| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Inline encryption support for fscrypt |
| * |
| * Copyright 2019 Google LLC |
| */ |
| |
| /* |
| * With "inline encryption", the block layer handles the decryption/encryption |
| * as part of the bio, instead of the filesystem doing the crypto itself via |
| * crypto API. See Documentation/block/inline-encryption.rst. fscrypt still |
| * provides the key and IV to use. |
| */ |
| |
| #include <linux/blk-crypto.h> |
| #include <linux/blkdev.h> |
| #include <linux/buffer_head.h> |
| #include <linux/sched/mm.h> |
| #include <linux/slab.h> |
| #include <linux/uio.h> |
| |
| #include "fscrypt_private.h" |
| |
| struct fscrypt_blk_crypto_key { |
| struct blk_crypto_key base; |
| int num_devs; |
| struct request_queue *devs[]; |
| }; |
| |
| static int fscrypt_get_num_devices(struct super_block *sb) |
| { |
| if (sb->s_cop->get_num_devices) |
| return sb->s_cop->get_num_devices(sb); |
| return 1; |
| } |
| |
| static void fscrypt_get_devices(struct super_block *sb, int num_devs, |
| struct request_queue **devs) |
| { |
| if (num_devs == 1) |
| devs[0] = bdev_get_queue(sb->s_bdev); |
| else |
| sb->s_cop->get_devices(sb, devs); |
| } |
| |
| static unsigned int fscrypt_get_dun_bytes(const struct fscrypt_info *ci) |
| { |
| struct super_block *sb = ci->ci_inode->i_sb; |
| unsigned int flags = fscrypt_policy_flags(&ci->ci_policy); |
| int ino_bits = 64, lblk_bits = 64; |
| |
| if (flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) |
| return offsetofend(union fscrypt_iv, nonce); |
| |
| if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) |
| return sizeof(__le64); |
| |
| if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) |
| return sizeof(__le32); |
| |
| /* Default case: IVs are just the file logical block number */ |
| if (sb->s_cop->get_ino_and_lblk_bits) |
| sb->s_cop->get_ino_and_lblk_bits(sb, &ino_bits, &lblk_bits); |
| return DIV_ROUND_UP(lblk_bits, 8); |
| } |
| |
| /* Enable inline encryption for this file if supported. */ |
| int fscrypt_select_encryption_impl(struct fscrypt_info *ci) |
| { |
| const struct inode *inode = ci->ci_inode; |
| struct super_block *sb = inode->i_sb; |
| struct blk_crypto_config crypto_cfg; |
| int num_devs; |
| struct request_queue **devs; |
| int i; |
| |
| /* The file must need contents encryption, not filenames encryption */ |
| if (!S_ISREG(inode->i_mode)) |
| return 0; |
| |
| /* The crypto mode must have a blk-crypto counterpart */ |
| if (ci->ci_mode->blk_crypto_mode == BLK_ENCRYPTION_MODE_INVALID) |
| return 0; |
| |
| /* The filesystem must be mounted with -o inlinecrypt */ |
| if (!(sb->s_flags & SB_INLINECRYPT)) |
| return 0; |
| |
| /* |
| * When a page contains multiple logically contiguous filesystem blocks, |
| * some filesystem code only calls fscrypt_mergeable_bio() for the first |
| * block in the page. This is fine for most of fscrypt's IV generation |
| * strategies, where contiguous blocks imply contiguous IVs. But it |
| * doesn't work with IV_INO_LBLK_32. For now, simply exclude |
| * IV_INO_LBLK_32 with blocksize != PAGE_SIZE from inline encryption. |
| */ |
| if ((fscrypt_policy_flags(&ci->ci_policy) & |
| FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) && |
| sb->s_blocksize != PAGE_SIZE) |
| return 0; |
| |
| /* |
| * On all the filesystem's devices, blk-crypto must support the crypto |
| * configuration that the file would use. |
| */ |
| crypto_cfg.crypto_mode = ci->ci_mode->blk_crypto_mode; |
| crypto_cfg.data_unit_size = sb->s_blocksize; |
| crypto_cfg.dun_bytes = fscrypt_get_dun_bytes(ci); |
| num_devs = fscrypt_get_num_devices(sb); |
| devs = kmalloc_array(num_devs, sizeof(*devs), GFP_KERNEL); |
| if (!devs) |
| return -ENOMEM; |
| fscrypt_get_devices(sb, num_devs, devs); |
| |
| for (i = 0; i < num_devs; i++) { |
| if (!blk_crypto_config_supported(devs[i], &crypto_cfg)) |
| goto out_free_devs; |
| } |
| |
| ci->ci_inlinecrypt = true; |
| out_free_devs: |
| kfree(devs); |
| |
| return 0; |
| } |
| |
| int fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key, |
| const u8 *raw_key, |
| const struct fscrypt_info *ci) |
| { |
| const struct inode *inode = ci->ci_inode; |
| struct super_block *sb = inode->i_sb; |
| enum blk_crypto_mode_num crypto_mode = ci->ci_mode->blk_crypto_mode; |
| int num_devs = fscrypt_get_num_devices(sb); |
| int queue_refs = 0; |
| struct fscrypt_blk_crypto_key *blk_key; |
| int err; |
| int i; |
| |
| blk_key = kzalloc(struct_size(blk_key, devs, num_devs), GFP_KERNEL); |
| if (!blk_key) |
| return -ENOMEM; |
| |
| blk_key->num_devs = num_devs; |
| fscrypt_get_devices(sb, num_devs, blk_key->devs); |
| |
| err = blk_crypto_init_key(&blk_key->base, raw_key, crypto_mode, |
| fscrypt_get_dun_bytes(ci), sb->s_blocksize); |
| if (err) { |
| fscrypt_err(inode, "error %d initializing blk-crypto key", err); |
| goto fail; |
| } |
| |
| /* |
| * We have to start using blk-crypto on all the filesystem's devices. |
| * We also have to save all the request_queue's for later so that the |
| * key can be evicted from them. This is needed because some keys |
| * aren't destroyed until after the filesystem was already unmounted |
| * (namely, the per-mode keys in struct fscrypt_master_key). |
| */ |
| for (i = 0; i < num_devs; i++) { |
| if (!blk_get_queue(blk_key->devs[i])) { |
| fscrypt_err(inode, "couldn't get request_queue"); |
| err = -EAGAIN; |
| goto fail; |
| } |
| queue_refs++; |
| |
| err = blk_crypto_start_using_key(&blk_key->base, |
| blk_key->devs[i]); |
| if (err) { |
| fscrypt_err(inode, |
| "error %d starting to use blk-crypto", err); |
| goto fail; |
| } |
| } |
| /* |
| * Pairs with the smp_load_acquire() in fscrypt_is_key_prepared(). |
| * I.e., here we publish ->blk_key with a RELEASE barrier so that |
| * concurrent tasks can ACQUIRE it. Note that this concurrency is only |
| * possible for per-mode keys, not for per-file keys. |
| */ |
| smp_store_release(&prep_key->blk_key, blk_key); |
| return 0; |
| |
| fail: |
| for (i = 0; i < queue_refs; i++) |
| blk_put_queue(blk_key->devs[i]); |
| kfree_sensitive(blk_key); |
| return err; |
| } |
| |
| void fscrypt_destroy_inline_crypt_key(struct fscrypt_prepared_key *prep_key) |
| { |
| struct fscrypt_blk_crypto_key *blk_key = prep_key->blk_key; |
| int i; |
| |
| if (blk_key) { |
| for (i = 0; i < blk_key->num_devs; i++) { |
| blk_crypto_evict_key(blk_key->devs[i], &blk_key->base); |
| blk_put_queue(blk_key->devs[i]); |
| } |
| kfree_sensitive(blk_key); |
| } |
| } |
| |
| bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode) |
| { |
| return inode->i_crypt_info->ci_inlinecrypt; |
| } |
| EXPORT_SYMBOL_GPL(__fscrypt_inode_uses_inline_crypto); |
| |
| static void fscrypt_generate_dun(const struct fscrypt_info *ci, u64 lblk_num, |
| u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE]) |
| { |
| union fscrypt_iv iv; |
| int i; |
| |
| fscrypt_generate_iv(&iv, lblk_num, ci); |
| |
| BUILD_BUG_ON(FSCRYPT_MAX_IV_SIZE > BLK_CRYPTO_MAX_IV_SIZE); |
| memset(dun, 0, BLK_CRYPTO_MAX_IV_SIZE); |
| for (i = 0; i < ci->ci_mode->ivsize/sizeof(dun[0]); i++) |
| dun[i] = le64_to_cpu(iv.dun[i]); |
| } |
| |
| /** |
| * fscrypt_set_bio_crypt_ctx() - prepare a file contents bio for inline crypto |
| * @bio: a bio which will eventually be submitted to the file |
| * @inode: the file's inode |
| * @first_lblk: the first file logical block number in the I/O |
| * @gfp_mask: memory allocation flags - these must be a waiting mask so that |
| * bio_crypt_set_ctx can't fail. |
| * |
| * If the contents of the file should be encrypted (or decrypted) with inline |
| * encryption, then assign the appropriate encryption context to the bio. |
| * |
| * Normally the bio should be newly allocated (i.e. no pages added yet), as |
| * otherwise fscrypt_mergeable_bio() won't work as intended. |
| * |
| * The encryption context will be freed automatically when the bio is freed. |
| */ |
| void fscrypt_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode, |
| u64 first_lblk, gfp_t gfp_mask) |
| { |
| const struct fscrypt_info *ci; |
| u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE]; |
| |
| if (!fscrypt_inode_uses_inline_crypto(inode)) |
| return; |
| ci = inode->i_crypt_info; |
| |
| fscrypt_generate_dun(ci, first_lblk, dun); |
| bio_crypt_set_ctx(bio, &ci->ci_enc_key.blk_key->base, dun, gfp_mask); |
| } |
| EXPORT_SYMBOL_GPL(fscrypt_set_bio_crypt_ctx); |
| |
| /* Extract the inode and logical block number from a buffer_head. */ |
| static bool bh_get_inode_and_lblk_num(const struct buffer_head *bh, |
| const struct inode **inode_ret, |
| u64 *lblk_num_ret) |
| { |
| struct page *page = bh->b_page; |
| const struct address_space *mapping; |
| const struct inode *inode; |
| |
| /* |
| * The ext4 journal (jbd2) can submit a buffer_head it directly created |
| * for a non-pagecache page. fscrypt doesn't care about these. |
| */ |
| mapping = page_mapping(page); |
| if (!mapping) |
| return false; |
| inode = mapping->host; |
| |
| *inode_ret = inode; |
| *lblk_num_ret = ((u64)page->index << (PAGE_SHIFT - inode->i_blkbits)) + |
| (bh_offset(bh) >> inode->i_blkbits); |
| return true; |
| } |
| |
| /** |
| * fscrypt_set_bio_crypt_ctx_bh() - prepare a file contents bio for inline |
| * crypto |
| * @bio: a bio which will eventually be submitted to the file |
| * @first_bh: the first buffer_head for which I/O will be submitted |
| * @gfp_mask: memory allocation flags |
| * |
| * Same as fscrypt_set_bio_crypt_ctx(), except this takes a buffer_head instead |
| * of an inode and block number directly. |
| */ |
| void fscrypt_set_bio_crypt_ctx_bh(struct bio *bio, |
| const struct buffer_head *first_bh, |
| gfp_t gfp_mask) |
| { |
| const struct inode *inode; |
| u64 first_lblk; |
| |
| if (bh_get_inode_and_lblk_num(first_bh, &inode, &first_lblk)) |
| fscrypt_set_bio_crypt_ctx(bio, inode, first_lblk, gfp_mask); |
| } |
| EXPORT_SYMBOL_GPL(fscrypt_set_bio_crypt_ctx_bh); |
| |
| /** |
| * fscrypt_mergeable_bio() - test whether data can be added to a bio |
| * @bio: the bio being built up |
| * @inode: the inode for the next part of the I/O |
| * @next_lblk: the next file logical block number in the I/O |
| * |
| * When building a bio which may contain data which should undergo inline |
| * encryption (or decryption) via fscrypt, filesystems should call this function |
| * to ensure that the resulting bio contains only contiguous data unit numbers. |
| * This will return false if the next part of the I/O cannot be merged with the |
| * bio because either the encryption key would be different or the encryption |
| * data unit numbers would be discontiguous. |
| * |
| * fscrypt_set_bio_crypt_ctx() must have already been called on the bio. |
| * |
| * This function isn't required in cases where crypto-mergeability is ensured in |
| * another way, such as I/O targeting only a single file (and thus a single key) |
| * combined with fscrypt_limit_io_blocks() to ensure DUN contiguity. |
| * |
| * Return: true iff the I/O is mergeable |
| */ |
| bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode, |
| u64 next_lblk) |
| { |
| const struct bio_crypt_ctx *bc = bio->bi_crypt_context; |
| u64 next_dun[BLK_CRYPTO_DUN_ARRAY_SIZE]; |
| |
| if (!!bc != fscrypt_inode_uses_inline_crypto(inode)) |
| return false; |
| if (!bc) |
| return true; |
| |
| /* |
| * Comparing the key pointers is good enough, as all I/O for each key |
| * uses the same pointer. I.e., there's currently no need to support |
| * merging requests where the keys are the same but the pointers differ. |
| */ |
| if (bc->bc_key != &inode->i_crypt_info->ci_enc_key.blk_key->base) |
| return false; |
| |
| fscrypt_generate_dun(inode->i_crypt_info, next_lblk, next_dun); |
| return bio_crypt_dun_is_contiguous(bc, bio->bi_iter.bi_size, next_dun); |
| } |
| EXPORT_SYMBOL_GPL(fscrypt_mergeable_bio); |
| |
| /** |
| * fscrypt_mergeable_bio_bh() - test whether data can be added to a bio |
| * @bio: the bio being built up |
| * @next_bh: the next buffer_head for which I/O will be submitted |
| * |
| * Same as fscrypt_mergeable_bio(), except this takes a buffer_head instead of |
| * an inode and block number directly. |
| * |
| * Return: true iff the I/O is mergeable |
| */ |
| bool fscrypt_mergeable_bio_bh(struct bio *bio, |
| const struct buffer_head *next_bh) |
| { |
| const struct inode *inode; |
| u64 next_lblk; |
| |
| if (!bh_get_inode_and_lblk_num(next_bh, &inode, &next_lblk)) |
| return !bio->bi_crypt_context; |
| |
| return fscrypt_mergeable_bio(bio, inode, next_lblk); |
| } |
| EXPORT_SYMBOL_GPL(fscrypt_mergeable_bio_bh); |
| |
| /** |
| * fscrypt_dio_supported() - check whether a DIO (direct I/O) request is |
| * supported as far as encryption is concerned |
| * @iocb: the file and position the I/O is targeting |
| * @iter: the I/O data segment(s) |
| * |
| * Return: %true if there are no encryption constraints that prevent DIO from |
| * being supported; %false if DIO is unsupported. (Note that in the |
| * %true case, the filesystem might have other, non-encryption-related |
| * constraints that prevent DIO from actually being supported.) |
| */ |
| bool fscrypt_dio_supported(struct kiocb *iocb, struct iov_iter *iter) |
| { |
| const struct inode *inode = file_inode(iocb->ki_filp); |
| const unsigned int blocksize = i_blocksize(inode); |
| |
| /* If the file is unencrypted, no veto from us. */ |
| if (!fscrypt_needs_contents_encryption(inode)) |
| return true; |
| |
| /* We only support DIO with inline crypto, not fs-layer crypto. */ |
| if (!fscrypt_inode_uses_inline_crypto(inode)) |
| return false; |
| |
| /* |
| * Since the granularity of encryption is filesystem blocks, the file |
| * position and total I/O length must be aligned to the filesystem block |
| * size -- not just to the block device's logical block size as is |
| * traditionally the case for DIO on many filesystems. |
| * |
| * We require that the user-provided memory buffers be filesystem block |
| * aligned too. It is simpler to have a single alignment value required |
| * for all properties of the I/O, as is normally the case for DIO. |
| * Also, allowing less aligned buffers would imply that data units could |
| * cross bvecs, which would greatly complicate the I/O stack, which |
| * assumes that bios can be split at any bvec boundary. |
| */ |
| if (!IS_ALIGNED(iocb->ki_pos | iov_iter_alignment(iter), blocksize)) |
| return false; |
| |
| return true; |
| } |
| EXPORT_SYMBOL_GPL(fscrypt_dio_supported); |
| |
| /** |
| * fscrypt_limit_io_blocks() - limit I/O blocks to avoid discontiguous DUNs |
| * @inode: the file on which I/O is being done |
| * @lblk: the block at which the I/O is being started from |
| * @nr_blocks: the number of blocks we want to submit starting at @lblk |
| * |
| * Determine the limit to the number of blocks that can be submitted in a bio |
| * targeting @lblk without causing a data unit number (DUN) discontiguity. |
| * |
| * This is normally just @nr_blocks, as normally the DUNs just increment along |
| * with the logical blocks. (Or the file is not encrypted.) |
| * |
| * In rare cases, fscrypt can be using an IV generation method that allows the |
| * DUN to wrap around within logically contiguous blocks, and that wraparound |
| * will occur. If this happens, a value less than @nr_blocks will be returned |
| * so that the wraparound doesn't occur in the middle of a bio, which would |
| * cause encryption/decryption to produce wrong results. |
| * |
| * Return: the actual number of blocks that can be submitted |
| */ |
| u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk, u64 nr_blocks) |
| { |
| const struct fscrypt_info *ci; |
| u32 dun; |
| |
| if (!fscrypt_inode_uses_inline_crypto(inode)) |
| return nr_blocks; |
| |
| if (nr_blocks <= 1) |
| return nr_blocks; |
| |
| ci = inode->i_crypt_info; |
| if (!(fscrypt_policy_flags(&ci->ci_policy) & |
| FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32)) |
| return nr_blocks; |
| |
| /* With IV_INO_LBLK_32, the DUN can wrap around from U32_MAX to 0. */ |
| |
| dun = ci->ci_hashed_ino + lblk; |
| |
| return min_t(u64, nr_blocks, (u64)U32_MAX + 1 - dun); |
| } |
| EXPORT_SYMBOL_GPL(fscrypt_limit_io_blocks); |