| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef MM_SLAB_H |
| #define MM_SLAB_H |
| /* |
| * Internal slab definitions |
| */ |
| |
| /* Reuses the bits in struct page */ |
| struct slab { |
| unsigned long __page_flags; |
| |
| #if defined(CONFIG_SLAB) |
| |
| union { |
| struct list_head slab_list; |
| struct rcu_head rcu_head; |
| }; |
| struct kmem_cache *slab_cache; |
| void *freelist; /* array of free object indexes */ |
| void *s_mem; /* first object */ |
| unsigned int active; |
| |
| #elif defined(CONFIG_SLUB) |
| |
| union { |
| struct list_head slab_list; |
| struct rcu_head rcu_head; |
| #ifdef CONFIG_SLUB_CPU_PARTIAL |
| struct { |
| struct slab *next; |
| int slabs; /* Nr of slabs left */ |
| }; |
| #endif |
| }; |
| struct kmem_cache *slab_cache; |
| /* Double-word boundary */ |
| void *freelist; /* first free object */ |
| union { |
| unsigned long counters; |
| struct { |
| unsigned inuse:16; |
| unsigned objects:15; |
| unsigned frozen:1; |
| }; |
| }; |
| unsigned int __unused; |
| |
| #elif defined(CONFIG_SLOB) |
| |
| struct list_head slab_list; |
| void *__unused_1; |
| void *freelist; /* first free block */ |
| long units; |
| unsigned int __unused_2; |
| |
| #else |
| #error "Unexpected slab allocator configured" |
| #endif |
| |
| atomic_t __page_refcount; |
| #ifdef CONFIG_MEMCG |
| unsigned long memcg_data; |
| #endif |
| }; |
| |
| #define SLAB_MATCH(pg, sl) \ |
| static_assert(offsetof(struct page, pg) == offsetof(struct slab, sl)) |
| SLAB_MATCH(flags, __page_flags); |
| SLAB_MATCH(compound_head, slab_list); /* Ensure bit 0 is clear */ |
| #ifndef CONFIG_SLOB |
| SLAB_MATCH(rcu_head, rcu_head); |
| #endif |
| SLAB_MATCH(_refcount, __page_refcount); |
| #ifdef CONFIG_MEMCG |
| SLAB_MATCH(memcg_data, memcg_data); |
| #endif |
| #undef SLAB_MATCH |
| static_assert(sizeof(struct slab) <= sizeof(struct page)); |
| |
| /** |
| * folio_slab - Converts from folio to slab. |
| * @folio: The folio. |
| * |
| * Currently struct slab is a different representation of a folio where |
| * folio_test_slab() is true. |
| * |
| * Return: The slab which contains this folio. |
| */ |
| #define folio_slab(folio) (_Generic((folio), \ |
| const struct folio *: (const struct slab *)(folio), \ |
| struct folio *: (struct slab *)(folio))) |
| |
| /** |
| * slab_folio - The folio allocated for a slab |
| * @slab: The slab. |
| * |
| * Slabs are allocated as folios that contain the individual objects and are |
| * using some fields in the first struct page of the folio - those fields are |
| * now accessed by struct slab. It is occasionally necessary to convert back to |
| * a folio in order to communicate with the rest of the mm. Please use this |
| * helper function instead of casting yourself, as the implementation may change |
| * in the future. |
| */ |
| #define slab_folio(s) (_Generic((s), \ |
| const struct slab *: (const struct folio *)s, \ |
| struct slab *: (struct folio *)s)) |
| |
| /** |
| * page_slab - Converts from first struct page to slab. |
| * @p: The first (either head of compound or single) page of slab. |
| * |
| * A temporary wrapper to convert struct page to struct slab in situations where |
| * we know the page is the compound head, or single order-0 page. |
| * |
| * Long-term ideally everything would work with struct slab directly or go |
| * through folio to struct slab. |
| * |
| * Return: The slab which contains this page |
| */ |
| #define page_slab(p) (_Generic((p), \ |
| const struct page *: (const struct slab *)(p), \ |
| struct page *: (struct slab *)(p))) |
| |
| /** |
| * slab_page - The first struct page allocated for a slab |
| * @slab: The slab. |
| * |
| * A convenience wrapper for converting slab to the first struct page of the |
| * underlying folio, to communicate with code not yet converted to folio or |
| * struct slab. |
| */ |
| #define slab_page(s) folio_page(slab_folio(s), 0) |
| |
| /* |
| * If network-based swap is enabled, sl*b must keep track of whether pages |
| * were allocated from pfmemalloc reserves. |
| */ |
| static inline bool slab_test_pfmemalloc(const struct slab *slab) |
| { |
| return folio_test_active((struct folio *)slab_folio(slab)); |
| } |
| |
| static inline void slab_set_pfmemalloc(struct slab *slab) |
| { |
| folio_set_active(slab_folio(slab)); |
| } |
| |
| static inline void slab_clear_pfmemalloc(struct slab *slab) |
| { |
| folio_clear_active(slab_folio(slab)); |
| } |
| |
| static inline void __slab_clear_pfmemalloc(struct slab *slab) |
| { |
| __folio_clear_active(slab_folio(slab)); |
| } |
| |
| static inline void *slab_address(const struct slab *slab) |
| { |
| return folio_address(slab_folio(slab)); |
| } |
| |
| static inline int slab_nid(const struct slab *slab) |
| { |
| return folio_nid(slab_folio(slab)); |
| } |
| |
| static inline pg_data_t *slab_pgdat(const struct slab *slab) |
| { |
| return folio_pgdat(slab_folio(slab)); |
| } |
| |
| static inline struct slab *virt_to_slab(const void *addr) |
| { |
| struct folio *folio = virt_to_folio(addr); |
| |
| if (!folio_test_slab(folio)) |
| return NULL; |
| |
| return folio_slab(folio); |
| } |
| |
| static inline int slab_order(const struct slab *slab) |
| { |
| return folio_order((struct folio *)slab_folio(slab)); |
| } |
| |
| static inline size_t slab_size(const struct slab *slab) |
| { |
| return PAGE_SIZE << slab_order(slab); |
| } |
| |
| #ifdef CONFIG_SLOB |
| /* |
| * Common fields provided in kmem_cache by all slab allocators |
| * This struct is either used directly by the allocator (SLOB) |
| * or the allocator must include definitions for all fields |
| * provided in kmem_cache_common in their definition of kmem_cache. |
| * |
| * Once we can do anonymous structs (C11 standard) we could put a |
| * anonymous struct definition in these allocators so that the |
| * separate allocations in the kmem_cache structure of SLAB and |
| * SLUB is no longer needed. |
| */ |
| struct kmem_cache { |
| unsigned int object_size;/* The original size of the object */ |
| unsigned int size; /* The aligned/padded/added on size */ |
| unsigned int align; /* Alignment as calculated */ |
| slab_flags_t flags; /* Active flags on the slab */ |
| unsigned int useroffset;/* Usercopy region offset */ |
| unsigned int usersize; /* Usercopy region size */ |
| const char *name; /* Slab name for sysfs */ |
| int refcount; /* Use counter */ |
| void (*ctor)(void *); /* Called on object slot creation */ |
| struct list_head list; /* List of all slab caches on the system */ |
| }; |
| |
| #endif /* CONFIG_SLOB */ |
| |
| #ifdef CONFIG_SLAB |
| #include <linux/slab_def.h> |
| #endif |
| |
| #ifdef CONFIG_SLUB |
| #include <linux/slub_def.h> |
| #endif |
| |
| #include <linux/memcontrol.h> |
| #include <linux/fault-inject.h> |
| #include <linux/kasan.h> |
| #include <linux/kmemleak.h> |
| #include <linux/random.h> |
| #include <linux/sched/mm.h> |
| #include <linux/list_lru.h> |
| |
| /* |
| * State of the slab allocator. |
| * |
| * This is used to describe the states of the allocator during bootup. |
| * Allocators use this to gradually bootstrap themselves. Most allocators |
| * have the problem that the structures used for managing slab caches are |
| * allocated from slab caches themselves. |
| */ |
| enum slab_state { |
| DOWN, /* No slab functionality yet */ |
| PARTIAL, /* SLUB: kmem_cache_node available */ |
| PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */ |
| UP, /* Slab caches usable but not all extras yet */ |
| FULL /* Everything is working */ |
| }; |
| |
| extern enum slab_state slab_state; |
| |
| /* The slab cache mutex protects the management structures during changes */ |
| extern struct mutex slab_mutex; |
| |
| /* The list of all slab caches on the system */ |
| extern struct list_head slab_caches; |
| |
| /* The slab cache that manages slab cache information */ |
| extern struct kmem_cache *kmem_cache; |
| |
| /* A table of kmalloc cache names and sizes */ |
| extern const struct kmalloc_info_struct { |
| const char *name[NR_KMALLOC_TYPES]; |
| unsigned int size; |
| } kmalloc_info[]; |
| |
| #ifndef CONFIG_SLOB |
| /* Kmalloc array related functions */ |
| void setup_kmalloc_cache_index_table(void); |
| void create_kmalloc_caches(slab_flags_t); |
| |
| /* Find the kmalloc slab corresponding for a certain size */ |
| struct kmem_cache *kmalloc_slab(size_t, gfp_t); |
| #endif |
| |
| gfp_t kmalloc_fix_flags(gfp_t flags); |
| |
| /* Functions provided by the slab allocators */ |
| int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags); |
| |
| struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size, |
| slab_flags_t flags, unsigned int useroffset, |
| unsigned int usersize); |
| extern void create_boot_cache(struct kmem_cache *, const char *name, |
| unsigned int size, slab_flags_t flags, |
| unsigned int useroffset, unsigned int usersize); |
| |
| int slab_unmergeable(struct kmem_cache *s); |
| struct kmem_cache *find_mergeable(unsigned size, unsigned align, |
| slab_flags_t flags, const char *name, void (*ctor)(void *)); |
| #ifndef CONFIG_SLOB |
| struct kmem_cache * |
| __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, |
| slab_flags_t flags, void (*ctor)(void *)); |
| |
| slab_flags_t kmem_cache_flags(unsigned int object_size, |
| slab_flags_t flags, const char *name); |
| #else |
| static inline struct kmem_cache * |
| __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, |
| slab_flags_t flags, void (*ctor)(void *)) |
| { return NULL; } |
| |
| static inline slab_flags_t kmem_cache_flags(unsigned int object_size, |
| slab_flags_t flags, const char *name) |
| { |
| return flags; |
| } |
| #endif |
| |
| |
| /* Legal flag mask for kmem_cache_create(), for various configurations */ |
| #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \ |
| SLAB_CACHE_DMA32 | SLAB_PANIC | \ |
| SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS ) |
| |
| #if defined(CONFIG_DEBUG_SLAB) |
| #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) |
| #elif defined(CONFIG_SLUB_DEBUG) |
| #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ |
| SLAB_TRACE | SLAB_CONSISTENCY_CHECKS) |
| #else |
| #define SLAB_DEBUG_FLAGS (0) |
| #endif |
| |
| #if defined(CONFIG_SLAB) |
| #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \ |
| SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \ |
| SLAB_ACCOUNT) |
| #elif defined(CONFIG_SLUB) |
| #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \ |
| SLAB_TEMPORARY | SLAB_ACCOUNT) |
| #else |
| #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE) |
| #endif |
| |
| /* Common flags available with current configuration */ |
| #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS) |
| |
| /* Common flags permitted for kmem_cache_create */ |
| #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \ |
| SLAB_RED_ZONE | \ |
| SLAB_POISON | \ |
| SLAB_STORE_USER | \ |
| SLAB_TRACE | \ |
| SLAB_CONSISTENCY_CHECKS | \ |
| SLAB_MEM_SPREAD | \ |
| SLAB_NOLEAKTRACE | \ |
| SLAB_RECLAIM_ACCOUNT | \ |
| SLAB_TEMPORARY | \ |
| SLAB_ACCOUNT) |
| |
| bool __kmem_cache_empty(struct kmem_cache *); |
| int __kmem_cache_shutdown(struct kmem_cache *); |
| void __kmem_cache_release(struct kmem_cache *); |
| int __kmem_cache_shrink(struct kmem_cache *); |
| void slab_kmem_cache_release(struct kmem_cache *); |
| |
| struct seq_file; |
| struct file; |
| |
| struct slabinfo { |
| unsigned long active_objs; |
| unsigned long num_objs; |
| unsigned long active_slabs; |
| unsigned long num_slabs; |
| unsigned long shared_avail; |
| unsigned int limit; |
| unsigned int batchcount; |
| unsigned int shared; |
| unsigned int objects_per_slab; |
| unsigned int cache_order; |
| }; |
| |
| void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo); |
| void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s); |
| ssize_t slabinfo_write(struct file *file, const char __user *buffer, |
| size_t count, loff_t *ppos); |
| |
| /* |
| * Generic implementation of bulk operations |
| * These are useful for situations in which the allocator cannot |
| * perform optimizations. In that case segments of the object listed |
| * may be allocated or freed using these operations. |
| */ |
| void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **); |
| int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **); |
| |
| static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s) |
| { |
| return (s->flags & SLAB_RECLAIM_ACCOUNT) ? |
| NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B; |
| } |
| |
| #ifdef CONFIG_SLUB_DEBUG |
| #ifdef CONFIG_SLUB_DEBUG_ON |
| DECLARE_STATIC_KEY_TRUE(slub_debug_enabled); |
| #else |
| DECLARE_STATIC_KEY_FALSE(slub_debug_enabled); |
| #endif |
| extern void print_tracking(struct kmem_cache *s, void *object); |
| long validate_slab_cache(struct kmem_cache *s); |
| static inline bool __slub_debug_enabled(void) |
| { |
| return static_branch_unlikely(&slub_debug_enabled); |
| } |
| #else |
| static inline void print_tracking(struct kmem_cache *s, void *object) |
| { |
| } |
| static inline bool __slub_debug_enabled(void) |
| { |
| return false; |
| } |
| #endif |
| |
| /* |
| * Returns true if any of the specified slub_debug flags is enabled for the |
| * cache. Use only for flags parsed by setup_slub_debug() as it also enables |
| * the static key. |
| */ |
| static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags) |
| { |
| if (IS_ENABLED(CONFIG_SLUB_DEBUG)) |
| VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS)); |
| if (__slub_debug_enabled()) |
| return s->flags & flags; |
| return false; |
| } |
| |
| #ifdef CONFIG_MEMCG_KMEM |
| /* |
| * slab_objcgs - get the object cgroups vector associated with a slab |
| * @slab: a pointer to the slab struct |
| * |
| * Returns a pointer to the object cgroups vector associated with the slab, |
| * or NULL if no such vector has been associated yet. |
| */ |
| static inline struct obj_cgroup **slab_objcgs(struct slab *slab) |
| { |
| unsigned long memcg_data = READ_ONCE(slab->memcg_data); |
| |
| VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS), |
| slab_page(slab)); |
| VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, slab_page(slab)); |
| |
| return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); |
| } |
| |
| int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s, |
| gfp_t gfp, bool new_slab); |
| void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat, |
| enum node_stat_item idx, int nr); |
| |
| static inline void memcg_free_slab_cgroups(struct slab *slab) |
| { |
| kfree(slab_objcgs(slab)); |
| slab->memcg_data = 0; |
| } |
| |
| static inline size_t obj_full_size(struct kmem_cache *s) |
| { |
| /* |
| * For each accounted object there is an extra space which is used |
| * to store obj_cgroup membership. Charge it too. |
| */ |
| return s->size + sizeof(struct obj_cgroup *); |
| } |
| |
| /* |
| * Returns false if the allocation should fail. |
| */ |
| static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s, |
| struct list_lru *lru, |
| struct obj_cgroup **objcgp, |
| size_t objects, gfp_t flags) |
| { |
| struct obj_cgroup *objcg; |
| |
| if (!memcg_kmem_enabled()) |
| return true; |
| |
| if (!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)) |
| return true; |
| |
| objcg = get_obj_cgroup_from_current(); |
| if (!objcg) |
| return true; |
| |
| if (lru) { |
| int ret; |
| struct mem_cgroup *memcg; |
| |
| memcg = get_mem_cgroup_from_objcg(objcg); |
| ret = memcg_list_lru_alloc(memcg, lru, flags); |
| css_put(&memcg->css); |
| |
| if (ret) |
| goto out; |
| } |
| |
| if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s))) |
| goto out; |
| |
| *objcgp = objcg; |
| return true; |
| out: |
| obj_cgroup_put(objcg); |
| return false; |
| } |
| |
| static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s, |
| struct obj_cgroup *objcg, |
| gfp_t flags, size_t size, |
| void **p) |
| { |
| struct slab *slab; |
| unsigned long off; |
| size_t i; |
| |
| if (!memcg_kmem_enabled() || !objcg) |
| return; |
| |
| for (i = 0; i < size; i++) { |
| if (likely(p[i])) { |
| slab = virt_to_slab(p[i]); |
| |
| if (!slab_objcgs(slab) && |
| memcg_alloc_slab_cgroups(slab, s, flags, |
| false)) { |
| obj_cgroup_uncharge(objcg, obj_full_size(s)); |
| continue; |
| } |
| |
| off = obj_to_index(s, slab, p[i]); |
| obj_cgroup_get(objcg); |
| slab_objcgs(slab)[off] = objcg; |
| mod_objcg_state(objcg, slab_pgdat(slab), |
| cache_vmstat_idx(s), obj_full_size(s)); |
| } else { |
| obj_cgroup_uncharge(objcg, obj_full_size(s)); |
| } |
| } |
| obj_cgroup_put(objcg); |
| } |
| |
| static inline void memcg_slab_free_hook(struct kmem_cache *s_orig, |
| void **p, int objects) |
| { |
| struct kmem_cache *s; |
| struct obj_cgroup **objcgs; |
| struct obj_cgroup *objcg; |
| struct slab *slab; |
| unsigned int off; |
| int i; |
| |
| if (!memcg_kmem_enabled()) |
| return; |
| |
| for (i = 0; i < objects; i++) { |
| if (unlikely(!p[i])) |
| continue; |
| |
| slab = virt_to_slab(p[i]); |
| /* we could be given a kmalloc_large() object, skip those */ |
| if (!slab) |
| continue; |
| |
| objcgs = slab_objcgs(slab); |
| if (!objcgs) |
| continue; |
| |
| if (!s_orig) |
| s = slab->slab_cache; |
| else |
| s = s_orig; |
| |
| off = obj_to_index(s, slab, p[i]); |
| objcg = objcgs[off]; |
| if (!objcg) |
| continue; |
| |
| objcgs[off] = NULL; |
| obj_cgroup_uncharge(objcg, obj_full_size(s)); |
| mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s), |
| -obj_full_size(s)); |
| obj_cgroup_put(objcg); |
| } |
| } |
| |
| #else /* CONFIG_MEMCG_KMEM */ |
| static inline struct obj_cgroup **slab_objcgs(struct slab *slab) |
| { |
| return NULL; |
| } |
| |
| static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr) |
| { |
| return NULL; |
| } |
| |
| static inline int memcg_alloc_slab_cgroups(struct slab *slab, |
| struct kmem_cache *s, gfp_t gfp, |
| bool new_slab) |
| { |
| return 0; |
| } |
| |
| static inline void memcg_free_slab_cgroups(struct slab *slab) |
| { |
| } |
| |
| static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s, |
| struct list_lru *lru, |
| struct obj_cgroup **objcgp, |
| size_t objects, gfp_t flags) |
| { |
| return true; |
| } |
| |
| static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s, |
| struct obj_cgroup *objcg, |
| gfp_t flags, size_t size, |
| void **p) |
| { |
| } |
| |
| static inline void memcg_slab_free_hook(struct kmem_cache *s, |
| void **p, int objects) |
| { |
| } |
| #endif /* CONFIG_MEMCG_KMEM */ |
| |
| #ifndef CONFIG_SLOB |
| static inline struct kmem_cache *virt_to_cache(const void *obj) |
| { |
| struct slab *slab; |
| |
| slab = virt_to_slab(obj); |
| if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", |
| __func__)) |
| return NULL; |
| return slab->slab_cache; |
| } |
| |
| static __always_inline void account_slab(struct slab *slab, int order, |
| struct kmem_cache *s, gfp_t gfp) |
| { |
| if (memcg_kmem_enabled() && (s->flags & SLAB_ACCOUNT)) |
| memcg_alloc_slab_cgroups(slab, s, gfp, true); |
| |
| mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), |
| PAGE_SIZE << order); |
| } |
| |
| static __always_inline void unaccount_slab(struct slab *slab, int order, |
| struct kmem_cache *s) |
| { |
| if (memcg_kmem_enabled()) |
| memcg_free_slab_cgroups(slab); |
| |
| mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), |
| -(PAGE_SIZE << order)); |
| } |
| |
| static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) |
| { |
| struct kmem_cache *cachep; |
| |
| if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && |
| !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) |
| return s; |
| |
| cachep = virt_to_cache(x); |
| if (WARN(cachep && cachep != s, |
| "%s: Wrong slab cache. %s but object is from %s\n", |
| __func__, s->name, cachep->name)) |
| print_tracking(cachep, x); |
| return cachep; |
| } |
| #endif /* CONFIG_SLOB */ |
| |
| static inline size_t slab_ksize(const struct kmem_cache *s) |
| { |
| #ifndef CONFIG_SLUB |
| return s->object_size; |
| |
| #else /* CONFIG_SLUB */ |
| # ifdef CONFIG_SLUB_DEBUG |
| /* |
| * Debugging requires use of the padding between object |
| * and whatever may come after it. |
| */ |
| if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) |
| return s->object_size; |
| # endif |
| if (s->flags & SLAB_KASAN) |
| return s->object_size; |
| /* |
| * If we have the need to store the freelist pointer |
| * back there or track user information then we can |
| * only use the space before that information. |
| */ |
| if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER)) |
| return s->inuse; |
| /* |
| * Else we can use all the padding etc for the allocation |
| */ |
| return s->size; |
| #endif |
| } |
| |
| static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, |
| struct list_lru *lru, |
| struct obj_cgroup **objcgp, |
| size_t size, gfp_t flags) |
| { |
| flags &= gfp_allowed_mask; |
| |
| might_alloc(flags); |
| |
| if (should_failslab(s, flags)) |
| return NULL; |
| |
| if (!memcg_slab_pre_alloc_hook(s, lru, objcgp, size, flags)) |
| return NULL; |
| |
| return s; |
| } |
| |
| static inline void slab_post_alloc_hook(struct kmem_cache *s, |
| struct obj_cgroup *objcg, gfp_t flags, |
| size_t size, void **p, bool init) |
| { |
| size_t i; |
| |
| flags &= gfp_allowed_mask; |
| |
| /* |
| * As memory initialization might be integrated into KASAN, |
| * kasan_slab_alloc and initialization memset must be |
| * kept together to avoid discrepancies in behavior. |
| * |
| * As p[i] might get tagged, memset and kmemleak hook come after KASAN. |
| */ |
| for (i = 0; i < size; i++) { |
| p[i] = kasan_slab_alloc(s, p[i], flags, init); |
| if (p[i] && init && !kasan_has_integrated_init()) |
| memset(p[i], 0, s->object_size); |
| kmemleak_alloc_recursive(p[i], s->object_size, 1, |
| s->flags, flags); |
| } |
| |
| memcg_slab_post_alloc_hook(s, objcg, flags, size, p); |
| } |
| |
| #ifndef CONFIG_SLOB |
| /* |
| * The slab lists for all objects. |
| */ |
| struct kmem_cache_node { |
| spinlock_t list_lock; |
| |
| #ifdef CONFIG_SLAB |
| struct list_head slabs_partial; /* partial list first, better asm code */ |
| struct list_head slabs_full; |
| struct list_head slabs_free; |
| unsigned long total_slabs; /* length of all slab lists */ |
| unsigned long free_slabs; /* length of free slab list only */ |
| unsigned long free_objects; |
| unsigned int free_limit; |
| unsigned int colour_next; /* Per-node cache coloring */ |
| struct array_cache *shared; /* shared per node */ |
| struct alien_cache **alien; /* on other nodes */ |
| unsigned long next_reap; /* updated without locking */ |
| int free_touched; /* updated without locking */ |
| #endif |
| |
| #ifdef CONFIG_SLUB |
| unsigned long nr_partial; |
| struct list_head partial; |
| #ifdef CONFIG_SLUB_DEBUG |
| atomic_long_t nr_slabs; |
| atomic_long_t total_objects; |
| struct list_head full; |
| #endif |
| #endif |
| |
| }; |
| |
| static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) |
| { |
| return s->node[node]; |
| } |
| |
| /* |
| * Iterator over all nodes. The body will be executed for each node that has |
| * a kmem_cache_node structure allocated (which is true for all online nodes) |
| */ |
| #define for_each_kmem_cache_node(__s, __node, __n) \ |
| for (__node = 0; __node < nr_node_ids; __node++) \ |
| if ((__n = get_node(__s, __node))) |
| |
| #endif |
| |
| #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) |
| void dump_unreclaimable_slab(void); |
| #else |
| static inline void dump_unreclaimable_slab(void) |
| { |
| } |
| #endif |
| |
| void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr); |
| |
| #ifdef CONFIG_SLAB_FREELIST_RANDOM |
| int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, |
| gfp_t gfp); |
| void cache_random_seq_destroy(struct kmem_cache *cachep); |
| #else |
| static inline int cache_random_seq_create(struct kmem_cache *cachep, |
| unsigned int count, gfp_t gfp) |
| { |
| return 0; |
| } |
| static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { } |
| #endif /* CONFIG_SLAB_FREELIST_RANDOM */ |
| |
| static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c) |
| { |
| if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, |
| &init_on_alloc)) { |
| if (c->ctor) |
| return false; |
| if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) |
| return flags & __GFP_ZERO; |
| return true; |
| } |
| return flags & __GFP_ZERO; |
| } |
| |
| static inline bool slab_want_init_on_free(struct kmem_cache *c) |
| { |
| if (static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, |
| &init_on_free)) |
| return !(c->ctor || |
| (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))); |
| return false; |
| } |
| |
| #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) |
| void debugfs_slab_release(struct kmem_cache *); |
| #else |
| static inline void debugfs_slab_release(struct kmem_cache *s) { } |
| #endif |
| |
| #ifdef CONFIG_PRINTK |
| #define KS_ADDRS_COUNT 16 |
| struct kmem_obj_info { |
| void *kp_ptr; |
| struct slab *kp_slab; |
| void *kp_objp; |
| unsigned long kp_data_offset; |
| struct kmem_cache *kp_slab_cache; |
| void *kp_ret; |
| void *kp_stack[KS_ADDRS_COUNT]; |
| void *kp_free_stack[KS_ADDRS_COUNT]; |
| }; |
| void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab); |
| #endif |
| |
| #ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR |
| void __check_heap_object(const void *ptr, unsigned long n, |
| const struct slab *slab, bool to_user); |
| #else |
| static inline |
| void __check_heap_object(const void *ptr, unsigned long n, |
| const struct slab *slab, bool to_user) |
| { |
| } |
| #endif |
| |
| #endif /* MM_SLAB_H */ |