| # SPDX-License-Identifier: GPL-2.0-only |
| # |
| # Key management configuration |
| # |
| |
| config KEYS |
| bool "Enable access key retention support" |
| select ASSOCIATIVE_ARRAY |
| help |
| This option provides support for retaining authentication tokens and |
| access keys in the kernel. |
| |
| It also includes provision of methods by which such keys might be |
| associated with a process so that network filesystems, encryption |
| support and the like can find them. |
| |
| Furthermore, a special type of key is available that acts as keyring: |
| a searchable sequence of keys. Each process is equipped with access |
| to five standard keyrings: UID-specific, GID-specific, session, |
| process and thread. |
| |
| If you are unsure as to whether this is required, answer N. |
| |
| config KEYS_REQUEST_CACHE |
| bool "Enable temporary caching of the last request_key() result" |
| depends on KEYS |
| help |
| This option causes the result of the last successful request_key() |
| call that didn't upcall to the kernel to be cached temporarily in the |
| task_struct. The cache is cleared by exit and just prior to the |
| resumption of userspace. |
| |
| This allows the key used for multiple step processes where each step |
| wants to request a key that is likely the same as the one requested |
| by the last step to save on the searching. |
| |
| An example of such a process is a pathwalk through a network |
| filesystem in which each method needs to request an authentication |
| key. Pathwalk will call multiple methods for each dentry traversed |
| (permission, d_revalidate, lookup, getxattr, getacl, ...). |
| |
| config PERSISTENT_KEYRINGS |
| bool "Enable register of persistent per-UID keyrings" |
| depends on KEYS |
| help |
| This option provides a register of persistent per-UID keyrings, |
| primarily aimed at Kerberos key storage. The keyrings are persistent |
| in the sense that they stay around after all processes of that UID |
| have exited, not that they survive the machine being rebooted. |
| |
| A particular keyring may be accessed by either the user whose keyring |
| it is or by a process with administrative privileges. The active |
| LSMs gets to rule on which admin-level processes get to access the |
| cache. |
| |
| Keyrings are created and added into the register upon demand and get |
| removed if they expire (a default timeout is set upon creation). |
| |
| config BIG_KEYS |
| bool "Large payload keys" |
| depends on KEYS |
| depends on TMPFS |
| depends on CRYPTO_LIB_CHACHA20POLY1305 = y |
| help |
| This option provides support for holding large keys within the kernel |
| (for example Kerberos ticket caches). The data may be stored out to |
| swapspace by tmpfs. |
| |
| If you are unsure as to whether this is required, answer N. |
| |
| config TRUSTED_KEYS |
| tristate "TRUSTED KEYS" |
| depends on KEYS && TCG_TPM |
| select CRYPTO |
| select CRYPTO_HMAC |
| select CRYPTO_SHA1 |
| select CRYPTO_HASH_INFO |
| select ASN1_ENCODER |
| select OID_REGISTRY |
| select ASN1 |
| help |
| This option provides support for creating, sealing, and unsealing |
| keys in the kernel. Trusted keys are random number symmetric keys, |
| generated and RSA-sealed by the TPM. The TPM only unseals the keys, |
| if the boot PCRs and other criteria match. Userspace will only ever |
| see encrypted blobs. |
| |
| If you are unsure as to whether this is required, answer N. |
| |
| config ENCRYPTED_KEYS |
| tristate "ENCRYPTED KEYS" |
| depends on KEYS |
| select CRYPTO |
| select CRYPTO_HMAC |
| select CRYPTO_AES |
| select CRYPTO_CBC |
| select CRYPTO_SHA256 |
| select CRYPTO_RNG |
| help |
| This option provides support for create/encrypting/decrypting keys |
| in the kernel. Encrypted keys are instantiated using kernel |
| generated random numbers or provided decrypted data, and are |
| encrypted/decrypted with a 'master' symmetric key. The 'master' |
| key can be either a trusted-key or user-key type. Only encrypted |
| blobs are ever output to Userspace. |
| |
| If you are unsure as to whether this is required, answer N. |
| |
| config USER_DECRYPTED_DATA |
| bool "Allow encrypted keys with user decrypted data" |
| depends on ENCRYPTED_KEYS |
| help |
| This option provides support for instantiating encrypted keys using |
| user-provided decrypted data. The decrypted data must be hex-ascii |
| encoded. |
| |
| If you are unsure as to whether this is required, answer N. |
| |
| config KEY_DH_OPERATIONS |
| bool "Diffie-Hellman operations on retained keys" |
| depends on KEYS |
| select CRYPTO |
| select CRYPTO_KDF800108_CTR |
| select CRYPTO_DH |
| help |
| This option provides support for calculating Diffie-Hellman |
| public keys and shared secrets using values stored as keys |
| in the kernel. |
| |
| If you are unsure as to whether this is required, answer N. |
| |
| config KEY_NOTIFICATIONS |
| bool "Provide key/keyring change notifications" |
| depends on KEYS && WATCH_QUEUE |
| help |
| This option provides support for getting change notifications |
| on keys and keyrings on which the caller has View permission. |
| This makes use of pipes to handle the notification buffer and |
| provides KEYCTL_WATCH_KEY to enable/disable watches. |