
| *******************************************************************/ |
| |
| /* |
| * Used for early kmem_cache structures that were allocated using |
| * the page allocator. Allocate them properly then fix up the pointers |
| * that may be pointing to the wrong kmem_cache structure. |
| */ |
| |
| static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) |
| { |
| int node; |
| struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); |
| struct kmem_cache_node *n; |
| |
| memcpy(s, static_cache, kmem_cache->object_size); |
| |
| /* |
| * This runs very early, and only the boot processor is supposed to be |
| * up. Even if it weren't true, IRQs are not up so we couldn't fire |
| * IPIs around. |
| */ |
| __flush_cpu_slab(s, smp_processor_id()); |
| for_each_kmem_cache_node(s, node, n) { |
| struct slab *p; |
| |
| list_for_each_entry(p, &n->partial, slab_list) |
| p->slab_cache = s; |
| |
| #ifdef CONFIG_SLUB_DEBUG |
| list_for_each_entry(p, &n->full, slab_list) |
| p->slab_cache = s; |
| #endif |
| } |
| list_add(&s->list, &slab_caches); |
| return s; |
| } |
| |
| void __init kmem_cache_init(void) |
| { |
| static __initdata struct kmem_cache boot_kmem_cache, |
| boot_kmem_cache_node; |
| int node; |
| |
| if (debug_guardpage_minorder()) |
| slub_max_order = 0; |
| |
| /* Print slub debugging pointers without hashing */ |
| if (__slub_debug_enabled()) |
| no_hash_pointers_enable(NULL); |
| |
| kmem_cache_node = &boot_kmem_cache_node; |
| kmem_cache = &boot_kmem_cache; |
| |
| /* |
| * Initialize the nodemask for which we will allocate per node |
| * structures. Here we don't need taking slab_mutex yet. |
| */ |
| for_each_node_state(node, N_NORMAL_MEMORY) |
| node_set(node, slab_nodes); |
| |
| create_boot_cache(kmem_cache_node, "kmem_cache_node", |
| sizeof(struct kmem_cache_node), |
| SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0); |
| |
| hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); |
| |
| /* Able to allocate the per node structures */ |
| slab_state = PARTIAL; |
| |
| create_boot_cache(kmem_cache, "kmem_cache", |
| offsetof(struct kmem_cache, node) + |
| nr_node_ids * sizeof(struct kmem_cache_node *), |
| SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0); |
| |
| kmem_cache = bootstrap(&boot_kmem_cache); |
| kmem_cache_node = bootstrap(&boot_kmem_cache_node); |
| |
| /* Now we can use the kmem_cache to allocate kmalloc slabs */ |
| setup_kmalloc_cache_index_table(); |
| create_kmalloc_caches(); |
| |
| /* Setup random freelists for each cache */ |
| init_freelist_randomization(); |
| |
| cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, |
| slub_cpu_dead); |
| |
| pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", |
| cache_line_size(), |
| slub_min_order, slub_max_order, slub_min_objects, |
| nr_cpu_ids, nr_node_ids); |
| } |
| |
| void __init kmem_cache_init_late(void) |
| { |
| #ifndef CONFIG_SLUB_TINY |
| flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0); |
| WARN_ON(!flushwq); |
| #endif |
| } |
| |
| struct kmem_cache * |
| __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, |
| slab_flags_t flags, void (*ctor)(void *)) |
| { |
| struct kmem_cache *s; |
| |
| s = find_mergeable(size, align, flags, name, ctor); |
| if (s) { |
| if (sysfs_slab_alias(s, name)) |
| return NULL; |
| |
| s->refcount++; |
| |
| /* |
| * Adjust the object sizes so that we clear |
| * the complete object on kzalloc. |
| */ |
| s->object_size = max(s->object_size, size); |
| s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); |
| } |
| |
| return s; |
| } |
| |
| int do_kmem_cache_create(struct kmem_cache *s, const char *name, |
| unsigned int size, struct kmem_cache_args *args, |
| slab_flags_t flags) |
| { |
| int err = -EINVAL; |
| |
| s->name = name; |
| s->size = s->object_size = size; |
| |
| s->flags = kmem_cache_flags(flags, s->name); |
| #ifdef CONFIG_SLAB_FREELIST_HARDENED |
| s->random = get_random_long(); |
| #endif |
| s->align = args->align; |
| s->ctor = args->ctor; |
| #ifdef CONFIG_HARDENED_USERCOPY |
| s->useroffset = args->useroffset; |
| s->usersize = args->usersize; |
| #endif |
| |
| if (!calculate_sizes(args, s)) |
| goto out; |
| if (disable_higher_order_debug) { |
| /* |
| * Disable debugging flags that store metadata if the min slab |
| * order increased. |
| */ |
| if (get_order(s->size) > get_order(s->object_size)) { |
| s->flags &= ~DEBUG_METADATA_FLAGS; |
| s->offset = 0; |
| if (!calculate_sizes(args, s)) |
| goto out; |
| } |
| } |
| |
| #ifdef system_has_freelist_aba |
| if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) { |
| /* Enable fast mode */ |
| s->flags |= __CMPXCHG_DOUBLE; |
| } |
| #endif |
| |
| /* |
| * The larger the object size is, the more slabs we want on the partial |
| * list to avoid pounding the page allocator excessively. |
| */ |
| s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2); |
| s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial); |
| |
| set_cpu_partial(s); |
| |
| #ifdef CONFIG_NUMA |
| s->remote_node_defrag_ratio = 1000; |
| #endif |
| |
| /* Initialize the pre-computed randomized freelist if slab is up */ |
| if (slab_state >= UP) { |
| if (init_cache_random_seq(s)) |
| goto out; |
| } |
| |
| if (!init_kmem_cache_nodes(s)) |
| goto out; |
| |
| if (!alloc_kmem_cache_cpus(s)) |
| goto out; |
| |
| /* Mutex is not taken during early boot */ |
| if (slab_state <= UP) { |
| err = 0; |
| goto out; |
| } |
| |
| err = sysfs_slab_add(s); |
| if (err) |
| goto out; |
| |
| if (s->flags & SLAB_STORE_USER) |
| debugfs_slab_add(s); |
| |
| out: |
| if (err) |
| __kmem_cache_release(s); |
| return err; |
| } |
| |
| #ifdef SLAB_SUPPORTS_SYSFS |
| static int count_inuse(struct slab *slab) |
| { |
| return slab->inuse; |
| } |
| |
| static int count_total(struct slab *slab) |
| { |
| return slab->objects; |
| } |
| #endif |
| |
| #ifdef CONFIG_SLUB_DEBUG |
| static void validate_slab(struct kmem_cache *s, struct slab *slab, |
| unsigned long *obj_map) |
| { |
| void *p; |
| void *addr = slab_address(slab); |
| |
| if (!check_slab(s, slab) || !on_freelist(s, slab, NULL)) |
| return; |
| |
| /* Now we know that a valid freelist exists */ |
| __fill_map(obj_map, s, slab); |
| for_each_object(p, s, addr, slab->objects) { |
| u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ? |
| SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; |
| |
| if (!check_object(s, slab, p, val)) |
| break; |
| } |
| } |
| |
| static int validate_slab_node(struct kmem_cache *s, |
| struct kmem_cache_node *n, unsigned long *obj_map) |
| { |
| unsigned long count = 0; |
| struct slab *slab; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&n->list_lock, flags); |
| |
| list_for_each_entry(slab, &n->partial, slab_list) { |
| validate_slab(s, slab, obj_map); |
| count++; |
| } |
| if (count != n->nr_partial) { |
| pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", |
| s->name, count, n->nr_partial); |
| slab_add_kunit_errors(); |
| } |
| |
| if (!(s->flags & SLAB_STORE_USER)) |
| goto out; |
| |
| list_for_each_entry(slab, &n->full, slab_list) { |
| validate_slab(s, slab, obj_map); |
| count++; |
| } |
| if (count != node_nr_slabs(n)) { |
| pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", |
| s->name, count, node_nr_slabs(n)); |
| slab_add_kunit_errors(); |
| } |
| |
| out: |
| spin_unlock_irqrestore(&n->list_lock, flags); |
| return count; |
| } |
| |
| long validate_slab_cache(struct kmem_cache *s) |
| { |
| int node; |
| unsigned long count = 0; |
| struct kmem_cache_node *n; |
| unsigned long *obj_map; |
| |
| obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); |
| if (!obj_map) |
| return -ENOMEM; |
| |
| flush_all(s); |
| for_each_kmem_cache_node(s, node, n) |
| count += validate_slab_node(s, n, obj_map); |
| |
| bitmap_free(obj_map); |
| |
| return count; |
| } |
| EXPORT_SYMBOL(validate_slab_cache); |
| |
| #ifdef CONFIG_DEBUG_FS |
| /* |
| * Generate lists of code addresses where slabcache objects are allocated |
| * and freed. |
| */ |
| |
| struct location { |
| depot_stack_handle_t handle; |
| unsigned long count; |
| unsigned long addr; |
| unsigned long waste; |
| long long sum_time; |
| long min_time; |
| long max_time; |
| long min_pid; |
| long max_pid; |
| DECLARE_BITMAP(cpus, NR_CPUS); |
| nodemask_t nodes; |
| }; |
| |
| struct loc_track { |
| unsigned long max; |
| unsigned long count; |
| struct location *loc; |
| loff_t idx; |
| }; |
| |
| static struct dentry *slab_debugfs_root; |
| |
| static void free_loc_track(struct loc_track *t) |
| { |
| if (t->max) |
| free_pages((unsigned long)t->loc, |
| get_order(sizeof(struct location) * t->max)); |
| } |
| |
| static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) |
| { |
| struct location *l; |
| int order; |
| |
| order = get_order(sizeof(struct location) * max); |
| |
| l = (void *)__get_free_pages(flags, order); |
| if (!l) |
| return 0; |
| |
| if (t->count) { |
| memcpy(l, t->loc, sizeof(struct location) * t->count); |
| free_loc_track(t); |
| } |
| t->max = max; |
| t->loc = l; |
| return 1; |
| } |
| |
| static int add_location(struct loc_track *t, struct kmem_cache *s, |
| const struct track *track, |
| unsigned int orig_size) |
| { |
| long start, end, pos; |
| struct location *l; |
| unsigned long caddr, chandle, cwaste; |
| unsigned long age = jiffies - track->when; |
| depot_stack_handle_t handle = 0; |
| unsigned int waste = s->object_size - orig_size; |
| |
| #ifdef CONFIG_STACKDEPOT |
| handle = READ_ONCE(track->handle); |
| #endif |
| start = -1; |
| end = t->count; |
| |
| for ( ; ; ) { |
| pos = start + (end - start + 1) / 2; |
| |
| /* |
| * There is nothing at "end". If we end up there |
| * we need to add something to before end. |
| */ |
| if (pos == end) |
| break; |
| |
| l = &t->loc[pos]; |
| caddr = l->addr; |
| chandle = l->handle; |
| cwaste = l->waste; |
| if ((track->addr == caddr) && (handle == chandle) && |
| (waste == cwaste)) { |
| |
| l->count++; |
| if (track->when) { |
| l->sum_time += age; |
| if (age < l->min_time) |
| l->min_time = age; |
| if (age > l->max_time) |
| l->max_time = age; |
| |
| if (track->pid < l->min_pid) |
| l->min_pid = track->pid; |
| if (track->pid > l->max_pid) |
| l->max_pid = track->pid; |
| |
| cpumask_set_cpu(track->cpu, |
| to_cpumask(l->cpus)); |
| } |
| node_set(page_to_nid(virt_to_page(track)), l->nodes); |
| return 1; |
| } |
| |
| if (track->addr < caddr) |
| end = pos; |
| else if (track->addr == caddr && handle < chandle) |
| end = pos; |
| else if (track->addr == caddr && handle == chandle && |
| waste < cwaste) |
| end = pos; |
| else |
| start = pos; |
| } |
| |
| /* |
| * Not found. Insert new tracking element. |
| */ |
| if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) |
| return 0; |
| |
| l = t->loc + pos; |
| if (pos < t->count) |
| memmove(l + 1, l, |
| (t->count - pos) * sizeof(struct location)); |
| t->count++; |
| l->count = 1; |
| l->addr = track->addr; |
| l->sum_time = age; |
| l->min_time = age; |
| l->max_time = age; |
| l->min_pid = track->pid; |
| l->max_pid = track->pid; |
| l->handle = handle; |
| l->waste = waste; |
| cpumask_clear(to_cpumask(l->cpus)); |
| cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); |
| nodes_clear(l->nodes); |
| node_set(page_to_nid(virt_to_page(track)), l->nodes); |
| return 1; |
| } |
| |
| static void process_slab(struct loc_track *t, struct kmem_cache *s, |
| struct slab *slab, enum track_item alloc, |
| unsigned long *obj_map) |
| { |
| void *addr = slab_address(slab); |
| bool is_alloc = (alloc == TRACK_ALLOC); |
| void *p; |
| |
| __fill_map(obj_map, s, slab); |
| |
| for_each_object(p, s, addr, slab->objects) |
| if (!test_bit(__obj_to_index(s, addr, p), obj_map)) |
| add_location(t, s, get_track(s, p, alloc), |
| is_alloc ? get_orig_size(s, p) : |
| s->object_size); |
| } |
| #endif /* CONFIG_DEBUG_FS */ |
| #endif /* CONFIG_SLUB_DEBUG */ |
| |
| #ifdef SLAB_SUPPORTS_SYSFS |
| enum slab_stat_type { |
| SL_ALL, /* All slabs */ |
| SL_PARTIAL, /* Only partially allocated slabs */ |
| SL_CPU, /* Only slabs used for cpu caches */ |
| SL_OBJECTS, /* Determine allocated objects not slabs */ |
| SL_TOTAL /* Determine object capacity not slabs */ |
| }; |
| |
| #define SO_ALL (1 << SL_ALL) |
| #define SO_PARTIAL (1 << SL_PARTIAL) |
| #define SO_CPU (1 << SL_CPU) |
| #define SO_OBJECTS (1 << SL_OBJECTS) |
| #define SO_TOTAL (1 << SL_TOTAL) |
| |
| static ssize_t show_slab_objects(struct kmem_cache *s, |
| char *buf, unsigned long flags) |
| { |
| unsigned long total = 0; |
| int node; |
| int x; |
| unsigned long *nodes; |
| int len = 0; |
| |
| nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); |
| if (!nodes) |
| return -ENOMEM; |
| |
| if (flags & SO_CPU) { |
| int cpu; |
| |
| for_each_possible_cpu(cpu) { |
| struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, |
| cpu); |
| int node; |
| struct slab *slab; |
| |
| slab = READ_ONCE(c->slab); |
| if (!slab) |
| continue; |
| |
| node = slab_nid(slab); |
| if (flags & SO_TOTAL) |
| x = slab->objects; |
| else if (flags & SO_OBJECTS) |
| x = slab->inuse; |
| else |
| x = 1; |
| |
| total += x; |
| nodes[node] += x; |
| |
| #ifdef CONFIG_SLUB_CPU_PARTIAL |
| slab = slub_percpu_partial_read_once(c); |
| if (slab) { |
| node = slab_nid(slab); |
| if (flags & SO_TOTAL) |
| WARN_ON_ONCE(1); |
| else if (flags & SO_OBJECTS) |
| WARN_ON_ONCE(1); |
| else |
| x = data_race(slab->slabs); |
| total += x; |
| nodes[node] += x; |
| } |
| #endif |
| } |
| } |
| |
| /* |
| * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" |
| * already held which will conflict with an existing lock order: |
| * |
| * mem_hotplug_lock->slab_mutex->kernfs_mutex |
| * |
| * We don't really need mem_hotplug_lock (to hold off |
| * slab_mem_going_offline_callback) here because slab's memory hot |
| * unplug code doesn't destroy the kmem_cache->node[] data. |
| */ |
| |
| #ifdef CONFIG_SLUB_DEBUG |
| if (flags & SO_ALL) { |
| struct kmem_cache_node *n; |
| |
| for_each_kmem_cache_node(s, node, n) { |
| |
| if (flags & SO_TOTAL) |
| x = node_nr_objs(n); |
| else if (flags & SO_OBJECTS) |
| x = node_nr_objs(n) - count_partial(n, count_free); |
| else |
| x = node_nr_slabs(n); |
| total += x; |
| nodes[node] += x; |
| } |
| |
| } else |
| #endif |
| if (flags & SO_PARTIAL) { |
| struct kmem_cache_node *n; |
| |
| for_each_kmem_cache_node(s, node, n) { |
| if (flags & SO_TOTAL) |
| x = count_partial(n, count_total); |
| else if (flags & SO_OBJECTS) |
| x = count_partial(n, count_inuse); |
| else |
| x = n->nr_partial; |
| total += x; |
| nodes[node] += x; |
| } |
| } |
| |
| len += sysfs_emit_at(buf, len, "%lu", total); |
| #ifdef CONFIG_NUMA |
| for (node = 0; node < nr_node_ids; node++) { |
| if (nodes[node]) |
| len += sysfs_emit_at(buf, len, " N%d=%lu", |
| node, nodes[node]); |
| } |
| #endif |
| len += sysfs_emit_at(buf, len, "\n"); |
| kfree(nodes); |
| |
| return len; |
| } |
| |
| #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) |
| #define to_slab(n) container_of(n, struct kmem_cache, kobj) |
| |
| struct slab_attribute { |
| struct attribute attr; |
| ssize_t (*show)(struct kmem_cache *s, char *buf); |
| ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); |
| }; |
| |
| #define SLAB_ATTR_RO(_name) \ |
| static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400) |
| |
| #define SLAB_ATTR(_name) \ |
| static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600) |
| |
| static ssize_t slab_size_show(struct kmem_cache *s, char *buf) |
| { |
| return sysfs_emit(buf, "%u\n", s->size); |
| } |
| SLAB_ATTR_RO(slab_size); |
| |
| static ssize_t align_show(struct kmem_cache *s, char *buf) |
| { |
| return sysfs_emit(buf, "%u\n", s->align); |
| } |
| SLAB_ATTR_RO(align); |
| |
| static ssize_t object_size_show(struct kmem_cache *s, char *buf) |
| { |
| return sysfs_emit(buf, "%u\n", s->object_size); |
| } |
| SLAB_ATTR_RO(object_size); |
| |
| static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) |
| { |
| return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); |
| } |
| SLAB_ATTR_RO(objs_per_slab); |
| |
| static ssize_t order_show(struct kmem_cache *s, char *buf) |
| { |
| return sysfs_emit(buf, "%u\n", oo_order(s->oo)); |
| } |
| SLAB_ATTR_RO(order); |
| |
| static ssize_t min_partial_show(struct kmem_cache *s, char *buf) |
| { |
| return sysfs_emit(buf, "%lu\n", s->min_partial); |
| } |
| |
| static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, |
| size_t length) |
| { |
| unsigned long min; |
| int err; |
| |
| err = kstrtoul(buf, 10, &min); |
| if (err) |
| return err; |
| |
| s->min_partial = min; |
| return length; |
| } |
| SLAB_ATTR(min_partial); |
| |
| static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) |
| { |
| unsigned int nr_partial = 0; |
| #ifdef CONFIG_SLUB_CPU_PARTIAL |
| nr_partial = s->cpu_partial; |
| #endif |
| |
| return sysfs_emit(buf, "%u\n", nr_partial); |
| } |
| |
| static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, |
| size_t length) |
| { |
| unsigned int objects; |
| int err; |
| |
| err = kstrtouint(buf, 10, &objects); |
| if (err) |
| return err; |
| if (objects && !kmem_cache_has_cpu_partial(s)) |
| return -EINVAL; |
| |
| slub_set_cpu_partial(s, objects); |
| flush_all(s); |
| return length; |
| } |
| SLAB_ATTR(cpu_partial); |
| |
| static ssize_t ctor_show(struct kmem_cache *s, char *buf) |
| { |
| if (!s->ctor) |
| return 0; |
| return sysfs_emit(buf, "%pS\n", s->ctor); |
| } |
| SLAB_ATTR_RO(ctor); |
| |
| static ssize_t aliases_show(struct kmem_cache *s, char *buf) |
| { |
| return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); |
| } |
| SLAB_ATTR_RO(aliases); |
| |
| static ssize_t partial_show(struct kmem_cache *s, char *buf) |
| { |
| return show_slab_objects(s, buf, SO_PARTIAL); |
| } |
| SLAB_ATTR_RO(partial); |
| |
| static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) |
| { |
| return show_slab_objects(s, buf, SO_CPU); |
| } |
| SLAB_ATTR_RO(cpu_slabs); |
| |
| static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) |
| { |
| return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); |
| } |
| SLAB_ATTR_RO(objects_partial); |
| |
| static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) |
| { |
| int objects = 0; |
| int slabs = 0; |
| int cpu __maybe_unused; |
| int len = 0; |
| |
| #ifdef CONFIG_SLUB_CPU_PARTIAL |
| for_each_online_cpu(cpu) { |
| struct slab *slab; |
| |
| slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); |
| |
| if (slab) |
| slabs += data_race(slab->slabs); |
| } |
| #endif |
| |
| /* Approximate half-full slabs, see slub_set_cpu_partial() */ |
| objects = (slabs * oo_objects(s->oo)) / 2; |
| len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs); |
| |
| #ifdef CONFIG_SLUB_CPU_PARTIAL |
| for_each_online_cpu(cpu) { |
| struct slab *slab; |
| |
| slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); |
| if (slab) { |
| slabs = data_race(slab->slabs); |
| objects = (slabs * oo_objects(s->oo)) / 2; |
| len += sysfs_emit_at(buf, len, " C%d=%d(%d)", |
| cpu, objects, slabs); |
| } |
| } |
| #endif |
| len += sysfs_emit_at(buf, len, "\n"); |
| |
| return len; |
| } |
| SLAB_ATTR_RO(slabs_cpu_partial); |
| |
| static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) |
| { |
| return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); |
| } |
| SLAB_ATTR_RO(reclaim_account); |
| |
| static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) |
| { |
| return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); |
| } |
| SLAB_ATTR_RO(hwcache_align); |
| |
| #ifdef CONFIG_ZONE_DMA |
| static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) |
| { |
| return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); |
| } |
| SLAB_ATTR_RO(cache_dma); |
| #endif |
| |
| #ifdef CONFIG_HARDENED_USERCOPY |
| static ssize_t usersize_show(struct kmem_cache *s, char *buf) |
| { |
| return sysfs_emit(buf, "%u\n", s->usersize); |
| } |
| SLAB_ATTR_RO(usersize); |
| #endif |
| |
| static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) |
| { |
| return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); |
| } |
| SLAB_ATTR_RO(destroy_by_rcu); |
| |
| #ifdef CONFIG_SLUB_DEBUG |
| static ssize_t slabs_show(struct kmem_cache *s, char *buf) |
| { |
| return show_slab_objects(s, buf, SO_ALL); |
| } |
| SLAB_ATTR_RO(slabs); |
| |
| static ssize_t total_objects_show(struct kmem_cache *s, char *buf) |
| { |
| return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); |
| } |
| SLAB_ATTR_RO(total_objects); |
| |
| static ssize_t objects_show(struct kmem_cache *s, char *buf) |
| { |
| return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); |
| } |
| SLAB_ATTR_RO(objects); |
| |
| static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) |
| { |
| return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); |
| } |
| SLAB_ATTR_RO(sanity_checks); |
| |
| static ssize_t trace_show(struct kmem_cache *s, char *buf) |
| { |
| return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); |
| } |
| SLAB_ATTR_RO(trace); |
| |
| static ssize_t red_zone_show(struct kmem_cache *s, char *buf) |
| { |
| return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); |
| } |
| |
| SLAB_ATTR_RO(red_zone); |
| |
| static ssize_t poison_show(struct kmem_cache *s, char *buf) |
| { |
| return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); |
| } |
| |
| SLAB_ATTR_RO(poison); |
| |
| static ssize_t store_user_show(struct kmem_cache *s, char *buf) |
| { |
| return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); |
| } |
| |
| SLAB_ATTR_RO(store_user); |
| |
| static ssize_t validate_show(struct kmem_cache *s, char *buf) |
| { |
| return 0; |
| } |
| |
| static ssize_t validate_store(struct kmem_cache *s, |
| const char *buf, size_t length) |
| { |
| int ret = -EINVAL; |
| |
| if (buf[0] == '1' && kmem_cache_debug(s)) { |
| ret = validate_slab_cache(s); |
| if (ret >= 0) |
| ret = length; |
| } |
| return ret; |
| } |
| SLAB_ATTR(validate); |
| |
| #endif /* CONFIG_SLUB_DEBUG */ |
| |
| #ifdef CONFIG_FAILSLAB |
| static ssize_t failslab_show(struct kmem_cache *s, char *buf) |
| { |
| return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); |
| } |
| |
| static ssize_t failslab_store(struct kmem_cache *s, const char *buf, |
| size_t length) |
| { |
| if (s->refcount > 1) |
| return -EINVAL; |
| |
| if (buf[0] == '1') |
| WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB); |
| else |
| WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB); |
| |
| return length; |
| } |
| SLAB_ATTR(failslab); |
| #endif |
| |
| static ssize_t shrink_show(struct kmem_cache *s, char *buf) |
| { |
| return 0; |
| } |
| |
| static ssize_t shrink_store(struct kmem_cache *s, |
| const char *buf, size_t length) |
| { |
| if (buf[0] == '1') |
| kmem_cache_shrink(s); |
| else |
| return -EINVAL; |
| return length; |
| } |
| SLAB_ATTR(shrink); |
| |
| #ifdef CONFIG_NUMA |
| static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) |
| { |
| return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); |
| } |
| |
| static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, |
| const char *buf, size_t length) |
| { |
| unsigned int ratio; |
| int err; |
| |
| err = kstrtouint(buf, 10, &ratio); |
| if (err) |
| return err; |
| if (ratio > 100) |
| return -ERANGE; |
| |
| s->remote_node_defrag_ratio = ratio * 10; |
| |
| return length; |
| } |
| SLAB_ATTR(remote_node_defrag_ratio); |
| #endif |
| |
| #ifdef CONFIG_SLUB_STATS |
| static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) |
| { |
| unsigned long sum = 0; |
| int cpu; |
| int len = 0; |
| int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); |
| |
| if (!data) |
| return -ENOMEM; |
| |
| for_each_online_cpu(cpu) { |
| unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; |
| |
| data[cpu] = x; |
| sum += x; |
| } |
| |
| len += sysfs_emit_at(buf, len, "%lu", sum); |
| |
| #ifdef CONFIG_SMP |
| for_each_online_cpu(cpu) { |
| if (data[cpu]) |
| len += sysfs_emit_at(buf, len, " C%d=%u", |
| cpu, data[cpu]); |
| } |
| #endif |
| kfree(data); |
| len += sysfs_emit_at(buf, len, "\n"); |
| |
| return len; |
| } |
| |
| static void clear_stat(struct kmem_cache *s, enum stat_item si) |
| { |
| int cpu; |
| |
| for_each_online_cpu(cpu) |
| per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; |
| } |
| |
| #define STAT_ATTR(si, text) \ |
| static ssize_t text##_show(struct kmem_cache *s, char *buf) \ |
| { \ |
| return show_stat(s, buf, si); \ |
| } \ |
| static ssize_t text##_store(struct kmem_cache *s, \ |
| const char *buf, size_t length) \ |
| { \ |
| if (buf[0] != '0') \ |
| return -EINVAL; \ |
| clear_stat(s, si); \ |
| return length; \ |
| } \ |
| SLAB_ATTR(text); \ |
| |
| STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); |
| STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); |
| STAT_ATTR(FREE_FASTPATH, free_fastpath); |
| STAT_ATTR(FREE_SLOWPATH, free_slowpath); |
| STAT_ATTR(FREE_FROZEN, free_frozen); |
| STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); |
| STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); |
| STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); |
| STAT_ATTR(ALLOC_SLAB, alloc_slab); |
| STAT_ATTR(ALLOC_REFILL, alloc_refill); |
| STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); |
| STAT_ATTR(FREE_SLAB, free_slab); |
| STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); |
| STAT_ATTR(DEACTIVATE_FULL, deactivate_full); |
| STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); |
| STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); |
| STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); |
| STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); |
| STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); |
| STAT_ATTR(ORDER_FALLBACK, order_fallback); |
| STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); |
| STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); |
| STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); |
| STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); |
| STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); |
| STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); |
| #endif /* CONFIG_SLUB_STATS */ |
| |
| #ifdef CONFIG_KFENCE |
| static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf) |
| { |
| return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE)); |
| } |
| |
| static ssize_t skip_kfence_store(struct kmem_cache *s, |
| const char *buf, size_t length) |
| { |
| int ret = length; |
| |
| if (buf[0] == '0') |
| s->flags &= ~SLAB_SKIP_KFENCE; |
| else if (buf[0] == '1') |
| s->flags |= SLAB_SKIP_KFENCE; |
| else |
| ret = -EINVAL; |
| |
| return ret; |
| } |
| SLAB_ATTR(skip_kfence); |
| #endif |
| |
| static struct attribute *slab_attrs[] = { |
| &slab_size_attr.attr, |
| &object_size_attr.attr, |
| &objs_per_slab_attr.attr, |
| &order_attr.attr, |
| &min_partial_attr.attr, |
| &cpu_partial_attr.attr, |
| &objects_partial_attr.attr, |
| &partial_attr.attr, |
| &cpu_slabs_attr.attr, |
| &ctor_attr.attr, |
| &aliases_attr.attr, |
| &align_attr.attr, |
| &hwcache_align_attr.attr, |
| &reclaim_account_attr.attr, |
| &destroy_by_rcu_attr.attr, |
| &shrink_attr.attr, |
| &slabs_cpu_partial_attr.attr, |
| #ifdef CONFIG_SLUB_DEBUG |
| &total_objects_attr.attr, |
| &objects_attr.attr, |
| &slabs_attr.attr, |
| &sanity_checks_attr.attr, |
| &trace_attr.attr, |
| &red_zone_attr.attr, |
| &poison_attr.attr, |
| &store_user_attr.attr, |
| &validate_attr.attr, |
| #endif |
| #ifdef CONFIG_ZONE_DMA |
| &cache_dma_attr.attr, |
| #endif |
| #ifdef CONFIG_NUMA |
| &remote_node_defrag_ratio_attr.attr, |
| #endif |
| #ifdef CONFIG_SLUB_STATS |
| &alloc_fastpath_attr.attr, |
| &alloc_slowpath_attr.attr, |
| &free_fastpath_attr.attr, |
| &free_slowpath_attr.attr, |
| &free_frozen_attr.attr, |
| &free_add_partial_attr.attr, |
| &free_remove_partial_attr.attr, |
| &alloc_from_partial_attr.attr, |
| &alloc_slab_attr.attr, |
| &alloc_refill_attr.attr, |
| &alloc_node_mismatch_attr.attr, |
| &free_slab_attr.attr, |
| &cpuslab_flush_attr.attr, |
| &deactivate_full_attr.attr, |
| &deactivate_empty_attr.attr, |
| &deactivate_to_head_attr.attr, |
| &deactivate_to_tail_attr.attr, |
| &deactivate_remote_frees_attr.attr, |
| &deactivate_bypass_attr.attr, |
| &order_fallback_attr.attr, |
| &cmpxchg_double_fail_attr.attr, |
| &cmpxchg_double_cpu_fail_attr.attr, |
| &cpu_partial_alloc_attr.attr, |
| &cpu_partial_free_attr.attr, |
| &cpu_partial_node_attr.attr, |
| &cpu_partial_drain_attr.attr, |
| #endif |
| #ifdef CONFIG_FAILSLAB |
| &failslab_attr.attr, |
| #endif |
| #ifdef CONFIG_HARDENED_USERCOPY |
| &usersize_attr.attr, |
| #endif |
| #ifdef CONFIG_KFENCE |
| &skip_kfence_attr.attr, |
| #endif |
| |
| NULL |
| }; |
| |
| static const struct attribute_group slab_attr_group = { |
| .attrs = slab_attrs, |
| }; |
| |
| static ssize_t slab_attr_show(struct kobject *kobj, |
| struct attribute *attr, |
| char *buf) |
| { |
| struct slab_attribute *attribute; |
| struct kmem_cache *s; |
| |
| attribute = to_slab_attr(attr); |
| s = to_slab(kobj); |
| |
| if (!attribute->show) |
| return -EIO; |
| |
| return attribute->show(s, buf); |
| } |
| |
| static ssize_t slab_attr_store(struct kobject *kobj, |
| struct attribute *attr, |
| const char *buf, size_t len) |
| { |
| struct slab_attribute *attribute; |
| struct kmem_cache *s; |
| |
| attribute = to_slab_attr(attr); |
| s = to_slab(kobj); |
| |
| if (!attribute->store) |
| return -EIO; |
| |
| return attribute->store(s, buf, len); |
| } |
| |
| static void kmem_cache_release(struct kobject *k) |
| { |
| slab_kmem_cache_release(to_slab(k)); |
| } |
| |
| static const struct sysfs_ops slab_sysfs_ops = { |
| .show = slab_attr_show, |
| .store = slab_attr_store, |
| }; |
| |
| static const struct kobj_type slab_ktype = { |
| .sysfs_ops = &slab_sysfs_ops, |
| .release = kmem_cache_release, |
| }; |
| |
| static struct kset *slab_kset; |
| |
| static inline struct kset *cache_kset(struct kmem_cache *s) |
| { |
| return slab_kset; |
| } |
| |
| #define ID_STR_LENGTH 32 |
| |
| /* Create a unique string id for a slab cache: |
| * |
| * Format :[flags-]size |
| */ |
| static char *create_unique_id(struct kmem_cache *s) |
| { |
| char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); |
| char *p = name; |
| |
| if (!name) |
| return ERR_PTR(-ENOMEM); |
| |
| *p++ = ':'; |
| /* |
| * First flags affecting slabcache operations. We will only |
| * get here for aliasable slabs so we do not need to support |
| * too many flags. The flags here must cover all flags that |
| * are matched during merging to guarantee that the id is |
| * unique. |
| */ |
| if (s->flags & SLAB_CACHE_DMA) |
| *p++ = 'd'; |
| if (s->flags & SLAB_CACHE_DMA32) |
| *p++ = 'D'; |
| if (s->flags & SLAB_RECLAIM_ACCOUNT) |
| *p++ = 'a'; |
| if (s->flags & SLAB_CONSISTENCY_CHECKS) |
| *p++ = 'F'; |
| if (s->flags & SLAB_ACCOUNT) |
| *p++ = 'A'; |
| if (p != name + 1) |
| *p++ = '-'; |
| p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size); |
| |
| if (WARN_ON(p > name + ID_STR_LENGTH - 1)) { |
| kfree(name); |
| return ERR_PTR(-EINVAL); |
| } |
| kmsan_unpoison_memory(name, p - name); |
| return name; |
| } |
| |
| static int sysfs_slab_add(struct kmem_cache *s) |
| { |
| int err; |
| const char *name; |
| struct kset *kset = cache_kset(s); |
| int unmergeable = slab_unmergeable(s); |
| |
| if (!unmergeable && disable_higher_order_debug && |
| (slub_debug & DEBUG_METADATA_FLAGS)) |
| unmergeable = 1; |
| |
| if (unmergeable) { |
| /* |
| * Slabcache can never be merged so we can use the name proper. |
| * This is typically the case for debug situations. In that |
| * case we can catch duplicate names easily. |
| */ |
| sysfs_remove_link(&slab_kset->kobj, s->name); |
| name = s->name; |
| } else { |
| /* |
| * Create a unique name for the slab as a target |
| * for the symlinks. |
| */ |
| name = create_unique_id(s); |
| if (IS_ERR(name)) |
| return PTR_ERR(name); |
| } |
| |
| s->kobj.kset = kset; |
| err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); |
| if (err) |
| goto out; |
| |
| err = sysfs_create_group(&s->kobj, &slab_attr_group); |
| if (err) |
| goto out_del_kobj; |
| |
| if (!unmergeable) { |
| /* Setup first alias */ |
| sysfs_slab_alias(s, s->name); |
| } |
| out: |
| if (!unmergeable) |
| kfree(name); |
| return err; |
| out_del_kobj: |
| kobject_del(&s->kobj); |
| goto out; |
| } |
| |
| void sysfs_slab_unlink(struct kmem_cache *s) |
| { |
| kobject_del(&s->kobj); |
| } |
| |
| void sysfs_slab_release(struct kmem_cache *s) |
| { |
| kobject_put(&s->kobj); |
| } |
| |
| /* |
| * Need to buffer aliases during bootup until sysfs becomes |
| * available lest we lose that information. |
| */ |
| struct saved_alias { |
| struct kmem_cache *s; |
| const char *name; |
| struct saved_alias *next; |
| }; |
| |
| static struct saved_alias *alias_list; |
| |
| static int sysfs_slab_alias(struct kmem_cache *s, const char *name) |
| { |
| struct saved_alias *al; |
| |
| if (slab_state == FULL) { |
| /* |
| * If we have a leftover link then remove it. |
| */ |
| sysfs_remove_link(&slab_kset->kobj, name); |
| return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); |
| } |
| |
| al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); |
| if (!al) |
| return -ENOMEM; |
| |
| al->s = s; |
| al->name = name; |
| al->next = alias_list; |
| alias_list = al; |
| kmsan_unpoison_memory(al, sizeof(*al)); |
| return 0; |
| } |
| |
| static int __init slab_sysfs_init(void) |
| { |
| struct kmem_cache *s; |
| int err; |
| |
| mutex_lock(&slab_mutex); |
| |
| slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); |
| if (!slab_kset) { |
| mutex_unlock(&slab_mutex); |
| pr_err("Cannot register slab subsystem.\n"); |
| return -ENOMEM; |
| } |
| |
| slab_state = FULL; |
| |
| list_for_each_entry(s, &slab_caches, list) { |
| err = sysfs_slab_add(s); |
| if (err) |
| pr_err("SLUB: Unable to add boot slab %s to sysfs\n", |
| s->name); |
| } |
| |
| while (alias_list) { |
| struct saved_alias *al = alias_list; |
| |
| alias_list = alias_list->next; |
| err = sysfs_slab_alias(al->s, al->name); |
| if (err) |
| pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", |
| al->name); |
| kfree(al); |
| } |
| |
| mutex_unlock(&slab_mutex); |
| return 0; |
| } |
| late_initcall(slab_sysfs_init); |
| #endif /* SLAB_SUPPORTS_SYSFS */ |
| |
| #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS) |
| static int slab_debugfs_show(struct seq_file *seq, void *v) |
| { |
| struct loc_track *t = seq->private; |
| struct location *l; |
| unsigned long idx; |
| |
| idx = (unsigned long) t->idx; |
| if (idx < t->count) { |
| l = &t->loc[idx]; |
| |
| seq_printf(seq, "%7ld ", l->count); |
| |
| if (l->addr) |
| seq_printf(seq, "%pS", (void *)l->addr); |
| else |
| seq_puts(seq, "<not-available>"); |
| |
| if (l->waste) |
| seq_printf(seq, " waste=%lu/%lu", |
| l->count * l->waste, l->waste); |
| |
| if (l->sum_time != l->min_time) { |
| seq_printf(seq, " age=%ld/%llu/%ld", |
| l->min_time, div_u64(l->sum_time, l->count), |
| l->max_time); |
| } else |
| seq_printf(seq, " age=%ld", l->min_time); |
| |
| if (l->min_pid != l->max_pid) |
| seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid); |
| else |
| seq_printf(seq, " pid=%ld", |
| l->min_pid); |
| |
| if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus))) |
| seq_printf(seq, " cpus=%*pbl", |
| cpumask_pr_args(to_cpumask(l->cpus))); |
| |
| if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) |
| seq_printf(seq, " nodes=%*pbl", |
| nodemask_pr_args(&l->nodes)); |
| |
| #ifdef CONFIG_STACKDEPOT |
| { |
| depot_stack_handle_t handle; |
| unsigned long *entries; |
| unsigned int nr_entries, j; |
| |
| handle = READ_ONCE(l->handle); |
| if (handle) { |
| nr_entries = stack_depot_fetch(handle, &entries); |
| seq_puts(seq, "\n"); |
| for (j = 0; j < nr_entries; j++) |
| seq_printf(seq, " %pS\n", (void *)entries[j]); |
| } |
| } |
| #endif |
| seq_puts(seq, "\n"); |
| } |
| |
| if (!idx && !t->count) |
| seq_puts(seq, "No data\n"); |
| |
| return 0; |
| } |
| |
| static void slab_debugfs_stop(struct seq_file *seq, void *v) |
| { |
| } |
| |
| static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos) |
| { |
| struct loc_track *t = seq->private; |
| |
| t->idx = ++(*ppos); |
| if (*ppos <= t->count) |
| return ppos; |
| |
| return NULL; |
| } |
| |
| static int cmp_loc_by_count(const void *a, const void *b, const void *data) |
| { |
| struct location *loc1 = (struct location *)a; |
| struct location *loc2 = (struct location *)b; |
| |
| if (loc1->count > loc2->count) |
| return -1; |
| else |
| return 1; |
| } |
| |
| static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos) |
| { |
| struct loc_track *t = seq->private; |
| |
| t->idx = *ppos; |
| return ppos; |
| } |
| |
| static const struct seq_operations slab_debugfs_sops = { |
| .start = slab_debugfs_start, |
| .next = slab_debugfs_next, |
| .stop = slab_debugfs_stop, |
| .show = slab_debugfs_show, |
| }; |
| |
| static int slab_debug_trace_open(struct inode *inode, struct file *filep) |
| { |
| |
| struct kmem_cache_node *n; |
| enum track_item alloc; |
| int node; |
| struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops, |
| sizeof(struct loc_track)); |
| struct kmem_cache *s = file_inode(filep)->i_private; |
| unsigned long *obj_map; |
| |
| if (!t) |
| return -ENOMEM; |
| |
| obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); |
| if (!obj_map) { |
| seq_release_private(inode, filep); |
| return -ENOMEM; |
| } |
| |
| if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0) |
| alloc = TRACK_ALLOC; |
| else |
| alloc = TRACK_FREE; |
| |
| if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) { |
| bitmap_free(obj_map); |
| seq_release_private(inode, filep); |
| return -ENOMEM; |
| } |
| |
| for_each_kmem_cache_node(s, node, n) { |
| unsigned long flags; |
| struct slab *slab; |
| |
| if (!node_nr_slabs(n)) |
| continue; |
| |
| spin_lock_irqsave(&n->list_lock, flags); |
| list_for_each_entry(slab, &n->partial, slab_list) |
| process_slab(t, s, slab, alloc, obj_map); |
| list_for_each_entry(slab, &n->full, slab_list) |
| process_slab(t, s, slab, alloc, obj_map); |
| spin_unlock_irqrestore(&n->list_lock, flags); |
| } |
| |
| /* Sort locations by count */ |
| sort_r(t->loc, t->count, sizeof(struct location), |
| cmp_loc_by_count, NULL, NULL); |
| |
| bitmap_free(obj_map); |
| return 0; |
| } |
| |
| static int slab_debug_trace_release(struct inode *inode, struct file *file) |
| { |
| struct seq_file *seq = file->private_data; |
| struct loc_track *t = seq->private; |
| |
| free_loc_track(t); |
| return seq_release_private(inode, file); |
| } |
| |
| static const struct file_operations slab_debugfs_fops = { |
| .open = slab_debug_trace_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = slab_debug_trace_release, |
| }; |
| |
| static void debugfs_slab_add(struct kmem_cache *s) |
| { |
| struct dentry *slab_cache_dir; |
| |
| if (unlikely(!slab_debugfs_root)) |
| return; |
| |
| slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root); |
| |
| debugfs_create_file("alloc_traces", 0400, |
| slab_cache_dir, s, &slab_debugfs_fops); |
| |
| debugfs_create_file("free_traces", 0400, |
| slab_cache_dir, s, &slab_debugfs_fops); |
| } |
| |
| void debugfs_slab_release(struct kmem_cache *s) |
| { |
| debugfs_lookup_and_remove(s->name, slab_debugfs_root); |
| } |
| |
| static int __init slab_debugfs_init(void) |
| { |
| struct kmem_cache *s; |
| |
| slab_debugfs_root = debugfs_create_dir("slab", NULL); |
| |
| list_for_each_entry(s, &slab_caches, list) |
| if (s->flags & SLAB_STORE_USER) |
| debugfs_slab_add(s); |
| |
| return 0; |
| |
| } |
| __initcall(slab_debugfs_init); |
| #endif |
| /* |
| * The /proc/slabinfo ABI |
| */ |
| #ifdef CONFIG_SLUB_DEBUG |
| void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) |
| { |
| unsigned long nr_slabs = 0; |
| unsigned long nr_objs = 0; |
| unsigned long nr_free = 0; |
| int node; |
| struct kmem_cache_node *n; |
| |
| for_each_kmem_cache_node(s, node, n) { |
| nr_slabs += node_nr_slabs(n); |
| nr_objs += node_nr_objs(n); |
| nr_free += count_partial_free_approx(n); |
| } |
| |
| sinfo->active_objs = nr_objs - nr_free; |
| sinfo->num_objs = nr_objs; |
| sinfo->active_slabs = nr_slabs; |
| sinfo->num_slabs = nr_slabs; |
| sinfo->objects_per_slab = oo_objects(s->oo); |
| sinfo->cache_order = oo_order(s->oo); |
| } |
| #endif /* CONFIG_SLUB_DEBUG */ |