| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (c) 2018 Rockchip Electronics Co. Ltd. |
| * |
| * Author: Wyon Bi <bivvy.bi@rock-chips.com> |
| */ |
| |
| #include <linux/bits.h> |
| #include <linux/kernel.h> |
| #include <linux/clk.h> |
| #include <linux/iopoll.h> |
| #include <linux/clk-provider.h> |
| #include <linux/delay.h> |
| #include <linux/init.h> |
| #include <linux/mfd/syscon.h> |
| #include <linux/module.h> |
| #include <linux/of_device.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/reset.h> |
| #include <linux/time64.h> |
| |
| #include <linux/phy/phy.h> |
| #include <linux/phy/phy-mipi-dphy.h> |
| |
| #define UPDATE(x, h, l) (((x) << (l)) & GENMASK((h), (l))) |
| |
| /* |
| * The offset address[7:0] is distributed two parts, one from the bit7 to bit5 |
| * is the first address, the other from the bit4 to bit0 is the second address. |
| * when you configure the registers, you must set both of them. The Clock Lane |
| * and Data Lane use the same registers with the same second address, but the |
| * first address is different. |
| */ |
| #define FIRST_ADDRESS(x) (((x) & 0x7) << 5) |
| #define SECOND_ADDRESS(x) (((x) & 0x1f) << 0) |
| #define PHY_REG(first, second) (FIRST_ADDRESS(first) | \ |
| SECOND_ADDRESS(second)) |
| |
| /* Analog Register Part: reg00 */ |
| #define BANDGAP_POWER_MASK BIT(7) |
| #define BANDGAP_POWER_DOWN BIT(7) |
| #define BANDGAP_POWER_ON 0 |
| #define LANE_EN_MASK GENMASK(6, 2) |
| #define LANE_EN_CK BIT(6) |
| #define LANE_EN_3 BIT(5) |
| #define LANE_EN_2 BIT(4) |
| #define LANE_EN_1 BIT(3) |
| #define LANE_EN_0 BIT(2) |
| #define POWER_WORK_MASK GENMASK(1, 0) |
| #define POWER_WORK_ENABLE UPDATE(1, 1, 0) |
| #define POWER_WORK_DISABLE UPDATE(2, 1, 0) |
| /* Analog Register Part: reg01 */ |
| #define REG_SYNCRST_MASK BIT(2) |
| #define REG_SYNCRST_RESET BIT(2) |
| #define REG_SYNCRST_NORMAL 0 |
| #define REG_LDOPD_MASK BIT(1) |
| #define REG_LDOPD_POWER_DOWN BIT(1) |
| #define REG_LDOPD_POWER_ON 0 |
| #define REG_PLLPD_MASK BIT(0) |
| #define REG_PLLPD_POWER_DOWN BIT(0) |
| #define REG_PLLPD_POWER_ON 0 |
| /* Analog Register Part: reg03 */ |
| #define REG_FBDIV_HI_MASK BIT(5) |
| #define REG_FBDIV_HI(x) UPDATE((x >> 8), 5, 5) |
| #define REG_PREDIV_MASK GENMASK(4, 0) |
| #define REG_PREDIV(x) UPDATE(x, 4, 0) |
| /* Analog Register Part: reg04 */ |
| #define REG_FBDIV_LO_MASK GENMASK(7, 0) |
| #define REG_FBDIV_LO(x) UPDATE(x, 7, 0) |
| /* Analog Register Part: reg05 */ |
| #define SAMPLE_CLOCK_PHASE_MASK GENMASK(6, 4) |
| #define SAMPLE_CLOCK_PHASE(x) UPDATE(x, 6, 4) |
| #define CLOCK_LANE_SKEW_PHASE_MASK GENMASK(2, 0) |
| #define CLOCK_LANE_SKEW_PHASE(x) UPDATE(x, 2, 0) |
| /* Analog Register Part: reg06 */ |
| #define DATA_LANE_3_SKEW_PHASE_MASK GENMASK(6, 4) |
| #define DATA_LANE_3_SKEW_PHASE(x) UPDATE(x, 6, 4) |
| #define DATA_LANE_2_SKEW_PHASE_MASK GENMASK(2, 0) |
| #define DATA_LANE_2_SKEW_PHASE(x) UPDATE(x, 2, 0) |
| /* Analog Register Part: reg07 */ |
| #define DATA_LANE_1_SKEW_PHASE_MASK GENMASK(6, 4) |
| #define DATA_LANE_1_SKEW_PHASE(x) UPDATE(x, 6, 4) |
| #define DATA_LANE_0_SKEW_PHASE_MASK GENMASK(2, 0) |
| #define DATA_LANE_0_SKEW_PHASE(x) UPDATE(x, 2, 0) |
| /* Analog Register Part: reg08 */ |
| #define SAMPLE_CLOCK_DIRECTION_MASK BIT(4) |
| #define SAMPLE_CLOCK_DIRECTION_REVERSE BIT(4) |
| #define SAMPLE_CLOCK_DIRECTION_FORWARD 0 |
| /* Digital Register Part: reg00 */ |
| #define REG_DIG_RSTN_MASK BIT(0) |
| #define REG_DIG_RSTN_NORMAL BIT(0) |
| #define REG_DIG_RSTN_RESET 0 |
| /* Digital Register Part: reg01 */ |
| #define INVERT_TXCLKESC_MASK BIT(1) |
| #define INVERT_TXCLKESC_ENABLE BIT(1) |
| #define INVERT_TXCLKESC_DISABLE 0 |
| #define INVERT_TXBYTECLKHS_MASK BIT(0) |
| #define INVERT_TXBYTECLKHS_ENABLE BIT(0) |
| #define INVERT_TXBYTECLKHS_DISABLE 0 |
| /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg05 */ |
| #define T_LPX_CNT_MASK GENMASK(5, 0) |
| #define T_LPX_CNT(x) UPDATE(x, 5, 0) |
| /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg06 */ |
| #define T_HS_PREPARE_CNT_MASK GENMASK(6, 0) |
| #define T_HS_PREPARE_CNT(x) UPDATE(x, 6, 0) |
| /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg07 */ |
| #define T_HS_ZERO_CNT_MASK GENMASK(5, 0) |
| #define T_HS_ZERO_CNT(x) UPDATE(x, 5, 0) |
| /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg08 */ |
| #define T_HS_TRAIL_CNT_MASK GENMASK(6, 0) |
| #define T_HS_TRAIL_CNT(x) UPDATE(x, 6, 0) |
| /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg09 */ |
| #define T_HS_EXIT_CNT_MASK GENMASK(4, 0) |
| #define T_HS_EXIT_CNT(x) UPDATE(x, 4, 0) |
| /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0a */ |
| #define T_CLK_POST_CNT_MASK GENMASK(3, 0) |
| #define T_CLK_POST_CNT(x) UPDATE(x, 3, 0) |
| /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0c */ |
| #define LPDT_TX_PPI_SYNC_MASK BIT(2) |
| #define LPDT_TX_PPI_SYNC_ENABLE BIT(2) |
| #define LPDT_TX_PPI_SYNC_DISABLE 0 |
| #define T_WAKEUP_CNT_HI_MASK GENMASK(1, 0) |
| #define T_WAKEUP_CNT_HI(x) UPDATE(x, 1, 0) |
| /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0d */ |
| #define T_WAKEUP_CNT_LO_MASK GENMASK(7, 0) |
| #define T_WAKEUP_CNT_LO(x) UPDATE(x, 7, 0) |
| /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0e */ |
| #define T_CLK_PRE_CNT_MASK GENMASK(3, 0) |
| #define T_CLK_PRE_CNT(x) UPDATE(x, 3, 0) |
| /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg10 */ |
| #define T_TA_GO_CNT_MASK GENMASK(5, 0) |
| #define T_TA_GO_CNT(x) UPDATE(x, 5, 0) |
| /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg11 */ |
| #define T_TA_SURE_CNT_MASK GENMASK(5, 0) |
| #define T_TA_SURE_CNT(x) UPDATE(x, 5, 0) |
| /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg12 */ |
| #define T_TA_WAIT_CNT_MASK GENMASK(5, 0) |
| #define T_TA_WAIT_CNT(x) UPDATE(x, 5, 0) |
| /* LVDS Register Part: reg00 */ |
| #define LVDS_DIGITAL_INTERNAL_RESET_MASK BIT(2) |
| #define LVDS_DIGITAL_INTERNAL_RESET_DISABLE BIT(2) |
| #define LVDS_DIGITAL_INTERNAL_RESET_ENABLE 0 |
| /* LVDS Register Part: reg01 */ |
| #define LVDS_DIGITAL_INTERNAL_ENABLE_MASK BIT(7) |
| #define LVDS_DIGITAL_INTERNAL_ENABLE BIT(7) |
| #define LVDS_DIGITAL_INTERNAL_DISABLE 0 |
| /* LVDS Register Part: reg03 */ |
| #define MODE_ENABLE_MASK GENMASK(2, 0) |
| #define TTL_MODE_ENABLE BIT(2) |
| #define LVDS_MODE_ENABLE BIT(1) |
| #define MIPI_MODE_ENABLE BIT(0) |
| /* LVDS Register Part: reg0b */ |
| #define LVDS_LANE_EN_MASK GENMASK(7, 3) |
| #define LVDS_DATA_LANE0_EN BIT(7) |
| #define LVDS_DATA_LANE1_EN BIT(6) |
| #define LVDS_DATA_LANE2_EN BIT(5) |
| #define LVDS_DATA_LANE3_EN BIT(4) |
| #define LVDS_CLK_LANE_EN BIT(3) |
| #define LVDS_PLL_POWER_MASK BIT(2) |
| #define LVDS_PLL_POWER_OFF BIT(2) |
| #define LVDS_PLL_POWER_ON 0 |
| #define LVDS_BANDGAP_POWER_MASK BIT(0) |
| #define LVDS_BANDGAP_POWER_DOWN BIT(0) |
| #define LVDS_BANDGAP_POWER_ON 0 |
| |
| #define DSI_PHY_RSTZ 0xa0 |
| #define PHY_ENABLECLK BIT(2) |
| #define DSI_PHY_STATUS 0xb0 |
| #define PHY_LOCK BIT(0) |
| |
| struct inno_dsidphy { |
| struct device *dev; |
| struct clk *ref_clk; |
| struct clk *pclk_phy; |
| struct clk *pclk_host; |
| void __iomem *phy_base; |
| void __iomem *host_base; |
| struct reset_control *rst; |
| enum phy_mode mode; |
| struct phy_configure_opts_mipi_dphy dphy_cfg; |
| |
| struct clk *pll_clk; |
| struct { |
| struct clk_hw hw; |
| u8 prediv; |
| u16 fbdiv; |
| unsigned long rate; |
| } pll; |
| }; |
| |
| enum { |
| REGISTER_PART_ANALOG, |
| REGISTER_PART_DIGITAL, |
| REGISTER_PART_CLOCK_LANE, |
| REGISTER_PART_DATA0_LANE, |
| REGISTER_PART_DATA1_LANE, |
| REGISTER_PART_DATA2_LANE, |
| REGISTER_PART_DATA3_LANE, |
| REGISTER_PART_LVDS, |
| }; |
| |
| static inline struct inno_dsidphy *hw_to_inno(struct clk_hw *hw) |
| { |
| return container_of(hw, struct inno_dsidphy, pll.hw); |
| } |
| |
| static void phy_update_bits(struct inno_dsidphy *inno, |
| u8 first, u8 second, u8 mask, u8 val) |
| { |
| u32 reg = PHY_REG(first, second) << 2; |
| unsigned int tmp, orig; |
| |
| orig = readl(inno->phy_base + reg); |
| tmp = orig & ~mask; |
| tmp |= val & mask; |
| writel(tmp, inno->phy_base + reg); |
| } |
| |
| static unsigned long inno_dsidphy_pll_calc_rate(struct inno_dsidphy *inno, |
| unsigned long rate) |
| { |
| unsigned long prate = clk_get_rate(inno->ref_clk); |
| unsigned long best_freq = 0; |
| unsigned long fref, fout; |
| u8 min_prediv, max_prediv; |
| u8 _prediv, best_prediv = 1; |
| u16 _fbdiv, best_fbdiv = 1; |
| u32 min_delta = UINT_MAX; |
| |
| /* |
| * The PLL output frequency can be calculated using a simple formula: |
| * PLL_Output_Frequency = (FREF / PREDIV * FBDIV) / 2 |
| * PLL_Output_Frequency: it is equal to DDR-Clock-Frequency * 2 |
| */ |
| fref = prate / 2; |
| if (rate > 1000000000UL) |
| fout = 1000000000UL; |
| else |
| fout = rate; |
| |
| /* 5Mhz < Fref / prediv < 40MHz */ |
| min_prediv = DIV_ROUND_UP(fref, 40000000); |
| max_prediv = fref / 5000000; |
| |
| for (_prediv = min_prediv; _prediv <= max_prediv; _prediv++) { |
| u64 tmp; |
| u32 delta; |
| |
| tmp = (u64)fout * _prediv; |
| do_div(tmp, fref); |
| _fbdiv = tmp; |
| |
| /* |
| * The possible settings of feedback divider are |
| * 12, 13, 14, 16, ~ 511 |
| */ |
| if (_fbdiv == 15) |
| continue; |
| |
| if (_fbdiv < 12 || _fbdiv > 511) |
| continue; |
| |
| tmp = (u64)_fbdiv * fref; |
| do_div(tmp, _prediv); |
| |
| delta = abs(fout - tmp); |
| if (!delta) { |
| best_prediv = _prediv; |
| best_fbdiv = _fbdiv; |
| best_freq = tmp; |
| break; |
| } else if (delta < min_delta) { |
| best_prediv = _prediv; |
| best_fbdiv = _fbdiv; |
| best_freq = tmp; |
| min_delta = delta; |
| } |
| } |
| |
| if (best_freq) { |
| inno->pll.prediv = best_prediv; |
| inno->pll.fbdiv = best_fbdiv; |
| inno->pll.rate = best_freq; |
| } |
| |
| return best_freq; |
| } |
| |
| static void inno_dsidphy_mipi_mode_enable(struct inno_dsidphy *inno) |
| { |
| struct phy_configure_opts_mipi_dphy *cfg = &inno->dphy_cfg; |
| const struct { |
| unsigned long rate; |
| u8 hs_prepare; |
| u8 clk_lane_hs_zero; |
| u8 data_lane_hs_zero; |
| u8 hs_trail; |
| } timings[] = { |
| { 110000000, 0x20, 0x16, 0x02, 0x22}, |
| { 150000000, 0x06, 0x16, 0x03, 0x45}, |
| { 200000000, 0x18, 0x17, 0x04, 0x0b}, |
| { 250000000, 0x05, 0x17, 0x05, 0x16}, |
| { 300000000, 0x51, 0x18, 0x06, 0x2c}, |
| { 400000000, 0x64, 0x19, 0x07, 0x33}, |
| { 500000000, 0x20, 0x1b, 0x07, 0x4e}, |
| { 600000000, 0x6a, 0x1d, 0x08, 0x3a}, |
| { 700000000, 0x3e, 0x1e, 0x08, 0x6a}, |
| { 800000000, 0x21, 0x1f, 0x09, 0x29}, |
| {1000000000, 0x09, 0x20, 0x09, 0x27}, |
| }; |
| u32 t_txbyteclkhs, t_txclkesc; |
| u32 txbyteclkhs, txclkesc, esc_clk_div; |
| u32 hs_exit, clk_post, clk_pre, wakeup, lpx, ta_go, ta_sure, ta_wait; |
| u32 hs_prepare, hs_trail, hs_zero, clk_lane_hs_zero, data_lane_hs_zero; |
| unsigned int i; |
| |
| inno_dsidphy_pll_calc_rate(inno, cfg->hs_clk_rate); |
| |
| /* Select MIPI mode */ |
| phy_update_bits(inno, REGISTER_PART_LVDS, 0x03, |
| MODE_ENABLE_MASK, MIPI_MODE_ENABLE); |
| /* Configure PLL */ |
| phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03, |
| REG_PREDIV_MASK, REG_PREDIV(inno->pll.prediv)); |
| phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03, |
| REG_FBDIV_HI_MASK, REG_FBDIV_HI(inno->pll.fbdiv)); |
| phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04, |
| REG_FBDIV_LO_MASK, REG_FBDIV_LO(inno->pll.fbdiv)); |
| /* Enable PLL and LDO */ |
| phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01, |
| REG_LDOPD_MASK | REG_PLLPD_MASK, |
| REG_LDOPD_POWER_ON | REG_PLLPD_POWER_ON); |
| /* Reset analog */ |
| phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01, |
| REG_SYNCRST_MASK, REG_SYNCRST_RESET); |
| udelay(1); |
| phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01, |
| REG_SYNCRST_MASK, REG_SYNCRST_NORMAL); |
| /* Reset digital */ |
| phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00, |
| REG_DIG_RSTN_MASK, REG_DIG_RSTN_RESET); |
| udelay(1); |
| phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00, |
| REG_DIG_RSTN_MASK, REG_DIG_RSTN_NORMAL); |
| |
| txbyteclkhs = inno->pll.rate / 8; |
| t_txbyteclkhs = div_u64(PSEC_PER_SEC, txbyteclkhs); |
| |
| esc_clk_div = DIV_ROUND_UP(txbyteclkhs, 20000000); |
| txclkesc = txbyteclkhs / esc_clk_div; |
| t_txclkesc = div_u64(PSEC_PER_SEC, txclkesc); |
| |
| /* |
| * The value of counter for HS Ths-exit |
| * Ths-exit = Tpin_txbyteclkhs * value |
| */ |
| hs_exit = DIV_ROUND_UP(cfg->hs_exit, t_txbyteclkhs); |
| /* |
| * The value of counter for HS Tclk-post |
| * Tclk-post = Tpin_txbyteclkhs * value |
| */ |
| clk_post = DIV_ROUND_UP(cfg->clk_post, t_txbyteclkhs); |
| /* |
| * The value of counter for HS Tclk-pre |
| * Tclk-pre = Tpin_txbyteclkhs * value |
| */ |
| clk_pre = DIV_ROUND_UP(cfg->clk_pre, BITS_PER_BYTE); |
| |
| /* |
| * The value of counter for HS Tlpx Time |
| * Tlpx = Tpin_txbyteclkhs * (2 + value) |
| */ |
| lpx = DIV_ROUND_UP(cfg->lpx, t_txbyteclkhs); |
| if (lpx >= 2) |
| lpx -= 2; |
| |
| /* |
| * The value of counter for HS Tta-go |
| * Tta-go for turnaround |
| * Tta-go = Ttxclkesc * value |
| */ |
| ta_go = DIV_ROUND_UP(cfg->ta_go, t_txclkesc); |
| /* |
| * The value of counter for HS Tta-sure |
| * Tta-sure for turnaround |
| * Tta-sure = Ttxclkesc * value |
| */ |
| ta_sure = DIV_ROUND_UP(cfg->ta_sure, t_txclkesc); |
| /* |
| * The value of counter for HS Tta-wait |
| * Tta-wait for turnaround |
| * Tta-wait = Ttxclkesc * value |
| */ |
| ta_wait = DIV_ROUND_UP(cfg->ta_get, t_txclkesc); |
| |
| for (i = 0; i < ARRAY_SIZE(timings); i++) |
| if (inno->pll.rate <= timings[i].rate) |
| break; |
| |
| if (i == ARRAY_SIZE(timings)) |
| --i; |
| |
| hs_prepare = timings[i].hs_prepare; |
| hs_trail = timings[i].hs_trail; |
| clk_lane_hs_zero = timings[i].clk_lane_hs_zero; |
| data_lane_hs_zero = timings[i].data_lane_hs_zero; |
| wakeup = 0x3ff; |
| |
| for (i = REGISTER_PART_CLOCK_LANE; i <= REGISTER_PART_DATA3_LANE; i++) { |
| if (i == REGISTER_PART_CLOCK_LANE) |
| hs_zero = clk_lane_hs_zero; |
| else |
| hs_zero = data_lane_hs_zero; |
| |
| phy_update_bits(inno, i, 0x05, T_LPX_CNT_MASK, |
| T_LPX_CNT(lpx)); |
| phy_update_bits(inno, i, 0x06, T_HS_PREPARE_CNT_MASK, |
| T_HS_PREPARE_CNT(hs_prepare)); |
| phy_update_bits(inno, i, 0x07, T_HS_ZERO_CNT_MASK, |
| T_HS_ZERO_CNT(hs_zero)); |
| phy_update_bits(inno, i, 0x08, T_HS_TRAIL_CNT_MASK, |
| T_HS_TRAIL_CNT(hs_trail)); |
| phy_update_bits(inno, i, 0x09, T_HS_EXIT_CNT_MASK, |
| T_HS_EXIT_CNT(hs_exit)); |
| phy_update_bits(inno, i, 0x0a, T_CLK_POST_CNT_MASK, |
| T_CLK_POST_CNT(clk_post)); |
| phy_update_bits(inno, i, 0x0e, T_CLK_PRE_CNT_MASK, |
| T_CLK_PRE_CNT(clk_pre)); |
| phy_update_bits(inno, i, 0x0c, T_WAKEUP_CNT_HI_MASK, |
| T_WAKEUP_CNT_HI(wakeup >> 8)); |
| phy_update_bits(inno, i, 0x0d, T_WAKEUP_CNT_LO_MASK, |
| T_WAKEUP_CNT_LO(wakeup)); |
| phy_update_bits(inno, i, 0x10, T_TA_GO_CNT_MASK, |
| T_TA_GO_CNT(ta_go)); |
| phy_update_bits(inno, i, 0x11, T_TA_SURE_CNT_MASK, |
| T_TA_SURE_CNT(ta_sure)); |
| phy_update_bits(inno, i, 0x12, T_TA_WAIT_CNT_MASK, |
| T_TA_WAIT_CNT(ta_wait)); |
| } |
| |
| /* Enable all lanes on analog part */ |
| phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, |
| LANE_EN_MASK, LANE_EN_CK | LANE_EN_3 | LANE_EN_2 | |
| LANE_EN_1 | LANE_EN_0); |
| } |
| |
| static void inno_dsidphy_lvds_mode_enable(struct inno_dsidphy *inno) |
| { |
| u8 prediv = 2; |
| u16 fbdiv = 28; |
| |
| /* Sample clock reverse direction */ |
| phy_update_bits(inno, REGISTER_PART_ANALOG, 0x08, |
| SAMPLE_CLOCK_DIRECTION_MASK, |
| SAMPLE_CLOCK_DIRECTION_REVERSE); |
| |
| /* Select LVDS mode */ |
| phy_update_bits(inno, REGISTER_PART_LVDS, 0x03, |
| MODE_ENABLE_MASK, LVDS_MODE_ENABLE); |
| /* Configure PLL */ |
| phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03, |
| REG_PREDIV_MASK, REG_PREDIV(prediv)); |
| phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03, |
| REG_FBDIV_HI_MASK, REG_FBDIV_HI(fbdiv)); |
| phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04, |
| REG_FBDIV_LO_MASK, REG_FBDIV_LO(fbdiv)); |
| phy_update_bits(inno, REGISTER_PART_LVDS, 0x08, 0xff, 0xfc); |
| /* Enable PLL and Bandgap */ |
| phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b, |
| LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK, |
| LVDS_PLL_POWER_ON | LVDS_BANDGAP_POWER_ON); |
| |
| msleep(20); |
| |
| /* Reset LVDS digital logic */ |
| phy_update_bits(inno, REGISTER_PART_LVDS, 0x00, |
| LVDS_DIGITAL_INTERNAL_RESET_MASK, |
| LVDS_DIGITAL_INTERNAL_RESET_ENABLE); |
| udelay(1); |
| phy_update_bits(inno, REGISTER_PART_LVDS, 0x00, |
| LVDS_DIGITAL_INTERNAL_RESET_MASK, |
| LVDS_DIGITAL_INTERNAL_RESET_DISABLE); |
| /* Enable LVDS digital logic */ |
| phy_update_bits(inno, REGISTER_PART_LVDS, 0x01, |
| LVDS_DIGITAL_INTERNAL_ENABLE_MASK, |
| LVDS_DIGITAL_INTERNAL_ENABLE); |
| /* Enable LVDS analog driver */ |
| phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b, |
| LVDS_LANE_EN_MASK, LVDS_CLK_LANE_EN | |
| LVDS_DATA_LANE0_EN | LVDS_DATA_LANE1_EN | |
| LVDS_DATA_LANE2_EN | LVDS_DATA_LANE3_EN); |
| } |
| |
| static int inno_dsidphy_power_on(struct phy *phy) |
| { |
| struct inno_dsidphy *inno = phy_get_drvdata(phy); |
| |
| clk_prepare_enable(inno->pclk_phy); |
| clk_prepare_enable(inno->ref_clk); |
| pm_runtime_get_sync(inno->dev); |
| |
| /* Bandgap power on */ |
| phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, |
| BANDGAP_POWER_MASK, BANDGAP_POWER_ON); |
| /* Enable power work */ |
| phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, |
| POWER_WORK_MASK, POWER_WORK_ENABLE); |
| |
| switch (inno->mode) { |
| case PHY_MODE_MIPI_DPHY: |
| inno_dsidphy_mipi_mode_enable(inno); |
| break; |
| case PHY_MODE_LVDS: |
| inno_dsidphy_lvds_mode_enable(inno); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int inno_dsidphy_power_off(struct phy *phy) |
| { |
| struct inno_dsidphy *inno = phy_get_drvdata(phy); |
| |
| phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, LANE_EN_MASK, 0); |
| phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01, |
| REG_LDOPD_MASK | REG_PLLPD_MASK, |
| REG_LDOPD_POWER_DOWN | REG_PLLPD_POWER_DOWN); |
| phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, |
| POWER_WORK_MASK, POWER_WORK_DISABLE); |
| phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, |
| BANDGAP_POWER_MASK, BANDGAP_POWER_DOWN); |
| |
| phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b, LVDS_LANE_EN_MASK, 0); |
| phy_update_bits(inno, REGISTER_PART_LVDS, 0x01, |
| LVDS_DIGITAL_INTERNAL_ENABLE_MASK, |
| LVDS_DIGITAL_INTERNAL_DISABLE); |
| phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b, |
| LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK, |
| LVDS_PLL_POWER_OFF | LVDS_BANDGAP_POWER_DOWN); |
| |
| pm_runtime_put(inno->dev); |
| clk_disable_unprepare(inno->ref_clk); |
| clk_disable_unprepare(inno->pclk_phy); |
| |
| return 0; |
| } |
| |
| static int inno_dsidphy_set_mode(struct phy *phy, enum phy_mode mode, |
| int submode) |
| { |
| struct inno_dsidphy *inno = phy_get_drvdata(phy); |
| |
| switch (mode) { |
| case PHY_MODE_MIPI_DPHY: |
| case PHY_MODE_LVDS: |
| inno->mode = mode; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int inno_dsidphy_configure(struct phy *phy, |
| union phy_configure_opts *opts) |
| { |
| struct inno_dsidphy *inno = phy_get_drvdata(phy); |
| int ret; |
| |
| if (inno->mode != PHY_MODE_MIPI_DPHY) |
| return -EINVAL; |
| |
| ret = phy_mipi_dphy_config_validate(&opts->mipi_dphy); |
| if (ret) |
| return ret; |
| |
| memcpy(&inno->dphy_cfg, &opts->mipi_dphy, sizeof(inno->dphy_cfg)); |
| |
| return 0; |
| } |
| |
| static const struct phy_ops inno_dsidphy_ops = { |
| .configure = inno_dsidphy_configure, |
| .set_mode = inno_dsidphy_set_mode, |
| .power_on = inno_dsidphy_power_on, |
| .power_off = inno_dsidphy_power_off, |
| .owner = THIS_MODULE, |
| }; |
| |
| static int inno_dsidphy_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct inno_dsidphy *inno; |
| struct phy_provider *phy_provider; |
| struct phy *phy; |
| int ret; |
| |
| inno = devm_kzalloc(dev, sizeof(*inno), GFP_KERNEL); |
| if (!inno) |
| return -ENOMEM; |
| |
| inno->dev = dev; |
| platform_set_drvdata(pdev, inno); |
| |
| inno->phy_base = devm_platform_ioremap_resource(pdev, 0); |
| if (IS_ERR(inno->phy_base)) |
| return PTR_ERR(inno->phy_base); |
| |
| inno->ref_clk = devm_clk_get(dev, "ref"); |
| if (IS_ERR(inno->ref_clk)) { |
| ret = PTR_ERR(inno->ref_clk); |
| dev_err(dev, "failed to get ref clock: %d\n", ret); |
| return ret; |
| } |
| |
| inno->pclk_phy = devm_clk_get(dev, "pclk"); |
| if (IS_ERR(inno->pclk_phy)) { |
| ret = PTR_ERR(inno->pclk_phy); |
| dev_err(dev, "failed to get phy pclk: %d\n", ret); |
| return ret; |
| } |
| |
| inno->rst = devm_reset_control_get(dev, "apb"); |
| if (IS_ERR(inno->rst)) { |
| ret = PTR_ERR(inno->rst); |
| dev_err(dev, "failed to get system reset control: %d\n", ret); |
| return ret; |
| } |
| |
| phy = devm_phy_create(dev, NULL, &inno_dsidphy_ops); |
| if (IS_ERR(phy)) { |
| ret = PTR_ERR(phy); |
| dev_err(dev, "failed to create phy: %d\n", ret); |
| return ret; |
| } |
| |
| phy_set_drvdata(phy, inno); |
| |
| phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); |
| if (IS_ERR(phy_provider)) { |
| ret = PTR_ERR(phy_provider); |
| dev_err(dev, "failed to register phy provider: %d\n", ret); |
| return ret; |
| } |
| |
| pm_runtime_enable(dev); |
| |
| return 0; |
| } |
| |
| static int inno_dsidphy_remove(struct platform_device *pdev) |
| { |
| struct inno_dsidphy *inno = platform_get_drvdata(pdev); |
| |
| pm_runtime_disable(inno->dev); |
| |
| return 0; |
| } |
| |
| static const struct of_device_id inno_dsidphy_of_match[] = { |
| { .compatible = "rockchip,px30-dsi-dphy", }, |
| { .compatible = "rockchip,rk3128-dsi-dphy", }, |
| { .compatible = "rockchip,rk3368-dsi-dphy", }, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(of, inno_dsidphy_of_match); |
| |
| static struct platform_driver inno_dsidphy_driver = { |
| .driver = { |
| .name = "inno-dsidphy", |
| .of_match_table = of_match_ptr(inno_dsidphy_of_match), |
| }, |
| .probe = inno_dsidphy_probe, |
| .remove = inno_dsidphy_remove, |
| }; |
| module_platform_driver(inno_dsidphy_driver); |
| |
| MODULE_AUTHOR("Wyon Bi <bivvy.bi@rock-chips.com>"); |
| MODULE_DESCRIPTION("Innosilicon MIPI/LVDS/TTL Video Combo PHY driver"); |
| MODULE_LICENSE("GPL v2"); |