blob: cb60a07d39a8e4d8a3072ef07bc648a322299132 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (c) by Jaroslav Kysela <perex@perex.cz>
* Universal interface for Audio Codec '97
*
* For more details look to AC '97 component specification revision 2.2
* by Intel Corporation (http://developer.intel.com).
*/
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/tlv.h>
#include <sound/ac97_codec.h>
#include <sound/asoundef.h>
#include <sound/initval.h>
#include "ac97_id.h"
#include "ac97_patch.c"
MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>");
MODULE_DESCRIPTION("Universal interface for Audio Codec '97");
MODULE_LICENSE("GPL");
static bool enable_loopback;
module_param(enable_loopback, bool, 0444);
MODULE_PARM_DESC(enable_loopback, "Enable AC97 ADC/DAC Loopback Control");
#ifdef CONFIG_SND_AC97_POWER_SAVE
static int power_save = CONFIG_SND_AC97_POWER_SAVE_DEFAULT;
module_param(power_save, int, 0644);
MODULE_PARM_DESC(power_save, "Automatic power-saving timeout "
"(in second, 0 = disable).");
#endif
/*
*/
struct ac97_codec_id {
unsigned int id;
unsigned int mask;
const char *name;
int (*patch)(struct snd_ac97 *ac97);
int (*mpatch)(struct snd_ac97 *ac97);
unsigned int flags;
};
static const struct ac97_codec_id snd_ac97_codec_id_vendors[] = {
{ 0x41445300, 0xffffff00, "Analog Devices", NULL, NULL },
{ 0x414b4d00, 0xffffff00, "Asahi Kasei", NULL, NULL },
{ 0x414c4300, 0xffffff00, "Realtek", NULL, NULL },
{ 0x414c4700, 0xffffff00, "Realtek", NULL, NULL },
/*
* This is an _inofficial_ Aztech Labs entry
* (value might differ from unknown official Aztech ID),
* currently used by the AC97 emulation of the almost-AC97 PCI168 card.
*/
{ 0x415a5400, 0xffffff00, "Aztech Labs (emulated)", NULL, NULL },
{ 0x434d4900, 0xffffff00, "C-Media Electronics", NULL, NULL },
{ 0x43525900, 0xffffff00, "Cirrus Logic", NULL, NULL },
{ 0x43585400, 0xffffff00, "Conexant", NULL, NULL },
{ 0x44543000, 0xffffff00, "Diamond Technology", NULL, NULL },
{ 0x454d4300, 0xffffff00, "eMicro", NULL, NULL },
{ 0x45838300, 0xffffff00, "ESS Technology", NULL, NULL },
{ 0x48525300, 0xffffff00, "Intersil", NULL, NULL },
{ 0x49434500, 0xffffff00, "ICEnsemble", NULL, NULL },
{ 0x49544500, 0xffffff00, "ITE Tech.Inc", NULL, NULL },
{ 0x4e534300, 0xffffff00, "National Semiconductor", NULL, NULL },
{ 0x50534300, 0xffffff00, "Philips", NULL, NULL },
{ 0x53494c00, 0xffffff00, "Silicon Laboratory", NULL, NULL },
{ 0x53544d00, 0xffffff00, "STMicroelectronics", NULL, NULL },
{ 0x54524100, 0xffffff00, "TriTech", NULL, NULL },
{ 0x54584e00, 0xffffff00, "Texas Instruments", NULL, NULL },
{ 0x56494100, 0xffffff00, "VIA Technologies", NULL, NULL },
{ 0x57454300, 0xffffff00, "Winbond", NULL, NULL },
{ 0x574d4c00, 0xffffff00, "Wolfson", NULL, NULL },
{ 0x594d4800, 0xffffff00, "Yamaha", NULL, NULL },
{ 0x83847600, 0xffffff00, "SigmaTel", NULL, NULL },
{ 0, 0, NULL, NULL, NULL }
};
static const struct ac97_codec_id snd_ac97_codec_ids[] = {
{ 0x41445303, 0xffffffff, "AD1819", patch_ad1819, NULL },
{ 0x41445340, 0xffffffff, "AD1881", patch_ad1881, NULL },
{ 0x41445348, 0xffffffff, "AD1881A", patch_ad1881, NULL },
{ 0x41445360, 0xffffffff, "AD1885", patch_ad1885, NULL },
{ 0x41445361, 0xffffffff, "AD1886", patch_ad1886, NULL },
{ 0x41445362, 0xffffffff, "AD1887", patch_ad1881, NULL },
{ 0x41445363, 0xffffffff, "AD1886A", patch_ad1881, NULL },
{ 0x41445368, 0xffffffff, "AD1888", patch_ad1888, NULL },
{ 0x41445370, 0xffffffff, "AD1980", patch_ad1980, NULL },
{ 0x41445372, 0xffffffff, "AD1981A", patch_ad1981a, NULL },
{ 0x41445374, 0xffffffff, "AD1981B", patch_ad1981b, NULL },
{ 0x41445375, 0xffffffff, "AD1985", patch_ad1985, NULL },
{ 0x41445378, 0xffffffff, "AD1986", patch_ad1986, NULL },
{ 0x414b4d00, 0xffffffff, "AK4540", NULL, NULL },
{ 0x414b4d01, 0xffffffff, "AK4542", NULL, NULL },
{ 0x414b4d02, 0xffffffff, "AK4543", NULL, NULL },
{ 0x414b4d06, 0xffffffff, "AK4544A", NULL, NULL },
{ 0x414b4d07, 0xffffffff, "AK4545", NULL, NULL },
{ 0x414c4300, 0xffffff00, "ALC100,100P", NULL, NULL },
{ 0x414c4710, 0xfffffff0, "ALC200,200P", NULL, NULL },
{ 0x414c4721, 0xffffffff, "ALC650D", NULL, NULL }, /* already patched */
{ 0x414c4722, 0xffffffff, "ALC650E", NULL, NULL }, /* already patched */
{ 0x414c4723, 0xffffffff, "ALC650F", NULL, NULL }, /* already patched */
{ 0x414c4720, 0xfffffff0, "ALC650", patch_alc650, NULL },
{ 0x414c4730, 0xffffffff, "ALC101", NULL, NULL },
{ 0x414c4740, 0xfffffff0, "ALC202", NULL, NULL },
{ 0x414c4750, 0xfffffff0, "ALC250", NULL, NULL },
{ 0x414c4760, 0xfffffff0, "ALC655", patch_alc655, NULL },
{ 0x414c4770, 0xfffffff0, "ALC203", patch_alc203, NULL },
{ 0x414c4781, 0xffffffff, "ALC658D", NULL, NULL }, /* already patched */
{ 0x414c4780, 0xfffffff0, "ALC658", patch_alc655, NULL },
{ 0x414c4790, 0xfffffff0, "ALC850", patch_alc850, NULL },
{ 0x415a5401, 0xffffffff, "AZF3328", patch_aztech_azf3328, NULL },
{ 0x434d4941, 0xffffffff, "CMI9738", patch_cm9738, NULL },
{ 0x434d4961, 0xffffffff, "CMI9739", patch_cm9739, NULL },
{ 0x434d4969, 0xffffffff, "CMI9780", patch_cm9780, NULL },
{ 0x434d4978, 0xffffffff, "CMI9761A", patch_cm9761, NULL },
{ 0x434d4982, 0xffffffff, "CMI9761B", patch_cm9761, NULL },
{ 0x434d4983, 0xffffffff, "CMI9761A+", patch_cm9761, NULL },
{ 0x43525900, 0xfffffff8, "CS4297", NULL, NULL },
{ 0x43525910, 0xfffffff8, "CS4297A", patch_cirrus_spdif, NULL },
{ 0x43525920, 0xfffffff8, "CS4298", patch_cirrus_spdif, NULL },
{ 0x43525928, 0xfffffff8, "CS4294", NULL, NULL },
{ 0x43525930, 0xfffffff8, "CS4299", patch_cirrus_cs4299, NULL },
{ 0x43525948, 0xfffffff8, "CS4201", NULL, NULL },
{ 0x43525958, 0xfffffff8, "CS4205", patch_cirrus_spdif, NULL },
{ 0x43525960, 0xfffffff8, "CS4291", NULL, NULL },
{ 0x43525970, 0xfffffff8, "CS4202", NULL, NULL },
{ 0x43585421, 0xffffffff, "HSD11246", NULL, NULL }, // SmartMC II
{ 0x43585428, 0xfffffff8, "Cx20468", patch_conexant, NULL }, // SmartAMC fixme: the mask might be different
{ 0x43585430, 0xffffffff, "Cx20468-31", patch_conexant, NULL },
{ 0x43585431, 0xffffffff, "Cx20551", patch_cx20551, NULL },
{ 0x44543031, 0xfffffff0, "DT0398", NULL, NULL },
{ 0x454d4328, 0xffffffff, "EM28028", NULL, NULL }, // same as TR28028?
{ 0x45838308, 0xffffffff, "ESS1988", NULL, NULL },
{ 0x48525300, 0xffffff00, "HMP9701", NULL, NULL },
{ 0x49434501, 0xffffffff, "ICE1230", NULL, NULL },
{ 0x49434511, 0xffffffff, "ICE1232", NULL, NULL }, // alias VIA VT1611A?
{ 0x49434514, 0xffffffff, "ICE1232A", NULL, NULL },
{ 0x49434551, 0xffffffff, "VT1616", patch_vt1616, NULL },
{ 0x49434552, 0xffffffff, "VT1616i", patch_vt1616, NULL }, // VT1616 compatible (chipset integrated)
{ 0x49544520, 0xffffffff, "IT2226E", NULL, NULL },
{ 0x49544561, 0xffffffff, "IT2646E", patch_it2646, NULL },
{ 0x4e534300, 0xffffffff, "LM4540,43,45,46,48", NULL, NULL }, // only guess --jk
{ 0x4e534331, 0xffffffff, "LM4549", NULL, NULL },
{ 0x4e534350, 0xffffffff, "LM4550", patch_lm4550, NULL }, // volume wrap fix
{ 0x50534304, 0xffffffff, "UCB1400", patch_ucb1400, NULL },
{ 0x53494c20, 0xffffffe0, "Si3036,8", mpatch_si3036, mpatch_si3036, AC97_MODEM_PATCH },
{ 0x53544d02, 0xffffffff, "ST7597", NULL, NULL },
{ 0x54524102, 0xffffffff, "TR28022", NULL, NULL },
{ 0x54524103, 0xffffffff, "TR28023", NULL, NULL },
{ 0x54524106, 0xffffffff, "TR28026", NULL, NULL },
{ 0x54524108, 0xffffffff, "TR28028", patch_tritech_tr28028, NULL }, // added by xin jin [07/09/99]
{ 0x54524123, 0xffffffff, "TR28602", NULL, NULL }, // only guess --jk [TR28023 = eMicro EM28023 (new CT1297)]
{ 0x54584e03, 0xffffffff, "TLV320AIC27", NULL, NULL },
{ 0x54584e20, 0xffffffff, "TLC320AD9xC", NULL, NULL },
{ 0x56494120, 0xfffffff0, "VIA1613", patch_vt1613, NULL },
{ 0x56494161, 0xffffffff, "VIA1612A", NULL, NULL }, // modified ICE1232 with S/PDIF
{ 0x56494170, 0xffffffff, "VIA1617A", patch_vt1617a, NULL }, // modified VT1616 with S/PDIF
{ 0x56494182, 0xffffffff, "VIA1618", patch_vt1618, NULL },
{ 0x57454301, 0xffffffff, "W83971D", NULL, NULL },
{ 0x574d4c00, 0xffffffff, "WM9701,WM9701A", NULL, NULL },
{ 0x574d4C03, 0xffffffff, "WM9703,WM9707,WM9708,WM9717", patch_wolfson03, NULL},
{ 0x574d4C04, 0xffffffff, "WM9704M,WM9704Q", patch_wolfson04, NULL},
{ 0x574d4C05, 0xffffffff, "WM9705,WM9710", patch_wolfson05, NULL},
{ 0x574d4C09, 0xffffffff, "WM9709", NULL, NULL},
{ 0x574d4C12, 0xffffffff, "WM9711,WM9712,WM9715", patch_wolfson11, NULL},
{ 0x574d4c13, 0xffffffff, "WM9713,WM9714", patch_wolfson13, NULL, AC97_DEFAULT_POWER_OFF},
{ 0x594d4800, 0xffffffff, "YMF743", patch_yamaha_ymf743, NULL },
{ 0x594d4802, 0xffffffff, "YMF752", NULL, NULL },
{ 0x594d4803, 0xffffffff, "YMF753", patch_yamaha_ymf753, NULL },
{ 0x83847600, 0xffffffff, "STAC9700,83,84", patch_sigmatel_stac9700, NULL },
{ 0x83847604, 0xffffffff, "STAC9701,3,4,5", NULL, NULL },
{ 0x83847605, 0xffffffff, "STAC9704", NULL, NULL },
{ 0x83847608, 0xffffffff, "STAC9708,11", patch_sigmatel_stac9708, NULL },
{ 0x83847609, 0xffffffff, "STAC9721,23", patch_sigmatel_stac9721, NULL },
{ 0x83847644, 0xffffffff, "STAC9744", patch_sigmatel_stac9744, NULL },
{ 0x83847650, 0xffffffff, "STAC9750,51", NULL, NULL }, // patch?
{ 0x83847652, 0xffffffff, "STAC9752,53", NULL, NULL }, // patch?
{ 0x83847656, 0xffffffff, "STAC9756,57", patch_sigmatel_stac9756, NULL },
{ 0x83847658, 0xffffffff, "STAC9758,59", patch_sigmatel_stac9758, NULL },
{ 0x83847666, 0xffffffff, "STAC9766,67", NULL, NULL }, // patch?
{ 0, 0, NULL, NULL, NULL }
};
static void update_power_regs(struct snd_ac97 *ac97);
#ifdef CONFIG_SND_AC97_POWER_SAVE
#define ac97_is_power_save_mode(ac97) \
((ac97->scaps & AC97_SCAP_POWER_SAVE) && power_save)
#else
#define ac97_is_power_save_mode(ac97) 0
#endif
#define ac97_err(ac97, fmt, args...) \
dev_err((ac97)->bus->card->dev, fmt, ##args)
#define ac97_warn(ac97, fmt, args...) \
dev_warn((ac97)->bus->card->dev, fmt, ##args)
#define ac97_dbg(ac97, fmt, args...) \
dev_dbg((ac97)->bus->card->dev, fmt, ##args)
/*
* I/O routines
*/
static int snd_ac97_valid_reg(struct snd_ac97 *ac97, unsigned short reg)
{
/* filter some registers for buggy codecs */
switch (ac97->id) {
case AC97_ID_ST_AC97_ID4:
if (reg == 0x08)
return 0;
fallthrough;
case AC97_ID_ST7597:
if (reg == 0x22 || reg == 0x7a)
return 1;
fallthrough;
case AC97_ID_AK4540:
case AC97_ID_AK4542:
if (reg <= 0x1c || reg == 0x20 || reg == 0x26 || reg >= 0x7c)
return 1;
return 0;
case AC97_ID_AD1819: /* AD1819 */
case AC97_ID_AD1881: /* AD1881 */
case AC97_ID_AD1881A: /* AD1881A */
if (reg >= 0x3a && reg <= 0x6e) /* 0x59 */
return 0;
return 1;
case AC97_ID_AD1885: /* AD1885 */
case AC97_ID_AD1886: /* AD1886 */
case AC97_ID_AD1886A: /* AD1886A - !!verify!! --jk */
case AC97_ID_AD1887: /* AD1887 - !!verify!! --jk */
if (reg == 0x5a)
return 1;
if (reg >= 0x3c && reg <= 0x6e) /* 0x59 */
return 0;
return 1;
case AC97_ID_STAC9700:
case AC97_ID_STAC9704:
case AC97_ID_STAC9705:
case AC97_ID_STAC9708:
case AC97_ID_STAC9721:
case AC97_ID_STAC9744:
case AC97_ID_STAC9756:
if (reg <= 0x3a || reg >= 0x5a)
return 1;
return 0;
}
return 1;
}
/**
* snd_ac97_write - write a value on the given register
* @ac97: the ac97 instance
* @reg: the register to change
* @value: the value to set
*
* Writes a value on the given register. This will invoke the write
* callback directly after the register check.
* This function doesn't change the register cache unlike
* #snd_ca97_write_cache(), so use this only when you don't want to
* reflect the change to the suspend/resume state.
*/
void snd_ac97_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short value)
{
if (!snd_ac97_valid_reg(ac97, reg))
return;
if ((ac97->id & 0xffffff00) == AC97_ID_ALC100) {
/* Fix H/W bug of ALC100/100P */
if (reg == AC97_MASTER || reg == AC97_HEADPHONE)
ac97->bus->ops->write(ac97, AC97_RESET, 0); /* reset audio codec */
}
ac97->bus->ops->write(ac97, reg, value);
}
EXPORT_SYMBOL(snd_ac97_write);
/**
* snd_ac97_read - read a value from the given register
*
* @ac97: the ac97 instance
* @reg: the register to read
*
* Reads a value from the given register. This will invoke the read
* callback directly after the register check.
*
* Return: The read value.
*/
unsigned short snd_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
{
if (!snd_ac97_valid_reg(ac97, reg))
return 0;
return ac97->bus->ops->read(ac97, reg);
}
/* read a register - return the cached value if already read */
static inline unsigned short snd_ac97_read_cache(struct snd_ac97 *ac97, unsigned short reg)
{
if (! test_bit(reg, ac97->reg_accessed)) {
ac97->regs[reg] = ac97->bus->ops->read(ac97, reg);
// set_bit(reg, ac97->reg_accessed);
}
return ac97->regs[reg];
}
EXPORT_SYMBOL(snd_ac97_read);
/**
* snd_ac97_write_cache - write a value on the given register and update the cache
* @ac97: the ac97 instance
* @reg: the register to change
* @value: the value to set
*
* Writes a value on the given register and updates the register
* cache. The cached values are used for the cached-read and the
* suspend/resume.
*/
void snd_ac97_write_cache(struct snd_ac97 *ac97, unsigned short reg, unsigned short value)
{
if (!snd_ac97_valid_reg(ac97, reg))
return;
mutex_lock(&ac97->reg_mutex);
ac97->regs[reg] = value;
ac97->bus->ops->write(ac97, reg, value);
set_bit(reg, ac97->reg_accessed);
mutex_unlock(&ac97->reg_mutex);
}
EXPORT_SYMBOL(snd_ac97_write_cache);
/**
* snd_ac97_update - update the value on the given register
* @ac97: the ac97 instance
* @reg: the register to change
* @value: the value to set
*
* Compares the value with the register cache and updates the value
* only when the value is changed.
*
* Return: 1 if the value is changed, 0 if no change, or a negative
* code on failure.
*/
int snd_ac97_update(struct snd_ac97 *ac97, unsigned short reg, unsigned short value)
{
int change;
if (!snd_ac97_valid_reg(ac97, reg))
return -EINVAL;
mutex_lock(&ac97->reg_mutex);
change = ac97->regs[reg] != value;
if (change) {
ac97->regs[reg] = value;
ac97->bus->ops->write(ac97, reg, value);
}
set_bit(reg, ac97->reg_accessed);
mutex_unlock(&ac97->reg_mutex);
return change;
}
EXPORT_SYMBOL(snd_ac97_update);
/**
* snd_ac97_update_bits - update the bits on the given register
* @ac97: the ac97 instance
* @reg: the register to change
* @mask: the bit-mask to change
* @value: the value to set
*
* Updates the masked-bits on the given register only when the value
* is changed.
*
* Return: 1 if the bits are changed, 0 if no change, or a negative
* code on failure.
*/
int snd_ac97_update_bits(struct snd_ac97 *ac97, unsigned short reg, unsigned short mask, unsigned short value)
{
int change;
if (!snd_ac97_valid_reg(ac97, reg))
return -EINVAL;
mutex_lock(&ac97->reg_mutex);
change = snd_ac97_update_bits_nolock(ac97, reg, mask, value);
mutex_unlock(&ac97->reg_mutex);
return change;
}
EXPORT_SYMBOL(snd_ac97_update_bits);
/* no lock version - see snd_ac97_update_bits() */
int snd_ac97_update_bits_nolock(struct snd_ac97 *ac97, unsigned short reg,
unsigned short mask, unsigned short value)
{
int change;
unsigned short old, new;
old = snd_ac97_read_cache(ac97, reg);
new = (old & ~mask) | (value & mask);
change = old != new;
if (change) {
ac97->regs[reg] = new;
ac97->bus->ops->write(ac97, reg, new);
}
set_bit(reg, ac97->reg_accessed);
return change;
}
static int snd_ac97_ad18xx_update_pcm_bits(struct snd_ac97 *ac97, int codec, unsigned short mask, unsigned short value)
{
int change;
unsigned short old, new, cfg;
mutex_lock(&ac97->page_mutex);
old = ac97->spec.ad18xx.pcmreg[codec];
new = (old & ~mask) | (value & mask);
change = old != new;
if (change) {
mutex_lock(&ac97->reg_mutex);
cfg = snd_ac97_read_cache(ac97, AC97_AD_SERIAL_CFG);
ac97->spec.ad18xx.pcmreg[codec] = new;
/* select single codec */
ac97->bus->ops->write(ac97, AC97_AD_SERIAL_CFG,
(cfg & ~0x7000) |
ac97->spec.ad18xx.unchained[codec] | ac97->spec.ad18xx.chained[codec]);
/* update PCM bits */
ac97->bus->ops->write(ac97, AC97_PCM, new);
/* select all codecs */
ac97->bus->ops->write(ac97, AC97_AD_SERIAL_CFG,
cfg | 0x7000);
mutex_unlock(&ac97->reg_mutex);
}
mutex_unlock(&ac97->page_mutex);
return change;
}
/*
* Controls
*/
static int snd_ac97_info_enum_double(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct ac97_enum *e = (struct ac97_enum *)kcontrol->private_value;
return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
e->mask, e->texts);
}
static int snd_ac97_get_enum_double(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol);
struct ac97_enum *e = (struct ac97_enum *)kcontrol->private_value;
unsigned short val, bitmask;
for (bitmask = 1; bitmask < e->mask; bitmask <<= 1)
;
val = snd_ac97_read_cache(ac97, e->reg);
ucontrol->value.enumerated.item[0] = (val >> e->shift_l) & (bitmask - 1);
if (e->shift_l != e->shift_r)
ucontrol->value.enumerated.item[1] = (val >> e->shift_r) & (bitmask - 1);
return 0;
}
static int snd_ac97_put_enum_double(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol);
struct ac97_enum *e = (struct ac97_enum *)kcontrol->private_value;
unsigned short val;
unsigned short mask, bitmask;
for (bitmask = 1; bitmask < e->mask; bitmask <<= 1)
;
if (ucontrol->value.enumerated.item[0] > e->mask - 1)
return -EINVAL;
val = ucontrol->value.enumerated.item[0] << e->shift_l;
mask = (bitmask - 1) << e->shift_l;
if (e->shift_l != e->shift_r) {
if (ucontrol->value.enumerated.item[1] > e->mask - 1)
return -EINVAL;
val |= ucontrol->value.enumerated.item[1] << e->shift_r;
mask |= (bitmask - 1) << e->shift_r;
}
return snd_ac97_update_bits(ac97, e->reg, mask, val);
}
/* save/restore ac97 v2.3 paging */
static int snd_ac97_page_save(struct snd_ac97 *ac97, int reg, struct snd_kcontrol *kcontrol)
{
int page_save = -1;
if ((kcontrol->private_value & (1<<25)) &&
(ac97->ext_id & AC97_EI_REV_MASK) >= AC97_EI_REV_23 &&
(reg >= 0x60 && reg < 0x70)) {
unsigned short page = (kcontrol->private_value >> 26) & 0x0f;
mutex_lock(&ac97->page_mutex); /* lock paging */
page_save = snd_ac97_read(ac97, AC97_INT_PAGING) & AC97_PAGE_MASK;
snd_ac97_update_bits(ac97, AC97_INT_PAGING, AC97_PAGE_MASK, page);
}
return page_save;
}
static void snd_ac97_page_restore(struct snd_ac97 *ac97, int page_save)
{
if (page_save >= 0) {
snd_ac97_update_bits(ac97, AC97_INT_PAGING, AC97_PAGE_MASK, page_save);
mutex_unlock(&ac97->page_mutex); /* unlock paging */
}
}
/* volume and switch controls */
static int snd_ac97_info_volsw(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
int mask = (kcontrol->private_value >> 16) & 0xff;
int shift = (kcontrol->private_value >> 8) & 0x0f;
int rshift = (kcontrol->private_value >> 12) & 0x0f;
uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = shift == rshift ? 1 : 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = mask;
return 0;
}
static int snd_ac97_get_volsw(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol);
int reg = kcontrol->private_value & 0xff;
int shift = (kcontrol->private_value >> 8) & 0x0f;
int rshift = (kcontrol->private_value >> 12) & 0x0f;
int mask = (kcontrol->private_value >> 16) & 0xff;
int invert = (kcontrol->private_value >> 24) & 0x01;
int page_save;
page_save = snd_ac97_page_save(ac97, reg, kcontrol);
ucontrol->value.integer.value[0] = (snd_ac97_read_cache(ac97, reg) >> shift) & mask;
if (shift != rshift)
ucontrol->value.integer.value[1] = (snd_ac97_read_cache(ac97, reg) >> rshift) & mask;
if (invert) {
ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
if (shift != rshift)
ucontrol->value.integer.value[1] = mask - ucontrol->value.integer.value[1];
}
snd_ac97_page_restore(ac97, page_save);
return 0;
}
static int snd_ac97_put_volsw(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol);
int reg = kcontrol->private_value & 0xff;
int shift = (kcontrol->private_value >> 8) & 0x0f;
int rshift = (kcontrol->private_value >> 12) & 0x0f;
int mask = (kcontrol->private_value >> 16) & 0xff;
int invert = (kcontrol->private_value >> 24) & 0x01;
int err, page_save;
unsigned short val, val2, val_mask;
page_save = snd_ac97_page_save(ac97, reg, kcontrol);
val = (ucontrol->value.integer.value[0] & mask);
if (invert)
val = mask - val;
val_mask = mask << shift;
val = val << shift;
if (shift != rshift) {
val2 = (ucontrol->value.integer.value[1] & mask);
if (invert)
val2 = mask - val2;
val_mask |= mask << rshift;
val |= val2 << rshift;
}
err = snd_ac97_update_bits(ac97, reg, val_mask, val);
snd_ac97_page_restore(ac97, page_save);
#ifdef CONFIG_SND_AC97_POWER_SAVE
/* check analog mixer power-down */
if ((val_mask & AC97_PD_EAPD) &&
(kcontrol->private_value & (1<<30))) {
if (val & AC97_PD_EAPD)
ac97->power_up &= ~(1 << (reg>>1));
else
ac97->power_up |= 1 << (reg>>1);
update_power_regs(ac97);
}
#endif
return err;
}
static const struct snd_kcontrol_new snd_ac97_controls_tone[2] = {
AC97_SINGLE("Tone Control - Bass", AC97_MASTER_TONE, 8, 15, 1),
AC97_SINGLE("Tone Control - Treble", AC97_MASTER_TONE, 0, 15, 1)
};
static const struct snd_kcontrol_new snd_ac97_controls_pc_beep[2] = {
AC97_SINGLE("Beep Playback Switch", AC97_PC_BEEP, 15, 1, 1),
AC97_SINGLE("Beep Playback Volume", AC97_PC_BEEP, 1, 15, 1)
};
static const struct snd_kcontrol_new snd_ac97_controls_mic_boost =
AC97_SINGLE("Mic Boost (+20dB)", AC97_MIC, 6, 1, 0);
static const char* std_rec_sel[] = {"Mic", "CD", "Video", "Aux", "Line", "Mix", "Mix Mono", "Phone"};
static const char* std_3d_path[] = {"pre 3D", "post 3D"};
static const char* std_mix[] = {"Mix", "Mic"};
static const char* std_mic[] = {"Mic1", "Mic2"};
static const struct ac97_enum std_enum[] = {
AC97_ENUM_DOUBLE(AC97_REC_SEL, 8, 0, 8, std_rec_sel),
AC97_ENUM_SINGLE(AC97_GENERAL_PURPOSE, 15, 2, std_3d_path),
AC97_ENUM_SINGLE(AC97_GENERAL_PURPOSE, 9, 2, std_mix),
AC97_ENUM_SINGLE(AC97_GENERAL_PURPOSE, 8, 2, std_mic),
};
static const struct snd_kcontrol_new snd_ac97_control_capture_src =
AC97_ENUM("Capture Source", std_enum[0]);
static const struct snd_kcontrol_new snd_ac97_control_capture_vol =
AC97_DOUBLE("Capture Volume", AC97_REC_GAIN, 8, 0, 15, 0);
static const struct snd_kcontrol_new snd_ac97_controls_mic_capture[2] = {
AC97_SINGLE("Mic Capture Switch", AC97_REC_GAIN_MIC, 15, 1, 1),
AC97_SINGLE("Mic Capture Volume", AC97_REC_GAIN_MIC, 0, 15, 0)
};
enum {
AC97_GENERAL_PCM_OUT = 0,
AC97_GENERAL_STEREO_ENHANCEMENT,
AC97_GENERAL_3D,
AC97_GENERAL_LOUDNESS,
AC97_GENERAL_MONO,
AC97_GENERAL_MIC,
AC97_GENERAL_LOOPBACK
};
static const struct snd_kcontrol_new snd_ac97_controls_general[7] = {
AC97_ENUM("PCM Out Path & Mute", std_enum[1]),
AC97_SINGLE("Simulated Stereo Enhancement", AC97_GENERAL_PURPOSE, 14, 1, 0),
AC97_SINGLE("3D Control - Switch", AC97_GENERAL_PURPOSE, 13, 1, 0),
AC97_SINGLE("Loudness (bass boost)", AC97_GENERAL_PURPOSE, 12, 1, 0),
AC97_ENUM("Mono Output Select", std_enum[2]),
AC97_ENUM("Mic Select", std_enum[3]),
AC97_SINGLE("ADC/DAC Loopback", AC97_GENERAL_PURPOSE, 7, 1, 0)
};
static const struct snd_kcontrol_new snd_ac97_controls_3d[2] = {
AC97_SINGLE("3D Control - Center", AC97_3D_CONTROL, 8, 15, 0),
AC97_SINGLE("3D Control - Depth", AC97_3D_CONTROL, 0, 15, 0)
};
static const struct snd_kcontrol_new snd_ac97_controls_center[2] = {
AC97_SINGLE("Center Playback Switch", AC97_CENTER_LFE_MASTER, 7, 1, 1),
AC97_SINGLE("Center Playback Volume", AC97_CENTER_LFE_MASTER, 0, 31, 1)
};
static const struct snd_kcontrol_new snd_ac97_controls_lfe[2] = {
AC97_SINGLE("LFE Playback Switch", AC97_CENTER_LFE_MASTER, 15, 1, 1),
AC97_SINGLE("LFE Playback Volume", AC97_CENTER_LFE_MASTER, 8, 31, 1)
};
static const struct snd_kcontrol_new snd_ac97_control_eapd =
AC97_SINGLE("External Amplifier", AC97_POWERDOWN, 15, 1, 1);
static const struct snd_kcontrol_new snd_ac97_controls_modem_switches[2] = {
AC97_SINGLE("Off-hook Switch", AC97_GPIO_STATUS, 0, 1, 0),
AC97_SINGLE("Caller ID Switch", AC97_GPIO_STATUS, 2, 1, 0)
};
/* change the existing EAPD control as inverted */
static void set_inv_eapd(struct snd_ac97 *ac97, struct snd_kcontrol *kctl)
{
kctl->private_value = AC97_SINGLE_VALUE(AC97_POWERDOWN, 15, 1, 0);
snd_ac97_update_bits(ac97, AC97_POWERDOWN, (1<<15), (1<<15)); /* EAPD up */
ac97->scaps |= AC97_SCAP_INV_EAPD;
}
static int snd_ac97_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int snd_ac97_spdif_cmask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
IEC958_AES0_NONAUDIO |
IEC958_AES0_CON_EMPHASIS_5015 |
IEC958_AES0_CON_NOT_COPYRIGHT;
ucontrol->value.iec958.status[1] = IEC958_AES1_CON_CATEGORY |
IEC958_AES1_CON_ORIGINAL;
ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS;
return 0;
}
static int snd_ac97_spdif_pmask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
/* FIXME: AC'97 spec doesn't say which bits are used for what */
ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
IEC958_AES0_NONAUDIO |
IEC958_AES0_PRO_FS |
IEC958_AES0_PRO_EMPHASIS_5015;
return 0;
}
static int snd_ac97_spdif_default_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol);
mutex_lock(&ac97->reg_mutex);
ucontrol->value.iec958.status[0] = ac97->spdif_status & 0xff;
ucontrol->value.iec958.status[1] = (ac97->spdif_status >> 8) & 0xff;
ucontrol->value.iec958.status[2] = (ac97->spdif_status >> 16) & 0xff;
ucontrol->value.iec958.status[3] = (ac97->spdif_status >> 24) & 0xff;
mutex_unlock(&ac97->reg_mutex);
return 0;
}
static int snd_ac97_spdif_default_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol);
unsigned int new = 0;
unsigned short val = 0;
int change;
new = val = ucontrol->value.iec958.status[0] & (IEC958_AES0_PROFESSIONAL|IEC958_AES0_NONAUDIO);
if (ucontrol->value.iec958.status[0] & IEC958_AES0_PROFESSIONAL) {
new |= ucontrol->value.iec958.status[0] & (IEC958_AES0_PRO_FS|IEC958_AES0_PRO_EMPHASIS_5015);
switch (new & IEC958_AES0_PRO_FS) {
case IEC958_AES0_PRO_FS_44100: val |= 0<<12; break;
case IEC958_AES0_PRO_FS_48000: val |= 2<<12; break;
case IEC958_AES0_PRO_FS_32000: val |= 3<<12; break;
default: val |= 1<<12; break;
}
if ((new & IEC958_AES0_PRO_EMPHASIS) == IEC958_AES0_PRO_EMPHASIS_5015)
val |= 1<<3;
} else {
new |= ucontrol->value.iec958.status[0] & (IEC958_AES0_CON_EMPHASIS_5015|IEC958_AES0_CON_NOT_COPYRIGHT);
new |= ((ucontrol->value.iec958.status[1] & (IEC958_AES1_CON_CATEGORY|IEC958_AES1_CON_ORIGINAL)) << 8);
new |= ((ucontrol->value.iec958.status[3] & IEC958_AES3_CON_FS) << 24);
if ((new & IEC958_AES0_CON_EMPHASIS) == IEC958_AES0_CON_EMPHASIS_5015)
val |= 1<<3;
if (!(new & IEC958_AES0_CON_NOT_COPYRIGHT))
val |= 1<<2;
val |= ((new >> 8) & 0xff) << 4; // category + original
switch ((new >> 24) & 0xff) {
case IEC958_AES3_CON_FS_44100: val |= 0<<12; break;
case IEC958_AES3_CON_FS_48000: val |= 2<<12; break;
case IEC958_AES3_CON_FS_32000: val |= 3<<12; break;
default: val |= 1<<12; break;
}
}
mutex_lock(&ac97->reg_mutex);
change = ac97->spdif_status != new;
ac97->spdif_status = new;
if (ac97->flags & AC97_CS_SPDIF) {
int x = (val >> 12) & 0x03;
switch (x) {
case 0: x = 1; break; // 44.1
case 2: x = 0; break; // 48.0
default: x = 0; break; // illegal.
}
change |= snd_ac97_update_bits_nolock(ac97, AC97_CSR_SPDIF, 0x3fff, ((val & 0xcfff) | (x << 12)));
} else if (ac97->flags & AC97_CX_SPDIF) {
int v;
v = new & (IEC958_AES0_CON_EMPHASIS_5015|IEC958_AES0_CON_NOT_COPYRIGHT) ? 0 : AC97_CXR_COPYRGT;
v |= new & IEC958_AES0_NONAUDIO ? AC97_CXR_SPDIF_AC3 : AC97_CXR_SPDIF_PCM;
change |= snd_ac97_update_bits_nolock(ac97, AC97_CXR_AUDIO_MISC,
AC97_CXR_SPDIF_MASK | AC97_CXR_COPYRGT,
v);
} else if (ac97->id == AC97_ID_YMF743) {
change |= snd_ac97_update_bits_nolock(ac97,
AC97_YMF7X3_DIT_CTRL,
0xff38,
((val << 4) & 0xff00) |
((val << 2) & 0x0038));
} else {
unsigned short extst = snd_ac97_read_cache(ac97, AC97_EXTENDED_STATUS);
snd_ac97_update_bits_nolock(ac97, AC97_EXTENDED_STATUS, AC97_EA_SPDIF, 0); /* turn off */
change |= snd_ac97_update_bits_nolock(ac97, AC97_SPDIF, 0x3fff, val);
if (extst & AC97_EA_SPDIF) {
snd_ac97_update_bits_nolock(ac97, AC97_EXTENDED_STATUS, AC97_EA_SPDIF, AC97_EA_SPDIF); /* turn on again */
}
}
mutex_unlock(&ac97->reg_mutex);
return change;
}
static int snd_ac97_put_spsa(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol);
int reg = kcontrol->private_value & 0xff;
int shift = (kcontrol->private_value >> 8) & 0x0f;
int mask = (kcontrol->private_value >> 16) & 0xff;
// int invert = (kcontrol->private_value >> 24) & 0xff;
unsigned short value, old, new;
int change;
value = (ucontrol->value.integer.value[0] & mask);
mutex_lock(&ac97->reg_mutex);
mask <<= shift;
value <<= shift;
old = snd_ac97_read_cache(ac97, reg);
new = (old & ~mask) | value;
change = old != new;
if (change) {
unsigned short extst = snd_ac97_read_cache(ac97, AC97_EXTENDED_STATUS);
snd_ac97_update_bits_nolock(ac97, AC97_EXTENDED_STATUS, AC97_EA_SPDIF, 0); /* turn off */
change = snd_ac97_update_bits_nolock(ac97, reg, mask, value);
if (extst & AC97_EA_SPDIF)
snd_ac97_update_bits_nolock(ac97, AC97_EXTENDED_STATUS, AC97_EA_SPDIF, AC97_EA_SPDIF); /* turn on again */
}
mutex_unlock(&ac97->reg_mutex);
return change;
}
static const struct snd_kcontrol_new snd_ac97_controls_spdif[5] = {
{
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
.info = snd_ac97_spdif_mask_info,
.get = snd_ac97_spdif_cmask_get,
},
{
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PRO_MASK),
.info = snd_ac97_spdif_mask_info,
.get = snd_ac97_spdif_pmask_get,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
.info = snd_ac97_spdif_mask_info,
.get = snd_ac97_spdif_default_get,
.put = snd_ac97_spdif_default_put,
},
AC97_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH),AC97_EXTENDED_STATUS, 2, 1, 0),
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,NONE) "AC97-SPSA",
.info = snd_ac97_info_volsw,
.get = snd_ac97_get_volsw,
.put = snd_ac97_put_spsa,
.private_value = AC97_SINGLE_VALUE(AC97_EXTENDED_STATUS, 4, 3, 0)
},
};
#define AD18XX_PCM_BITS(xname, codec, lshift, rshift, mask) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_ac97_ad18xx_pcm_info_bits, \
.get = snd_ac97_ad18xx_pcm_get_bits, .put = snd_ac97_ad18xx_pcm_put_bits, \
.private_value = (codec) | ((lshift) << 8) | ((rshift) << 12) | ((mask) << 16) }
static int snd_ac97_ad18xx_pcm_info_bits(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol);
int mask = (kcontrol->private_value >> 16) & 0x0f;
int lshift = (kcontrol->private_value >> 8) & 0x0f;
int rshift = (kcontrol->private_value >> 12) & 0x0f;
uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
if (lshift != rshift && (ac97->flags & AC97_STEREO_MUTES))
uinfo->count = 2;
else
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = mask;
return 0;
}
static int snd_ac97_ad18xx_pcm_get_bits(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol);
int codec = kcontrol->private_value & 3;
int lshift = (kcontrol->private_value >> 8) & 0x0f;
int rshift = (kcontrol->private_value >> 12) & 0x0f;
int mask = (kcontrol->private_value >> 16) & 0xff;
ucontrol->value.integer.value[0] = mask - ((ac97->spec.ad18xx.pcmreg[codec] >> lshift) & mask);
if (lshift != rshift && (ac97->flags & AC97_STEREO_MUTES))
ucontrol->value.integer.value[1] = mask - ((ac97->spec.ad18xx.pcmreg[codec] >> rshift) & mask);
return 0;
}
static int snd_ac97_ad18xx_pcm_put_bits(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol);
int codec = kcontrol->private_value & 3;
int lshift = (kcontrol->private_value >> 8) & 0x0f;
int rshift = (kcontrol->private_value >> 12) & 0x0f;
int mask = (kcontrol->private_value >> 16) & 0xff;
unsigned short val, valmask;
val = (mask - (ucontrol->value.integer.value[0] & mask)) << lshift;
valmask = mask << lshift;
if (lshift != rshift && (ac97->flags & AC97_STEREO_MUTES)) {
val |= (mask - (ucontrol->value.integer.value[1] & mask)) << rshift;
valmask |= mask << rshift;
}
return snd_ac97_ad18xx_update_pcm_bits(ac97, codec, valmask, val);
}
#define AD18XX_PCM_VOLUME(xname, codec) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_ac97_ad18xx_pcm_info_volume, \
.get = snd_ac97_ad18xx_pcm_get_volume, .put = snd_ac97_ad18xx_pcm_put_volume, \
.private_value = codec }
static int snd_ac97_ad18xx_pcm_info_volume(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 31;
return 0;
}
static int snd_ac97_ad18xx_pcm_get_volume(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol);
int codec = kcontrol->private_value & 3;
mutex_lock(&ac97->page_mutex);
ucontrol->value.integer.value[0] = 31 - ((ac97->spec.ad18xx.pcmreg[codec] >> 8) & 31);
ucontrol->value.integer.value[1] = 31 - ((ac97->spec.ad18xx.pcmreg[codec] >> 0) & 31);
mutex_unlock(&ac97->page_mutex);
return 0;
}
static int snd_ac97_ad18xx_pcm_put_volume(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol);
int codec = kcontrol->private_value & 3;
unsigned short val1, val2;
val1 = 31 - (ucontrol->value.integer.value[0] & 31);
val2 = 31 - (ucontrol->value.integer.value[1] & 31);
return snd_ac97_ad18xx_update_pcm_bits(ac97, codec, 0x1f1f, (val1 << 8) | val2);
}
static const struct snd_kcontrol_new snd_ac97_controls_ad18xx_pcm[2] = {
AD18XX_PCM_BITS("PCM Playback Switch", 0, 15, 7, 1),
AD18XX_PCM_VOLUME("PCM Playback Volume", 0)
};
static const struct snd_kcontrol_new snd_ac97_controls_ad18xx_surround[2] = {
AD18XX_PCM_BITS("Surround Playback Switch", 1, 15, 7, 1),
AD18XX_PCM_VOLUME("Surround Playback Volume", 1)
};
static const struct snd_kcontrol_new snd_ac97_controls_ad18xx_center[2] = {
AD18XX_PCM_BITS("Center Playback Switch", 2, 15, 15, 1),
AD18XX_PCM_BITS("Center Playback Volume", 2, 8, 8, 31)
};
static const struct snd_kcontrol_new snd_ac97_controls_ad18xx_lfe[2] = {
AD18XX_PCM_BITS("LFE Playback Switch", 2, 7, 7, 1),
AD18XX_PCM_BITS("LFE Playback Volume", 2, 0, 0, 31)
};
/*
*
*/
static void snd_ac97_powerdown(struct snd_ac97 *ac97);
static int snd_ac97_bus_free(struct snd_ac97_bus *bus)
{
if (bus) {
snd_ac97_bus_proc_done(bus);
kfree(bus->pcms);
if (bus->private_free)
bus->private_free(bus);
kfree(bus);
}
return 0;
}
static int snd_ac97_bus_dev_free(struct snd_device *device)
{
struct snd_ac97_bus *bus = device->device_data;
return snd_ac97_bus_free(bus);
}
static int snd_ac97_free(struct snd_ac97 *ac97)
{
if (ac97) {
#ifdef CONFIG_SND_AC97_POWER_SAVE
cancel_delayed_work_sync(&ac97->power_work);
#endif
snd_ac97_proc_done(ac97);
if (ac97->bus)
ac97->bus->codec[ac97->num] = NULL;
if (ac97->private_free)
ac97->private_free(ac97);
kfree(ac97);
}
return 0;
}
static int snd_ac97_dev_free(struct snd_device *device)
{
struct snd_ac97 *ac97 = device->device_data;
snd_ac97_powerdown(ac97); /* for avoiding click noises during shut down */
return snd_ac97_free(ac97);
}
static int snd_ac97_try_volume_mix(struct snd_ac97 * ac97, int reg)
{
unsigned short val, mask = AC97_MUTE_MASK_MONO;
if (! snd_ac97_valid_reg(ac97, reg))
return 0;
switch (reg) {
case AC97_MASTER_TONE:
return ac97->caps & AC97_BC_BASS_TREBLE ? 1 : 0;
case AC97_HEADPHONE:
return ac97->caps & AC97_BC_HEADPHONE ? 1 : 0;
case AC97_REC_GAIN_MIC:
return ac97->caps & AC97_BC_DEDICATED_MIC ? 1 : 0;
case AC97_3D_CONTROL:
if (ac97->caps & AC97_BC_3D_TECH_ID_MASK) {
val = snd_ac97_read(ac97, reg);
/* if nonzero - fixed and we can't set it */
return val == 0;
}
return 0;
case AC97_CENTER_LFE_MASTER: /* center */
if ((ac97->ext_id & AC97_EI_CDAC) == 0)
return 0;
break;
case AC97_CENTER_LFE_MASTER+1: /* lfe */
if ((ac97->ext_id & AC97_EI_LDAC) == 0)
return 0;
reg = AC97_CENTER_LFE_MASTER;
mask = 0x0080;
break;
case AC97_SURROUND_MASTER:
if ((ac97->ext_id & AC97_EI_SDAC) == 0)
return 0;
break;
}
val = snd_ac97_read(ac97, reg);
if (!(val & mask)) {
/* nothing seems to be here - mute flag is not set */
/* try another test */
snd_ac97_write_cache(ac97, reg, val | mask);
val = snd_ac97_read(ac97, reg);
val = snd_ac97_read(ac97, reg);
if (!(val & mask))
return 0; /* nothing here */
}
return 1; /* success, useable */
}
static void check_volume_resolution(struct snd_ac97 *ac97, int reg, unsigned char *lo_max, unsigned char *hi_max)
{
unsigned short cbit[3] = { 0x20, 0x10, 0x01 };
unsigned char max[3] = { 63, 31, 15 };
int i;
/* first look up the static resolution table */
if (ac97->res_table) {
const struct snd_ac97_res_table *tbl;
for (tbl = ac97->res_table; tbl->reg; tbl++) {
if (tbl->reg == reg) {
*lo_max = tbl->bits & 0xff;
*hi_max = (tbl->bits >> 8) & 0xff;
return;
}
}
}
*lo_max = *hi_max = 0;
for (i = 0 ; i < ARRAY_SIZE(cbit); i++) {
unsigned short val;
snd_ac97_write(
ac97, reg,
AC97_MUTE_MASK_STEREO | cbit[i] | (cbit[i] << 8)
);
/* Do the read twice due to buffers on some ac97 codecs.
* e.g. The STAC9704 returns exactly what you wrote to the register
* if you read it immediately. This causes the detect routine to fail.
*/
val = snd_ac97_read(ac97, reg);
val = snd_ac97_read(ac97, reg);
if (! *lo_max && (val & 0x7f) == cbit[i])
*lo_max = max[i];
if (! *hi_max && ((val >> 8) & 0x7f) == cbit[i])
*hi_max = max[i];
if (*lo_max && *hi_max)
break;
}
}
static int snd_ac97_try_bit(struct snd_ac97 * ac97, int reg, int bit)
{
unsigned short mask, val, orig, res;
mask = 1 << bit;
orig = snd_ac97_read(ac97, reg);
val = orig ^ mask;
snd_ac97_write(ac97, reg, val);
res = snd_ac97_read(ac97, reg);
snd_ac97_write_cache(ac97, reg, orig);
return res == val;
}
/* check the volume resolution of center/lfe */
static void snd_ac97_change_volume_params2(struct snd_ac97 * ac97, int reg, int shift, unsigned char *max)
{
unsigned short val, val1;
*max = 63;
val = AC97_MUTE_MASK_STEREO | (0x20 << shift);
snd_ac97_write(ac97, reg, val);
val1 = snd_ac97_read(ac97, reg);
if (val != val1) {
*max = 31;
}
/* reset volume to zero */
snd_ac97_write_cache(ac97, reg, AC97_MUTE_MASK_STEREO);
}
static inline int printable(unsigned int x)
{
x &= 0xff;
if (x < ' ' || x >= 0x71) {
if (x <= 0x89)
return x - 0x71 + 'A';
return '?';
}
return x;
}
static struct snd_kcontrol *snd_ac97_cnew(const struct snd_kcontrol_new *_template,
struct snd_ac97 * ac97)
{
struct snd_kcontrol_new template;
memcpy(&template, _template, sizeof(template));
template.index = ac97->num;
return snd_ctl_new1(&template, ac97);
}
/*
* create mute switch(es) for normal stereo controls
*/
static int snd_ac97_cmute_new_stereo(struct snd_card *card, char *name, int reg,
int check_stereo, int check_amix,
struct snd_ac97 *ac97)
{
struct snd_kcontrol *kctl;
int err;
unsigned short val, val1, mute_mask;
if (! snd_ac97_valid_reg(ac97, reg))
return 0;
mute_mask = AC97_MUTE_MASK_MONO;
val = snd_ac97_read(ac97, reg);
if (check_stereo || (ac97->flags & AC97_STEREO_MUTES)) {
/* check whether both mute bits work */
val1 = val | AC97_MUTE_MASK_STEREO;
snd_ac97_write(ac97, reg, val1);
if (val1 == snd_ac97_read(ac97, reg))
mute_mask = AC97_MUTE_MASK_STEREO;
}
if (mute_mask == AC97_MUTE_MASK_STEREO) {
struct snd_kcontrol_new tmp = AC97_DOUBLE(name, reg, 15, 7, 1, 1);
if (check_amix)
tmp.private_value |= (1 << 30);
tmp.index = ac97->num;
kctl = snd_ctl_new1(&tmp, ac97);
} else {
struct snd_kcontrol_new tmp = AC97_SINGLE(name, reg, 15, 1, 1);
if (check_amix)
tmp.private_value |= (1 << 30);
tmp.index = ac97->num;
kctl = snd_ctl_new1(&tmp, ac97);
}
err = snd_ctl_add(card, kctl);
if (err < 0)
return err;
/* mute as default */
snd_ac97_write_cache(ac97, reg, val | mute_mask);
return 0;
}
/*
* set dB information
*/
static const DECLARE_TLV_DB_SCALE(db_scale_4bit, -4500, 300, 0);
static const DECLARE_TLV_DB_SCALE(db_scale_5bit, -4650, 150, 0);
static const DECLARE_TLV_DB_SCALE(db_scale_6bit, -9450, 150, 0);
static const DECLARE_TLV_DB_SCALE(db_scale_5bit_12db_max, -3450, 150, 0);
static const DECLARE_TLV_DB_SCALE(db_scale_rec_gain, 0, 150, 0);
static const unsigned int *find_db_scale(unsigned int maxval)
{
switch (maxval) {
case 0x0f: return db_scale_4bit;
case 0x1f: return db_scale_5bit;
case 0x3f: return db_scale_6bit;
}
return NULL;
}
static void set_tlv_db_scale(struct snd_kcontrol *kctl, const unsigned int *tlv)
{
kctl->tlv.p = tlv;
if (tlv)
kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_TLV_READ;
}
/*
* create a volume for normal stereo/mono controls
*/
static int snd_ac97_cvol_new(struct snd_card *card, char *name, int reg, unsigned int lo_max,
unsigned int hi_max, struct snd_ac97 *ac97)
{
int err;
struct snd_kcontrol *kctl;
if (! snd_ac97_valid_reg(ac97, reg))
return 0;
if (hi_max) {
/* invert */
struct snd_kcontrol_new tmp = AC97_DOUBLE(name, reg, 8, 0, lo_max, 1);
tmp.index = ac97->num;
kctl = snd_ctl_new1(&tmp, ac97);
} else {
/* invert */
struct snd_kcontrol_new tmp = AC97_SINGLE(name, reg, 0, lo_max, 1);
tmp.index = ac97->num;
kctl = snd_ctl_new1(&tmp, ac97);
}
if (!kctl)
return -ENOMEM;
if (reg >= AC97_PHONE && reg <= AC97_PCM)
set_tlv_db_scale(kctl, db_scale_5bit_12db_max);
else
set_tlv_db_scale(kctl, find_db_scale(lo_max));
err = snd_ctl_add(card, kctl);
if (err < 0)
return err;
snd_ac97_write_cache(
ac97, reg,
(snd_ac97_read(ac97, reg) & AC97_MUTE_MASK_STEREO)
| lo_max | (hi_max << 8)
);
return 0;
}
/*
* create a mute-switch and a volume for normal stereo/mono controls
*/
static int snd_ac97_cmix_new_stereo(struct snd_card *card, const char *pfx,
int reg, int check_stereo, int check_amix,
struct snd_ac97 *ac97)
{
int err;
char name[SNDRV_CTL_ELEM_ID_NAME_MAXLEN];
unsigned char lo_max, hi_max;
if (! snd_ac97_valid_reg(ac97, reg))
return 0;
if (snd_ac97_try_bit(ac97, reg, 15)) {
sprintf(name, "%s Switch", pfx);
err = snd_ac97_cmute_new_stereo(card, name, reg,
check_stereo, check_amix,
ac97);
if (err < 0)
return err;
}
check_volume_resolution(ac97, reg, &lo_max, &hi_max);
if (lo_max) {
sprintf(name, "%s Volume", pfx);
err = snd_ac97_cvol_new(card, name, reg, lo_max, hi_max, ac97);
if (err < 0)
return err;
}
return 0;
}
#define snd_ac97_cmix_new(card, pfx, reg, acheck, ac97) \
snd_ac97_cmix_new_stereo(card, pfx, reg, 0, acheck, ac97)
#define snd_ac97_cmute_new(card, name, reg, acheck, ac97) \
snd_ac97_cmute_new_stereo(card, name, reg, 0, acheck, ac97)
static unsigned int snd_ac97_determine_spdif_rates(struct snd_ac97 *ac97);
static int snd_ac97_mixer_build(struct snd_ac97 * ac97)
{
struct snd_card *card = ac97->bus->card;
struct snd_kcontrol *kctl;
int err;
unsigned int idx;
unsigned char max;
/* build master controls */
/* AD claims to remove this control from AD1887, although spec v2.2 does not allow this */
if (snd_ac97_try_volume_mix(ac97, AC97_MASTER)) {
if (ac97->flags & AC97_HAS_NO_MASTER_VOL)
err = snd_ac97_cmute_new(card, "Master Playback Switch",
AC97_MASTER, 0, ac97);
else
err = snd_ac97_cmix_new(card, "Master Playback",
AC97_MASTER, 0, ac97);
if (err < 0)
return err;
}
ac97->regs[AC97_CENTER_LFE_MASTER] = AC97_MUTE_MASK_STEREO;
/* build center controls */
if ((snd_ac97_try_volume_mix(ac97, AC97_CENTER_LFE_MASTER))
&& !(ac97->flags & AC97_AD_MULTI)) {
err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_center[0], ac97));
if (err < 0)
return err;
err = snd_ctl_add(card, kctl = snd_ac97_cnew(&snd_ac97_controls_center[1], ac97));
if (err < 0)
return err;
snd_ac97_change_volume_params2(ac97, AC97_CENTER_LFE_MASTER, 0, &max);
kctl->private_value &= ~(0xff << 16);
kctl->private_value |= (int)max << 16;
set_tlv_db_scale(kctl, find_db_scale(max));
snd_ac97_write_cache(ac97, AC97_CENTER_LFE_MASTER, ac97->regs[AC97_CENTER_LFE_MASTER] | max);
}
/* build LFE controls */
if ((snd_ac97_try_volume_mix(ac97, AC97_CENTER_LFE_MASTER+1))
&& !(ac97->flags & AC97_AD_MULTI)) {
err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_lfe[0], ac97));
if (err < 0)
return err;
err = snd_ctl_add(card, kctl = snd_ac97_cnew(&snd_ac97_controls_lfe[1], ac97));
if (err < 0)
return err;
snd_ac97_change_volume_params2(ac97, AC97_CENTER_LFE_MASTER, 8, &max);
kctl->private_value &= ~(0xff << 16);
kctl->private_value |= (int)max << 16;
set_tlv_db_scale(kctl, find_db_scale(max));
snd_ac97_write_cache(ac97, AC97_CENTER_LFE_MASTER, ac97->regs[AC97_CENTER_LFE_MASTER] | max << 8);
}
/* build surround controls */
if ((snd_ac97_try_volume_mix(ac97, AC97_SURROUND_MASTER))
&& !(ac97->flags & AC97_AD_MULTI)) {
/* Surround Master (0x38) is with stereo mutes */
err = snd_ac97_cmix_new_stereo(card, "Surround Playback",
AC97_SURROUND_MASTER, 1, 0,
ac97);
if (err < 0)
return err;
}
/* build headphone controls */
if (snd_ac97_try_volume_mix(ac97, AC97_HEADPHONE)) {
err = snd_ac97_cmix_new(card, "Headphone Playback",
AC97_HEADPHONE, 0, ac97);
if (err < 0)
return err;
}
/* build master mono controls */
if (snd_ac97_try_volume_mix(ac97, AC97_MASTER_MONO)) {
err = snd_ac97_cmix_new(card, "Master Mono Playback",
AC97_MASTER_MONO, 0, ac97);
if (err < 0)
return err;
}
/* build master tone controls */
if (!(ac97->flags & AC97_HAS_NO_TONE)) {
if (snd_ac97_try_volume_mix(ac97, AC97_MASTER_TONE)) {
for (idx = 0; idx < 2; idx++) {
kctl = snd_ac97_cnew(&snd_ac97_controls_tone[idx], ac97);
err = snd_ctl_add(card, kctl);
if (err < 0)
return err;
if (ac97->id == AC97_ID_YMF743 ||
ac97->id == AC97_ID_YMF753) {
kctl->private_value &= ~(0xff << 16);
kctl->private_value |= 7 << 16;
}
}
snd_ac97_write_cache(ac97, AC97_MASTER_TONE, 0x0f0f);
}
}
/* build Beep controls */
if (!(ac97->flags & AC97_HAS_NO_PC_BEEP) &&
((ac97->flags & AC97_HAS_PC_BEEP) ||
snd_ac97_try_volume_mix(ac97, AC97_PC_BEEP))) {
for (idx = 0; idx < 2; idx++) {
kctl = snd_ac97_cnew(&snd_ac97_controls_pc_beep[idx], ac97);
err = snd_ctl_add(card, kctl);
if (err < 0)
return err;
}
set_tlv_db_scale(kctl, db_scale_4bit);
snd_ac97_write_cache(
ac97,
AC97_PC_BEEP,
(snd_ac97_read(ac97, AC97_PC_BEEP)
| AC97_MUTE_MASK_MONO | 0x001e)
);
}
/* build Phone controls */
if (!(ac97->flags & AC97_HAS_NO_PHONE)) {
if (snd_ac97_try_volume_mix(ac97, AC97_PHONE)) {
err = snd_ac97_cmix_new(card, "Phone Playback",
AC97_PHONE, 1, ac97);
if (err < 0)
return err;
}
}
/* build MIC controls */
if (!(ac97->flags & AC97_HAS_NO_MIC)) {
if (snd_ac97_try_volume_mix(ac97, AC97_MIC)) {
err = snd_ac97_cmix_new(card, "Mic Playback",
AC97_MIC, 1, ac97);
if (err < 0)
return err;
err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_mic_boost, ac97));
if (err < 0)
return err;
}
}
/* build Line controls */
if (snd_ac97_try_volume_mix(ac97, AC97_LINE)) {
err = snd_ac97_cmix_new(card, "Line Playback",
AC97_LINE, 1, ac97);
if (err < 0)
return err;
}
/* build CD controls */
if (!(ac97->flags & AC97_HAS_NO_CD)) {
if (snd_ac97_try_volume_mix(ac97, AC97_CD)) {
err = snd_ac97_cmix_new(card, "CD Playback",
AC97_CD, 1, ac97);
if (err < 0)
return err;
}
}
/* build Video controls */
if (!(ac97->flags & AC97_HAS_NO_VIDEO)) {
if (snd_ac97_try_volume_mix(ac97, AC97_VIDEO)) {
err = snd_ac97_cmix_new(card, "Video Playback",
AC97_VIDEO, 1, ac97);
if (err < 0)
return err;
}
}
/* build Aux controls */
if (!(ac97->flags & AC97_HAS_NO_AUX)) {
if (snd_ac97_try_volume_mix(ac97, AC97_AUX)) {
err = snd_ac97_cmix_new(card, "Aux Playback",
AC97_AUX, 1, ac97);
if (err < 0)
return err;
}
}
/* build PCM controls */
if (ac97->flags & AC97_AD_MULTI) {
unsigned short init_val;
if (ac97->flags & AC97_STEREO_MUTES)
init_val = 0x9f9f;
else
init_val = 0x9f1f;
for (idx = 0; idx < 2; idx++) {
kctl = snd_ac97_cnew(&snd_ac97_controls_ad18xx_pcm[idx], ac97);
err = snd_ctl_add(card, kctl);
if (err < 0)
return err;
}
set_tlv_db_scale(kctl, db_scale_5bit);
ac97->spec.ad18xx.pcmreg[0] = init_val;
if (ac97->scaps & AC97_SCAP_SURROUND_DAC) {
for (idx = 0; idx < 2; idx++) {
kctl = snd_ac97_cnew(&snd_ac97_controls_ad18xx_surround[idx], ac97);
err = snd_ctl_add(card, kctl);
if (err < 0)
return err;
}
set_tlv_db_scale(kctl, db_scale_5bit);
ac97->spec.ad18xx.pcmreg[1] = init_val;
}
if (ac97->scaps & AC97_SCAP_CENTER_LFE_DAC) {
for (idx = 0; idx < 2; idx++) {
kctl = snd_ac97_cnew(&snd_ac97_controls_ad18xx_center[idx], ac97);
err = snd_ctl_add(card, kctl);
if (err < 0)
return err;
}
set_tlv_db_scale(kctl, db_scale_5bit);
for (idx = 0; idx < 2; idx++) {
kctl = snd_ac97_cnew(&snd_ac97_controls_ad18xx_lfe[idx], ac97);
err = snd_ctl_add(card, kctl);
if (err < 0)
return err;
}
set_tlv_db_scale(kctl, db_scale_5bit);
ac97->spec.ad18xx.pcmreg[2] = init_val;
}
snd_ac97_write_cache(ac97, AC97_PCM, init_val);
} else {
if (!(ac97->flags & AC97_HAS_NO_STD_PCM)) {
if (ac97->flags & AC97_HAS_NO_PCM_VOL)
err = snd_ac97_cmute_new(card,
"PCM Playback Switch",
AC97_PCM, 0, ac97);
else
err = snd_ac97_cmix_new(card, "PCM Playback",
AC97_PCM, 0, ac97);
if (err < 0)
return err;
}
}
/* build Capture controls */
if (!(ac97->flags & AC97_HAS_NO_REC_GAIN)) {
err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_control_capture_src, ac97));
if (err < 0)
return err;
if (snd_ac97_try_bit(ac97, AC97_REC_GAIN, 15)) {
err = snd_ac97_cmute_new(card, "Capture Switch",
AC97_REC_GAIN, 0, ac97);
if (err < 0)
return err;
}
kctl = snd_ac97_cnew(&snd_ac97_control_capture_vol, ac97);
err = snd_ctl_add(card, kctl);
if (err < 0)
return err;
set_tlv_db_scale(kctl, db_scale_rec_gain);
snd_ac97_write_cache(ac97, AC97_REC_SEL, 0x0000);
snd_ac97_write_cache(ac97, AC97_REC_GAIN, 0x0000);
}
/* build MIC Capture controls */
if (snd_ac97_try_volume_mix(ac97, AC97_REC_GAIN_MIC)) {
for (idx = 0; idx < 2; idx++) {
kctl = snd_ac97_cnew(&snd_ac97_controls_mic_capture[idx], ac97);
err = snd_ctl_add(card, kctl);
if (err < 0)
return err;
}
set_tlv_db_scale(kctl, db_scale_rec_gain);
snd_ac97_write_cache(ac97, AC97_REC_GAIN_MIC, 0x0000);
}
/* build PCM out path & mute control */
if (snd_ac97_try_bit(ac97, AC97_GENERAL_PURPOSE, 15)) {
err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_general[AC97_GENERAL_PCM_OUT], ac97));
if (err < 0)
return err;
}
/* build Simulated Stereo Enhancement control */
if (ac97->caps & AC97_BC_SIM_STEREO) {
err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_general[AC97_GENERAL_STEREO_ENHANCEMENT], ac97));
if (err < 0)
return err;
}
/* build 3D Stereo Enhancement control */
if (snd_ac97_try_bit(ac97, AC97_GENERAL_PURPOSE, 13)) {
err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_general[AC97_GENERAL_3D], ac97));
if (err < 0)
return err;
}
/* build Loudness control */
if (ac97->caps & AC97_BC_LOUDNESS) {
err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_general[AC97_GENERAL_LOUDNESS], ac97));
if (err < 0)
return err;
}
/* build Mono output select control */
if (snd_ac97_try_bit(ac97, AC97_GENERAL_PURPOSE, 9)) {
err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_general[AC97_GENERAL_MONO], ac97));
if (err < 0)
return err;
}
/* build Mic select control */
if (snd_ac97_try_bit(ac97, AC97_GENERAL_PURPOSE, 8)) {
err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_general[AC97_GENERAL_MIC], ac97));
if (err < 0)
return err;
}
/* build ADC/DAC loopback control */
if (enable_loopback && snd_ac97_try_bit(ac97, AC97_GENERAL_PURPOSE, 7)) {
err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_general[AC97_GENERAL_LOOPBACK], ac97));
if (err < 0)
return err;
}
snd_ac97_update_bits(ac97, AC97_GENERAL_PURPOSE, ~AC97_GP_DRSS_MASK, 0x0000);
/* build 3D controls */
if (ac97->build_ops->build_3d) {
ac97->build_ops->build_3d(ac97);
} else {
if (snd_ac97_try_volume_mix(ac97, AC97_3D_CONTROL)) {
unsigned short val;
val = 0x0707;
snd_ac97_write(ac97, AC97_3D_CONTROL, val);
val = snd_ac97_read(ac97, AC97_3D_CONTROL);
val = val == 0x0606;
kctl = snd_ac97_cnew(&snd_ac97_controls_3d[0], ac97);
err = snd_ctl_add(card, kctl);
if (err < 0)
return err;
if (val)
kctl->private_value = AC97_3D_CONTROL | (9 << 8) | (7 << 16);
kctl = snd_ac97_cnew(&snd_ac97_controls_3d[1], ac97);
err = snd_ctl_add(card, kctl);
if (err < 0)
return err;
if (val)
kctl->private_value = AC97_3D_CONTROL | (1 << 8) | (7 << 16);
snd_ac97_write_cache(ac97, AC97_3D_CONTROL, 0x0000);
}
}
/* build S/PDIF controls */
/* Hack for ASUS P5P800-VM, which does not indicate S/PDIF capability */
if (ac97->subsystem_vendor == 0x1043 &&
ac97->subsystem_device == 0x810f)
ac97->ext_id |= AC97_EI_SPDIF;
if ((ac97->ext_id & AC97_EI_SPDIF) && !(ac97->scaps & AC97_SCAP_NO_SPDIF)) {
if (ac97->build_ops->build_spdif) {
err = ac97->build_ops->build_spdif(ac97);
if (err < 0)
return err;
} else {
for (idx = 0; idx < 5; idx++) {
err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_spdif[idx], ac97));
if (err < 0)
return err;
}
if (ac97->build_ops->build_post_spdif) {
err = ac97->build_ops->build_post_spdif(ac97);
if (err < 0)
return err;
}
/* set default PCM S/PDIF params */
/* consumer,PCM audio,no copyright,no preemphasis,PCM coder,original,48000Hz */
snd_ac97_write_cache(ac97, AC97_SPDIF, 0x2a20);
ac97->rates[AC97_RATES_SPDIF] = snd_ac97_determine_spdif_rates(ac97);
}
ac97->spdif_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
}
/* build chip specific controls */
if (ac97->build_ops->build_specific) {
err = ac97->build_ops->build_specific(ac97);
if (err < 0)
return err;
}
if (snd_ac97_try_bit(ac97, AC97_POWERDOWN, 15)) {
kctl = snd_ac97_cnew(&snd_ac97_control_eapd, ac97);
if (! kctl)
return -ENOMEM;
if (ac97->scaps & AC97_SCAP_INV_EAPD)
set_inv_eapd(ac97, kctl);
err = snd_ctl_add(card, kctl);
if (err < 0)
return err;
}
return 0;
}
static int snd_ac97_modem_build(struct snd_card *card, struct snd_ac97 * ac97)
{
int err, idx;
/*
ac97_dbg(ac97, "AC97_GPIO_CFG = %x\n",
snd_ac97_read(ac97,AC97_GPIO_CFG));
*/
snd_ac97_write(ac97, AC97_GPIO_CFG, 0xffff & ~(AC97_GPIO_LINE1_OH));
snd_ac97_write(ac97, AC97_GPIO_POLARITY, 0xffff & ~(AC97_GPIO_LINE1_OH));
snd_ac97_write(ac97, AC97_GPIO_STICKY, 0xffff);
snd_ac97_write(ac97, AC97_GPIO_WAKEUP, 0x0);
snd_ac97_write(ac97, AC97_MISC_AFE, 0x0);
/* build modem switches */
for (idx = 0; idx < ARRAY_SIZE(snd_ac97_controls_modem_switches); idx++) {
err = snd_ctl_add(card, snd_ctl_new1(&snd_ac97_controls_modem_switches[idx], ac97));
if (err < 0)
return err;
}
/* build chip specific controls */
if (ac97->build_ops->build_specific) {
err = ac97->build_ops->build_specific(ac97);
if (err < 0)
return err;
}
return 0;
}
static int snd_ac97_test_rate(struct snd_ac97 *ac97, int reg, int shadow_reg, int rate)
{
unsigned short val;
unsigned int tmp;
tmp = ((unsigned int)rate * ac97->bus->clock) / 48000;
snd_ac97_write_cache(ac97, reg, tmp & 0xffff);
if (shadow_reg)
snd_ac97_write_cache(ac97, shadow_reg, tmp & 0xffff);
val = snd_ac97_read(ac97, reg);
return val == (tmp & 0xffff);
}
static void snd_ac97_determine_rates(struct snd_ac97 *ac97, int reg, int shadow_reg, unsigned int *r_result)
{
unsigned int result = 0;
unsigned short saved;
if (ac97->bus->no_vra) {
*r_result = SNDRV_PCM_RATE_48000;
if ((ac97->flags & AC97_DOUBLE_RATE) &&
reg == AC97_PCM_FRONT_DAC_RATE)
*r_result |= SNDRV_PCM_RATE_96000;
return;
}
saved = snd_ac97_read(ac97, reg);
if ((ac97->ext_id & AC97_EI_DRA) && reg == AC97_PCM_FRONT_DAC_RATE)
snd_ac97_update_bits(ac97, AC97_EXTENDED_STATUS,
AC97_EA_DRA, 0);
/* test a non-standard rate */
if (snd_ac97_test_rate(ac97, reg, shadow_reg, 11000))
result |= SNDRV_PCM_RATE_CONTINUOUS;
/* let's try to obtain standard rates */
if (snd_ac97_test_rate(ac97, reg, shadow_reg, 8000))
result |= SNDRV_PCM_RATE_8000;
if (snd_ac97_test_rate(ac97, reg, shadow_reg, 11025))
result |= SNDRV_PCM_RATE_11025;
if (snd_ac97_test_rate(ac97, reg, shadow_reg, 16000))
result |= SNDRV_PCM_RATE_16000;
if (snd_ac97_test_rate(ac97, reg, shadow_reg, 22050))
result |= SNDRV_PCM_RATE_22050;
if (snd_ac97_test_rate(ac97, reg, shadow_reg, 32000))
result |= SNDRV_PCM_RATE_32000;
if (snd_ac97_test_rate(ac97, reg, shadow_reg, 44100))
result |= SNDRV_PCM_RATE_44100;
if (snd_ac97_test_rate(ac97, reg, shadow_reg, 48000))
result |= SNDRV_PCM_RATE_48000;
if ((ac97->flags & AC97_DOUBLE_RATE) &&
reg == AC97_PCM_FRONT_DAC_RATE) {
/* test standard double rates */
snd_ac97_update_bits(ac97, AC97_EXTENDED_STATUS,
AC97_EA_DRA, AC97_EA_DRA);
if (snd_ac97_test_rate(ac97, reg, shadow_reg, 64000 / 2))
result |= SNDRV_PCM_RATE_64000;
if (snd_ac97_test_rate(ac97, reg, shadow_reg, 88200 / 2))
result |= SNDRV_PCM_RATE_88200;
if (snd_ac97_test_rate(ac97, reg, shadow_reg, 96000 / 2))
result |= SNDRV_PCM_RATE_96000;
/* some codecs don't support variable double rates */
if (!snd_ac97_test_rate(ac97, reg, shadow_reg, 76100 / 2))
result &= ~SNDRV_PCM_RATE_CONTINUOUS;
snd_ac97_update_bits(ac97, AC97_EXTENDED_STATUS,
AC97_EA_DRA, 0);
}
/* restore the default value */
snd_ac97_write_cache(ac97, reg, saved);
if (shadow_reg)
snd_ac97_write_cache(ac97, shadow_reg, saved);
*r_result = result;
}
/* check AC97_SPDIF register to accept which sample rates */
static unsigned int snd_ac97_determine_spdif_rates(struct snd_ac97 *ac97)
{
unsigned int result = 0;
int i;
static const unsigned short ctl_bits[] = {
AC97_SC_SPSR_44K, AC97_SC_SPSR_32K, AC97_SC_SPSR_48K
};
static const unsigned int rate_bits[] = {
SNDRV_PCM_RATE_44100, SNDRV_PCM_RATE_32000, SNDRV_PCM_RATE_48000
};
for (i = 0; i < (int)ARRAY_SIZE(ctl_bits); i++) {
snd_ac97_update_bits(ac97, AC97_SPDIF, AC97_SC_SPSR_MASK, ctl_bits[i]);
if ((snd_ac97_read(ac97, AC97_SPDIF) & AC97_SC_SPSR_MASK) == ctl_bits[i])
result |= rate_bits[i];
}
return result;
}
/* look for the codec id table matching with the given id */
static const struct ac97_codec_id *look_for_codec_id(const struct ac97_codec_id *table,
unsigned int id)
{
const struct ac97_codec_id *pid;
for (pid = table; pid->id; pid++)
if (pid->id == (id & pid->mask))
return pid;
return NULL;
}
void snd_ac97_get_name(struct snd_ac97 *ac97, unsigned int id, char *name, int modem)
{
const struct ac97_codec_id *pid;
sprintf(name, "0x%x %c%c%c", id,
printable(id >> 24),
printable(id >> 16),
printable(id >> 8));
pid = look_for_codec_id(snd_ac97_codec_id_vendors, id);
if (! pid)
return;
strcpy(name, pid->name);
if (ac97 && pid->patch) {
if ((modem && (pid->flags & AC97_MODEM_PATCH)) ||
(! modem && ! (pid->flags & AC97_MODEM_PATCH)))
pid->patch(ac97);
}
pid = look_for_codec_id(snd_ac97_codec_ids, id);
if (pid) {
strcat(name, " ");
strcat(name, pid->name);
if (pid->mask != 0xffffffff)
sprintf(name + strlen(name), " rev %d", id & ~pid->mask);
if (ac97 && pid->patch) {
if ((modem && (pid->flags & AC97_MODEM_PATCH)) ||
(! modem && ! (pid->flags & AC97_MODEM_PATCH)))
pid->patch(ac97);
}
} else
sprintf(name + strlen(name), " id %x", id & 0xff);
}
/**
* snd_ac97_get_short_name - retrieve codec name
* @ac97: the codec instance
*
* Return: The short identifying name of the codec.
*/
const char *snd_ac97_get_short_name(struct snd_ac97 *ac97)
{
const struct ac97_codec_id *pid;
for (pid = snd_ac97_codec_ids; pid->id; pid++)
if (pid->id == (ac97->id & pid->mask))
return pid->name;
return "unknown codec";
}
EXPORT_SYMBOL(snd_ac97_get_short_name);
/* wait for a while until registers are accessible after RESET
* return 0 if ok, negative not ready
*/
static int ac97_reset_wait(struct snd_ac97 *ac97, int timeout, int with_modem)
{
unsigned long end_time;
unsigned short val;
end_time = jiffies + timeout;
do {
/* use preliminary reads to settle the communication */
snd_ac97_read(ac97, AC97_RESET);
snd_ac97_read(ac97, AC97_VENDOR_ID1);
snd_ac97_read(ac97, AC97_VENDOR_ID2);
/* modem? */
if (with_modem) {
val = snd_ac97_read(ac97, AC97_EXTENDED_MID);
if (val != 0xffff && (val & 1) != 0)
return 0;
}
if (ac97->scaps & AC97_SCAP_DETECT_BY_VENDOR) {
/* probably only Xbox issue - all registers are read as zero */
val = snd_ac97_read(ac97, AC97_VENDOR_ID1);
if (val != 0 && val != 0xffff)
return 0;
} else {
/* because the PCM or MASTER volume registers can be modified,
* the REC_GAIN register is used for tests
*/
/* test if we can write to the record gain volume register */
snd_ac97_write_cache(ac97, AC97_REC_GAIN, 0x8a05);
if ((snd_ac97_read(ac97, AC97_REC_GAIN) & 0x7fff) == 0x0a05)
return 0;
}
schedule_timeout_uninterruptible(1);
} while (time_after_eq(end_time, jiffies));
return -ENODEV;
}
/**
* snd_ac97_bus - create an AC97 bus component
* @card: the card instance
* @num: the bus number
* @ops: the bus callbacks table
* @private_data: private data pointer for the new instance
* @rbus: the pointer to store the new AC97 bus instance.
*
* Creates an AC97 bus component. An struct snd_ac97_bus instance is newly
* allocated and initialized.
*
* The ops table must include valid callbacks (at least read and
* write). The other callbacks, wait and reset, are not mandatory.
*
* The clock is set to 48000. If another clock is needed, set
* ``(*rbus)->clock`` manually.
*
* The AC97 bus instance is registered as a low-level device, so you don't
* have to release it manually.
*
* Return: Zero if successful, or a negative error code on failure.
*/
int snd_ac97_bus(struct snd_card *card, int num,
const struct snd_ac97_bus_ops *ops,
void *private_data, struct snd_ac97_bus **rbus)
{
int err;
struct snd_ac97_bus *bus;
static const struct snd_device_ops dev_ops = {
.dev_free = snd_ac97_bus_dev_free,
};
if (snd_BUG_ON(!card))
return -EINVAL;
bus = kzalloc(sizeof(*bus), GFP_KERNEL);
if (bus == NULL)
return -ENOMEM;
bus->card = card;
bus->num = num;
bus->ops = ops;
bus->private_data = private_data;
bus->clock = 48000;
spin_lock_init(&bus->bus_lock);
snd_ac97_bus_proc_init(bus);
err = snd_device_new(card, SNDRV_DEV_BUS, bus, &dev_ops);
if (err < 0) {
snd_ac97_bus_free(bus);
return err;
}
if (rbus)
*rbus = bus;
return 0;
}
EXPORT_SYMBOL(snd_ac97_bus);
/* stop no dev release warning */
static void ac97_device_release(struct device * dev)
{
}
/* register ac97 codec to bus */
static int snd_ac97_dev_register(struct snd_device *device)
{
struct snd_ac97 *ac97 = device->device_data;
int err;
ac97->dev.bus = &ac97_bus_type;
ac97->dev.parent = ac97->bus->card->dev;
ac97->dev.release = ac97_device_release;
dev_set_name(&ac97->dev, "%d-%d:%s",
ac97->bus->card->number, ac97->num,
snd_ac97_get_short_name(ac97));
err = device_register(&ac97->dev);
if (err < 0) {
ac97_err(ac97, "Can't register ac97 bus\n");
ac97->dev.bus = NULL;
return err;
}
return 0;
}
/* disconnect ac97 codec */
static int snd_ac97_dev_disconnect(struct snd_device *device)
{
struct snd_ac97 *ac97 = device->device_data;
if (ac97->dev.bus)
device_unregister(&ac97->dev);
return 0;
}
/* build_ops to do nothing */
static const struct snd_ac97_build_ops null_build_ops;
#ifdef CONFIG_SND_AC97_POWER_SAVE
static void do_update_power(struct work_struct *work)
{
update_power_regs(
container_of(work, struct snd_ac97, power_work.work));
}
#endif
/**
* snd_ac97_mixer - create an Codec97 component
* @bus: the AC97 bus which codec is attached to
* @template: the template of ac97, including index, callbacks and
* the private data.
* @rac97: the pointer to store the new ac97 instance.
*
* Creates an Codec97 component. An struct snd_ac97 instance is newly
* allocated and initialized from the template. The codec
* is then initialized by the standard procedure.
*
* The template must include the codec number (num) and address (addr),
* and the private data (private_data).
*
* The ac97 instance is registered as a low-level device, so you don't
* have to release it manually.
*
* Return: Zero if successful, or a negative error code on failure.
*/
int snd_ac97_mixer(struct snd_ac97_bus *bus, struct snd_ac97_template *template, struct snd_ac97 **rac97)
{
int err;
struct snd_ac97 *ac97;
struct snd_card *card;
char name[64];
unsigned long end_time;
unsigned int reg;
const struct ac97_codec_id *pid;
static const struct snd_device_ops ops = {
.dev_free = snd_ac97_dev_free,
.dev_register = snd_ac97_dev_register,
.dev_disconnect = snd_ac97_dev_disconnect,
};
if (rac97)
*rac97 = NULL;
if (snd_BUG_ON(!bus || !template))
return -EINVAL;
if (snd_BUG_ON(template->num >= 4))
return -EINVAL;
if (bus->codec[template->num])
return -EBUSY;
card = bus->card;
ac97 = kzalloc(sizeof(*ac97), GFP_KERNEL);
if (ac97 == NULL)
return -ENOMEM;
ac97->private_data = template->private_data;
ac97->private_free = template->private_free;
ac97->bus = bus;
ac97->pci = template->pci;
ac97->num = template->num;
ac97->addr = template->addr;
ac97->scaps = template->scaps;
ac97->res_table = template->res_table;
bus->codec[ac97->num] = ac97;
mutex_init(&ac97->reg_mutex);
mutex_init(&ac97->page_mutex);
#ifdef CONFIG_SND_AC97_POWER_SAVE
INIT_DELAYED_WORK(&ac97->power_work, do_update_power);
#endif
#ifdef CONFIG_PCI
if (ac97->pci) {
pci_read_config_word(ac97->pci, PCI_SUBSYSTEM_VENDOR_ID, &ac97->subsystem_vendor);
pci_read_config_word(ac97->pci, PCI_SUBSYSTEM_ID, &ac97->subsystem_device);
}
#endif
if (bus->ops->reset) {
bus->ops->reset(ac97);
goto __access_ok;
}
ac97->id = snd_ac97_read(ac97, AC97_VENDOR_ID1) << 16;
ac97->id |= snd_ac97_read(ac97, AC97_VENDOR_ID2);
if (ac97->id && ac97->id != (unsigned int)-1) {
pid = look_for_codec_id(snd_ac97_codec_ids, ac97->id);
if (pid && (pid->flags & AC97_DEFAULT_POWER_OFF))
goto __access_ok;
}
/* reset to defaults */
if (!(ac97->scaps & AC97_SCAP_SKIP_AUDIO))
snd_ac97_write(ac97, AC97_RESET, 0);
if (!(ac97->scaps & AC97_SCAP_SKIP_MODEM))
snd_ac97_write(ac97, AC97_EXTENDED_MID, 0);
if (bus->ops->wait)
bus->ops->wait(ac97);
else {
udelay(50);
if (ac97->scaps & AC97_SCAP_SKIP_AUDIO)
err = ac97_reset_wait(ac97, msecs_to_jiffies(500), 1);
else {
err = ac97_reset_wait(ac97, msecs_to_jiffies(500), 0);
if (err < 0)
err = ac97_reset_wait(ac97,
msecs_to_jiffies(500), 1);
}
if (err < 0) {
ac97_warn(ac97, "AC'97 %d does not respond - RESET\n",
ac97->num);
/* proceed anyway - it's often non-critical */
}
}
__access_ok:
ac97->id = snd_ac97_read(ac97, AC97_VENDOR_ID1) << 16;
ac97->id |= snd_ac97_read(ac97, AC97_VENDOR_ID2);
if (! (ac97->scaps & AC97_SCAP_DETECT_BY_VENDOR) &&
(ac97->id == 0x00000000 || ac97->id == 0xffffffff)) {
ac97_err(ac97,
"AC'97 %d access is not valid [0x%x], removing mixer.\n",
ac97->num, ac97->id);
snd_ac97_free(ac97);
return -EIO;
}
pid = look_for_codec_id(snd_ac97_codec_ids, ac97->id);
if (pid)
ac97->flags |= pid->flags;
/* test for AC'97 */
if (!(ac97->scaps & AC97_SCAP_SKIP_AUDIO) && !(ac97->scaps & AC97_SCAP_AUDIO)) {
/* test if we can write to the record gain volume register */
snd_ac97_write_cache(ac97, AC97_REC_GAIN, 0x8a06);
err = snd_ac97_read(ac97, AC97_REC_GAIN);
if ((err & 0x7fff) == 0x0a06)
ac97->scaps |= AC97_SCAP_AUDIO;
}
if (ac97->scaps & AC97_SCAP_AUDIO) {
ac97->caps = snd_ac97_read(ac97, AC97_RESET);
ac97->ext_id = snd_ac97_read(ac97, AC97_EXTENDED_ID);
if (ac97->ext_id == 0xffff) /* invalid combination */
ac97->ext_id = 0;
}
/* test for MC'97 */
if (!(ac97->scaps & AC97_SCAP_SKIP_MODEM) && !(ac97->scaps & AC97_SCAP_MODEM)) {
ac97->ext_mid = snd_ac97_read(ac97, AC97_EXTENDED_MID);
if (ac97->ext_mid == 0xffff) /* invalid combination */
ac97->ext_mid = 0;
if (ac97->ext_mid & 1)
ac97->scaps |= AC97_SCAP_MODEM;
}
if (!ac97_is_audio(ac97) && !ac97_is_modem(ac97)) {
if (!(ac97->scaps & (AC97_SCAP_SKIP_AUDIO|AC97_SCAP_SKIP_MODEM)))
ac97_err(ac97,
"AC'97 %d access error (not audio or modem codec)\n",
ac97->num);
snd_ac97_free(ac97);
return -EACCES;
}
if (bus->ops->reset) // FIXME: always skipping?
goto __ready_ok;
/* FIXME: add powerdown control */
if (ac97_is_audio(ac97)) {
/* nothing should be in powerdown mode */
snd_ac97_write_cache(ac97, AC97_POWERDOWN, 0);
if (! (ac97->flags & AC97_DEFAULT_POWER_OFF)) {
snd_ac97_write_cache(ac97, AC97_RESET, 0); /* reset to defaults */
udelay(100);
snd_ac97_write_cache(ac97, AC97_POWERDOWN, 0);
}
/* nothing should be in powerdown mode */
snd_ac97_write_cache(ac97, AC97_GENERAL_PURPOSE, 0);
end_time = jiffies + msecs_to_jiffies(5000);
do {
if ((snd_ac97_read(ac97, AC97_POWERDOWN) & 0x0f) == 0x0f)
goto __ready_ok;
schedule_timeout_uninterruptible(1);
} while (time_after_eq(end_time, jiffies));
ac97_warn(ac97,
"AC'97 %d analog subsections not ready\n", ac97->num);
}
/* FIXME: add powerdown control */
if (ac97_is_modem(ac97)) {
unsigned char tmp;
/* nothing should be in powerdown mode */
/* note: it's important to set the rate at first */
tmp = AC97_MEA_GPIO;
if (ac97->ext_mid & AC97_MEI_LINE1) {
snd_ac97_write_cache(ac97, AC97_LINE1_RATE, 8000);
tmp |= AC97_MEA_ADC1 | AC97_MEA_DAC1;
}
if (ac97->ext_mid & AC97_MEI_LINE2) {
snd_ac97_write_cache(ac97, AC97_LINE2_RATE, 8000);
tmp |= AC97_MEA_ADC2 | AC97_MEA_DAC2;
}
if (ac97->ext_mid & AC97_MEI_HANDSET) {
snd_ac97_write_cache(ac97, AC97_HANDSET_RATE, 8000);
tmp |= AC97_MEA_HADC | AC97_MEA_HDAC;
}
snd_ac97_write_cache(ac97, AC97_EXTENDED_MSTATUS, 0);
udelay(100);
/* nothing should be in powerdown mode */
snd_ac97_write_cache(ac97, AC97_EXTENDED_MSTATUS, 0);
end_time = jiffies + msecs_to_jiffies(100);
do {
if ((snd_ac97_read(ac97, AC97_EXTENDED_MSTATUS) & tmp) == tmp)
goto __ready_ok;
schedule_timeout_uninterruptible(1);
} while (time_after_eq(end_time, jiffies));
ac97_warn(ac97,
"MC'97 %d converters and GPIO not ready (0x%x)\n",
ac97->num,
snd_ac97_read(ac97, AC97_EXTENDED_MSTATUS));
}
__ready_ok:
if (ac97_is_audio(ac97))
ac97->addr = (ac97->ext_id & AC97_EI_ADDR_MASK) >> AC97_EI_ADDR_SHIFT;
else
ac97->addr = (ac97->ext_mid & AC97_MEI_ADDR_MASK) >> AC97_MEI_ADDR_SHIFT;
if (ac97->ext_id & 0x01c9) { /* L/R, MIC, SDAC, LDAC VRA support */
reg = snd_ac97_read(ac97, AC97_EXTENDED_STATUS);
reg |= ac97->ext_id & 0x01c0; /* LDAC/SDAC/CDAC */
if (! bus->no_vra)
reg |= ac97->ext_id & 0x0009; /* VRA/VRM */
snd_ac97_write_cache(ac97, AC97_EXTENDED_STATUS, reg);
}
if ((ac97->ext_id & AC97_EI_DRA) && bus->dra) {
/* Intel controllers require double rate data to be put in
* slots 7+8, so let's hope the codec supports it. */
snd_ac97_update_bits(ac97, AC97_GENERAL_PURPOSE, AC97_GP_DRSS_MASK, AC97_GP_DRSS_78);
if ((snd_ac97_read(ac97, AC97_GENERAL_PURPOSE) & AC97_GP_DRSS_MASK) == AC97_GP_DRSS_78)
ac97->flags |= AC97_DOUBLE_RATE;
/* restore to slots 10/11 to avoid the confliction with surrounds */
snd_ac97_update_bits(ac97, AC97_GENERAL_PURPOSE, AC97_GP_DRSS_MASK, 0);
}
if (ac97->ext_id & AC97_EI_VRA) { /* VRA support */
snd_ac97_determine_rates(ac97, AC97_PCM_FRONT_DAC_RATE, 0, &ac97->rates[AC97_RATES_FRONT_DAC]);
snd_ac97_determine_rates(ac97, AC97_PCM_LR_ADC_RATE, 0, &ac97->rates[AC97_RATES_ADC]);
} else {
ac97->rates[AC97_RATES_FRONT_DAC] = SNDRV_PCM_RATE_48000;
if (ac97->flags & AC97_DOUBLE_RATE)
ac97->rates[AC97_RATES_FRONT_DAC] |= SNDRV_PCM_RATE_96000;
ac97->rates[AC97_RATES_ADC] = SNDRV_PCM_RATE_48000;
}
if (ac97->ext_id & AC97_EI_SPDIF) {
/* codec specific code (patch) should override these values */
ac97->rates[AC97_RATES_SPDIF] = SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_32000;
}
if (ac97->ext_id & AC97_EI_VRM) { /* MIC VRA support */
snd_ac97_determine_rates(ac97, AC97_PCM_MIC_ADC_RATE, 0, &ac97->rates[AC97_RATES_MIC_ADC]);
} else {
ac97->rates[AC97_RATES_MIC_ADC] = SNDRV_PCM_RATE_48000;
}
if (ac97->ext_id & AC97_EI_SDAC) { /* SDAC support */
snd_ac97_determine_rates(ac97, AC97_PCM_SURR_DAC_RATE, AC97_PCM_FRONT_DAC_RATE, &ac97->rates[AC97_RATES_SURR_DAC]);
ac97->scaps |= AC97_SCAP_SURROUND_DAC;
}
if (ac97->ext_id & AC97_EI_LDAC) { /* LDAC support */
snd_ac97_determine_rates(ac97, AC97_PCM_LFE_DAC_RATE, AC97_PCM_FRONT_DAC_RATE, &ac97->rates[AC97_RATES_LFE_DAC]);
ac97->scaps |= AC97_SCAP_CENTER_LFE_DAC;
}
/* additional initializations */
if (bus->ops->init)
bus->ops->init(ac97);
snd_ac97_get_name(ac97, ac97->id, name, !ac97_is_audio(ac97));
snd_ac97_get_name(NULL, ac97->id, name, !ac97_is_audio(ac97)); // ac97->id might be changed in the special setup code
if (! ac97->build_ops)
ac97->build_ops = &null_build_ops;
if (ac97_is_audio(ac97)) {
char comp[16];
if (card->mixername[0] == '\0') {
strcpy(card->mixername, name);
} else {
if (strlen(card->mixername) + 1 + strlen(name) + 1 <= sizeof(card->mixername)) {
strcat(card->mixername, ",");
strcat(card->mixername, name);
}
}
sprintf(comp, "AC97a:%08x", ac97->id);
err = snd_component_add(card, comp);
if (err < 0) {
snd_ac97_free(ac97);
return err;
}
if (snd_ac97_mixer_build(ac97) < 0) {
snd_ac97_free(ac97);
return -ENOMEM;
}
}
if (ac97_is_modem(ac97)) {
char comp[16];
if (card->mixername[0] == '\0') {
strcpy(card->mixername, name);
} else {
if (strlen(card->mixername) + 1 + strlen(name) + 1 <= sizeof(card->mixername)) {
strcat(card->mixername, ",");
strcat(card->mixername, name);
}
}
sprintf(comp, "AC97m:%08x", ac97->id);
err = snd_component_add(card, comp);
if (err < 0) {
snd_ac97_free(ac97);
return err;
}
if (snd_ac97_modem_build(card, ac97) < 0) {
snd_ac97_free(ac97);
return -ENOMEM;
}
}
if (ac97_is_audio(ac97))
update_power_regs(ac97);
snd_ac97_proc_init(ac97);
err = snd_device_new(card, SNDRV_DEV_CODEC, ac97, &ops);
if (err < 0) {
snd_ac97_free(ac97);
return err;
}
*rac97 = ac97;
return 0;
}
EXPORT_SYMBOL(snd_ac97_mixer);
/*
* Power down the chip.
*
* MASTER and HEADPHONE registers are muted but the register cache values
* are not changed, so that the values can be restored in snd_ac97_resume().
*/
static void snd_ac97_powerdown(struct snd_ac97 *ac97)
{
unsigned short power;
if (ac97_is_audio(ac97)) {
/* some codecs have stereo mute bits */
snd_ac97_write(ac97, AC97_MASTER, 0x9f9f);
snd_ac97_write(ac97, AC97_HEADPHONE, 0x9f9f);
}
/* surround, CLFE, mic powerdown */
power = ac97->regs[AC97_EXTENDED_STATUS];
if (ac97->scaps & AC97_SCAP_SURROUND_DAC)
power |= AC97_EA_PRJ;
if (ac97->scaps & AC97_SCAP_CENTER_LFE_DAC)
power |= AC97_EA_PRI | AC97_EA_PRK;
power |= AC97_EA_PRL;
snd_ac97_write(ac97, AC97_EXTENDED_STATUS, power);
/* powerdown external amplifier */
if (ac97->scaps & AC97_SCAP_INV_EAPD)
power = ac97->regs[AC97_POWERDOWN] & ~AC97_PD_EAPD;
else if (! (ac97->scaps & AC97_SCAP_EAPD_LED))
power = ac97->regs[AC97_POWERDOWN] | AC97_PD_EAPD;
power |= AC97_PD_PR6; /* Headphone amplifier powerdown */
power |= AC97_PD_PR0 | AC97_PD_PR1; /* ADC & DAC powerdown */
snd_ac97_write(ac97, AC97_POWERDOWN, power);
udelay(100);
power |= AC97_PD_PR2; /* Analog Mixer powerdown (Vref on) */
snd_ac97_write(ac97, AC97_POWERDOWN, power);
if (ac97_is_power_save_mode(ac97)) {
power |= AC97_PD_PR3; /* Analog Mixer powerdown */
snd_ac97_write(ac97, AC97_POWERDOWN, power);
udelay(100);
/* AC-link powerdown, internal Clk disable */
/* FIXME: this may cause click noises on some boards */
power |= AC97_PD_PR4 | AC97_PD_PR5;
snd_ac97_write(ac97, AC97_POWERDOWN, power);
}
}
struct ac97_power_reg {
unsigned short reg;
unsigned short power_reg;
unsigned short mask;
};
enum { PWIDX_ADC, PWIDX_FRONT, PWIDX_CLFE, PWIDX_SURR, PWIDX_MIC, PWIDX_SIZE };
static const struct ac97_power_reg power_regs[PWIDX_SIZE] = {
[PWIDX_ADC] = { AC97_PCM_LR_ADC_RATE, AC97_POWERDOWN, AC97_PD_PR0},
[PWIDX_FRONT] = { AC97_PCM_FRONT_DAC_RATE, AC97_POWERDOWN, AC97_PD_PR1},
[PWIDX_CLFE] = { AC97_PCM_LFE_DAC_RATE, AC97_EXTENDED_STATUS,
AC97_EA_PRI | AC97_EA_PRK},
[PWIDX_SURR] = { AC97_PCM_SURR_DAC_RATE, AC97_EXTENDED_STATUS,
AC97_EA_PRJ},
[PWIDX_MIC] = { AC97_PCM_MIC_ADC_RATE, AC97_EXTENDED_STATUS,
AC97_EA_PRL},
};
#ifdef CONFIG_SND_AC97_POWER_SAVE
/**
* snd_ac97_update_power - update the powerdown register
* @ac97: the codec instance
* @reg: the rate register, e.g. AC97_PCM_FRONT_DAC_RATE
* @powerup: non-zero when power up the part
*
* Update the AC97 powerdown register bits of the given part.
*
* Return: Zero.
*/
int snd_ac97_update_power(struct snd_ac97 *ac97, int reg, int powerup)
{
int i;
if (! ac97)
return 0;
if (reg) {
/* SPDIF requires DAC power, too */
if (reg == AC97_SPDIF)
reg = AC97_PCM_FRONT_DAC_RATE;
for (i = 0; i < PWIDX_SIZE; i++) {
if (power_regs[i].reg == reg) {
if (powerup)
ac97->power_up |= (1 << i);
else
ac97->power_up &= ~(1 << i);
break;
}
}
}
if (ac97_is_power_save_mode(ac97) && !powerup)
/* adjust power-down bits after two seconds delay
* (for avoiding loud click noises for many (OSS) apps
* that open/close frequently)
*/
schedule_delayed_work(&ac97->power_work,
msecs_to_jiffies(power_save * 1000));
else {
cancel_delayed_work(&ac97->power_work);
update_power_regs(ac97);
}
return 0;
}
EXPORT_SYMBOL(snd_ac97_update_power);
#endif /* CONFIG_SND_AC97_POWER_SAVE */
static void update_power_regs(struct snd_ac97 *ac97)
{
unsigned int power_up, bits;
int i;
power_up = (1 << PWIDX_FRONT) | (1 << PWIDX_ADC);
power_up |= (1 << PWIDX_MIC);
if (ac97->scaps & AC97_SCAP_SURROUND_DAC)
power_up |= (1 << PWIDX_SURR);
if (ac97->scaps & AC97_SCAP_CENTER_LFE_DAC)
power_up |= (1 << PWIDX_CLFE);
#ifdef CONFIG_SND_AC97_POWER_SAVE
if (ac97_is_power_save_mode(ac97))
power_up = ac97->power_up;
#endif
if (power_up) {
if (ac97->regs[AC97_POWERDOWN] & AC97_PD_PR2) {
/* needs power-up analog mix and vref */
snd_ac97_update_bits(ac97, AC97_POWERDOWN,
AC97_PD_PR3, 0);
msleep(1);
snd_ac97_update_bits(ac97, AC97_POWERDOWN,
AC97_PD_PR2, 0);
}
}
for (i = 0; i < PWIDX_SIZE; i++) {
if (power_up & (1 << i))
bits = 0;
else
bits = power_regs[i].mask;
snd_ac97_update_bits(ac97, power_regs[i].power_reg,
power_regs[i].mask, bits);
}
if (! power_up) {
if (! (ac97->regs[AC97_POWERDOWN] & AC97_PD_PR2)) {
/* power down analog mix and vref */
snd_ac97_update_bits(ac97, AC97_POWERDOWN,
AC97_PD_PR2, AC97_PD_PR2);
snd_ac97_update_bits(ac97, AC97_POWERDOWN,
AC97_PD_PR3, AC97_PD_PR3);
}
}
}
#ifdef CONFIG_PM
/**
* snd_ac97_suspend - General suspend function for AC97 codec
* @ac97: the ac97 instance
*
* Suspends the codec, power down the chip.
*/
void snd_ac97_suspend(struct snd_ac97 *ac97)
{
if (! ac97)
return;
if (ac97->build_ops->suspend)
ac97->build_ops->suspend(ac97);
#ifdef CONFIG_SND_AC97_POWER_SAVE
cancel_delayed_work_sync(&ac97->power_work);
#endif
snd_ac97_powerdown(ac97);
}
EXPORT_SYMBOL(snd_ac97_suspend);
/*
* restore ac97 status
*/
static void snd_ac97_restore_status(struct snd_ac97 *ac97)
{
int i;
for (i = 2; i < 0x7c ; i += 2) {
if (i == AC97_POWERDOWN || i == AC97_EXTENDED_ID)
continue;
/* restore only accessible registers
* some chip (e.g. nm256) may hang up when unsupported registers
* are accessed..!
*/
if (test_bit(i, ac97->reg_accessed)) {
snd_ac97_write(ac97, i, ac97->regs[i]);
snd_ac97_read(ac97, i);
}
}
}
/*
* restore IEC958 status
*/
static void snd_ac97_restore_iec958(struct snd_ac97 *ac97)
{
if (ac97->ext_id & AC97_EI_SPDIF) {
if (ac97->regs[AC97_EXTENDED_STATUS] & AC97_EA_SPDIF) {
/* reset spdif status */
snd_ac97_update_bits(ac97, AC97_EXTENDED_STATUS, AC97_EA_SPDIF, 0);
snd_ac97_write(ac97, AC97_EXTENDED_STATUS, ac97->regs[AC97_EXTENDED_STATUS]);
if (ac97->flags & AC97_CS_SPDIF)
snd_ac97_write(ac97, AC97_CSR_SPDIF, ac97->regs[AC97_CSR_SPDIF]);
else
snd_ac97_write(ac97, AC97_SPDIF, ac97->regs[AC97_SPDIF]);
snd_ac97_update_bits(ac97, AC97_EXTENDED_STATUS, AC97_EA_SPDIF, AC97_EA_SPDIF); /* turn on again */
}
}
}
/**
* snd_ac97_resume - General resume function for AC97 codec
* @ac97: the ac97 instance
*
* Do the standard resume procedure, power up and restoring the
* old register values.
*/
void snd_ac97_resume(struct snd_ac97 *ac97)
{
unsigned long end_time;
if (! ac97)
return;
if (ac97->bus->ops->reset) {
ac97->bus->ops->reset(ac97);
goto __reset_ready;
}
snd_ac97_write(ac97, AC97_POWERDOWN, 0);
if (! (ac97->flags & AC97_DEFAULT_POWER_OFF)) {
if (!(ac97->scaps & AC97_SCAP_SKIP_AUDIO))
snd_ac97_write(ac97, AC97_RESET, 0);
else if (!(ac97->scaps & AC97_SCAP_SKIP_MODEM))
snd_ac97_write(ac97, AC97_EXTENDED_MID, 0);
udelay(100);
snd_ac97_write(ac97, AC97_POWERDOWN, 0);
}
snd_ac97_write(ac97, AC97_GENERAL_PURPOSE, 0);
snd_ac97_write(ac97, AC97_POWERDOWN, ac97->regs[AC97_POWERDOWN]);
if (ac97_is_audio(ac97)) {
ac97->bus->ops->write(ac97, AC97_MASTER, 0x8101);
end_time = jiffies + msecs_to_jiffies(100);
do {
if (snd_ac97_read(ac97, AC97_MASTER) == 0x8101)
break;
schedule_timeout_uninterruptible(1);
} while (time_after_eq(end_time, jiffies));
/* FIXME: extra delay */
ac97->bus->ops->write(ac97, AC97_MASTER, AC97_MUTE_MASK_MONO);
if (snd_ac97_read(ac97, AC97_MASTER) != AC97_MUTE_MASK_MONO)
msleep(250);
} else {
end_time = jiffies + msecs_to_jiffies(100);
do {
unsigned short val = snd_ac97_read(ac97, AC97_EXTENDED_MID);
if (val != 0xffff && (val & 1) != 0)
break;
schedule_timeout_uninterruptible(1);
} while (time_after_eq(end_time, jiffies));
}
__reset_ready:
if (ac97->bus->ops->init)
ac97->bus->ops->init(ac97);
if (ac97->build_ops->resume)
ac97->build_ops->resume(ac97);
else {
snd_ac97_restore_status(ac97);
snd_ac97_restore_iec958(ac97);
}
}
EXPORT_SYMBOL(snd_ac97_resume);
#endif
/*
* Hardware tuning
*/
static void set_ctl_name(char *dst, const char *src, const char *suffix)
{
if (suffix)
sprintf(dst, "%s %s", src, suffix);
else
strcpy(dst, src);
}
/* remove the control with the given name and optional suffix */
static int snd_ac97_remove_ctl(struct snd_ac97 *ac97, const char *name,
const char *suffix)
{
struct snd_ctl_elem_id id;
memset(&id, 0, sizeof(id));
set_ctl_name(id.name, name, suffix);
id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
return snd_ctl_remove_id(ac97->bus->card, &id);
}
static struct snd_kcontrol *ctl_find(struct snd_ac97 *ac97, const char *name, const char *suffix)
{
struct snd_ctl_elem_id sid;
memset(&sid, 0, sizeof(sid));
set_ctl_name(sid.name, name, suffix);
sid.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
return snd_ctl_find_id(ac97->bus->card, &sid);
}
/* rename the control with the given name and optional suffix */
static int snd_ac97_rename_ctl(struct snd_ac97 *ac97, const char *src,
const char *dst, const char *suffix)
{
struct snd_kcontrol *kctl = ctl_find(ac97, src, suffix);
if (kctl) {
set_ctl_name(kctl->id.name, dst, suffix);
return 0;
}
return -ENOENT;
}
/* rename both Volume and Switch controls - don't check the return value */
static void snd_ac97_rename_vol_ctl(struct snd_ac97 *ac97, const char *src,
const char *dst)
{
snd_ac97_rename_ctl(ac97, src, dst, "Switch");
snd_ac97_rename_ctl(ac97, src, dst, "Volume");
}
/* swap controls */
static int snd_ac97_swap_ctl(struct snd_ac97 *ac97, const char *s1,
const char *s2, const char *suffix)
{
struct snd_kcontrol *kctl1, *kctl2;
kctl1 = ctl_find(ac97, s1, suffix);
kctl2 = ctl_find(ac97, s2, suffix);
if (kctl1 && kctl2) {
set_ctl_name(kctl1->id.name, s2, suffix);
set_ctl_name(kctl2->id.name, s1, suffix);
return 0;
}
return -ENOENT;
}
#if 1
/* bind hp and master controls instead of using only hp control */
static int bind_hp_volsw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
int err = snd_ac97_put_volsw(kcontrol, ucontrol);
if (err > 0) {
unsigned long priv_saved = kcontrol->private_value;
kcontrol->private_value = (kcontrol->private_value & ~0xff) | AC97_HEADPHONE;
snd_ac97_put_volsw(kcontrol, ucontrol);
kcontrol->private_value = priv_saved;
}
return err;
}
/* ac97 tune: bind Master and Headphone controls */
static int tune_hp_only(struct snd_ac97 *ac97)
{
struct snd_kcontrol *msw = ctl_find(ac97, "Master Playback Switch", NULL);
struct snd_kcontrol *mvol = ctl_find(ac97, "Master Playback Volume", NULL);
if (! msw || ! mvol)
return -ENOENT;
msw->put = bind_hp_volsw_put;
mvol->put = bind_hp_volsw_put;
snd_ac97_remove_ctl(ac97, "Headphone Playback", "Switch");
snd_ac97_remove_ctl(ac97, "Headphone Playback", "Volume");
return 0;
}
#else
/* ac97 tune: use Headphone control as master */
static int tune_hp_only(struct snd_ac97 *ac97)
{
if (ctl_find(ac97, "Headphone Playback Switch", NULL) == NULL)
return -ENOENT;
snd_ac97_remove_ctl(ac97, "Master Playback", "Switch");
snd_ac97_remove_ctl(ac97, "Master Playback", "Volume");
snd_ac97_rename_vol_ctl(ac97, "Headphone Playback", "Master Playback");
return 0;
}
#endif
/* ac97 tune: swap Headphone and Master controls */
static int tune_swap_hp(struct snd_ac97 *ac97)
{
if (ctl_find(ac97, "Headphone Playback Switch", NULL) == NULL)
return -ENOENT;
snd_ac97_rename_vol_ctl(ac97, "Master Playback", "Line-Out Playback");
snd_ac97_rename_vol_ctl(ac97, "Headphone Playback", "Master Playback");
return 0;
}
/* ac97 tune: swap Surround and Master controls */
static int tune_swap_surround(struct snd_ac97 *ac97)
{
if (snd_ac97_swap_ctl(ac97, "Master Playback", "Surround Playback", "Switch") ||
snd_ac97_swap_ctl(ac97, "Master Playback", "Surround Playback", "Volume"))
return -ENOENT;
return 0;
}
/* ac97 tune: set up mic sharing for AD codecs */
static int tune_ad_sharing(struct snd_ac97 *ac97)
{
unsigned short scfg;
if ((ac97->id & 0xffffff00) != 0x41445300) {
ac97_err(ac97, "ac97_quirk AD_SHARING is only for AD codecs\n");
return -EINVAL;
}
/* Turn on OMS bit to route microphone to back panel */
scfg = snd_ac97_read(ac97, AC97_AD_SERIAL_CFG);
snd_ac97_write_cache(ac97, AC97_AD_SERIAL_CFG, scfg | 0x0200);
return 0;
}
static const struct snd_kcontrol_new snd_ac97_alc_jack_detect =
AC97_SINGLE("Jack Detect", AC97_ALC650_CLOCK, 5, 1, 0);
/* ac97 tune: set up ALC jack-select */
static int tune_alc_jack(struct snd_ac97 *ac97)
{
if ((ac97->id & 0xffffff00) != 0x414c4700) {
ac97_err(ac97,
"ac97_quirk ALC_JACK is only for Realtek codecs\n");
return -EINVAL;
}
snd_ac97_update_bits(ac97, 0x7a, 0x20, 0x20); /* select jack detect function */
snd_ac97_update_bits(ac97, 0x7a, 0x01, 0x01); /* Line-out auto mute */
if (ac97->id == AC97_ID_ALC658D)
snd_ac97_update_bits(ac97, 0x74, 0x0800, 0x0800);
return snd_ctl_add(ac97->bus->card, snd_ac97_cnew(&snd_ac97_alc_jack_detect, ac97));
}
/* ac97 tune: inversed EAPD bit */
static int tune_inv_eapd(struct snd_ac97 *ac97)
{
struct snd_kcontrol *kctl = ctl_find(ac97, "External Amplifier", NULL);
if (! kctl)
return -ENOENT;
set_inv_eapd(ac97, kctl);
return 0;
}
static int master_mute_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
int err = snd_ac97_put_volsw(kcontrol, ucontrol);
if (err > 0) {
struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol);
int shift = (kcontrol->private_value >> 8) & 0x0f;
int rshift = (kcontrol->private_value >> 12) & 0x0f;
unsigned short mask;
if (shift != rshift)
mask = AC97_MUTE_MASK_STEREO;
else
mask = AC97_MUTE_MASK_MONO;
snd_ac97_update_bits(ac97, AC97_POWERDOWN, AC97_PD_EAPD,
(ac97->regs[AC97_MASTER] & mask) == mask ?
AC97_PD_EAPD : 0);
}
return err;
}
/* ac97 tune: EAPD controls mute LED bound with the master mute */
static int tune_mute_led(struct snd_ac97 *ac97)
{
struct snd_kcontrol *msw = ctl_find(ac97, "Master Playback Switch", NULL);
if (! msw)
return -ENOENT;
msw->put = master_mute_sw_put;
snd_ac97_remove_ctl(ac97, "External Amplifier", NULL);
snd_ac97_update_bits(
ac97, AC97_POWERDOWN,
AC97_PD_EAPD, AC97_PD_EAPD /* mute LED on */
);
ac97->scaps |= AC97_SCAP_EAPD_LED;
return 0;
}
static int hp_master_mute_sw_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int err = bind_hp_volsw_put(kcontrol, ucontrol);
if (err > 0) {
struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol);
int shift = (kcontrol->private_value >> 8) & 0x0f;
int rshift = (kcontrol->private_value >> 12) & 0x0f;
unsigned short mask;
if (shift != rshift)
mask = AC97_MUTE_MASK_STEREO;
else
mask = AC97_MUTE_MASK_MONO;
snd_ac97_update_bits(ac97, AC97_POWERDOWN, AC97_PD_EAPD,
(ac97->regs[AC97_MASTER] & mask) == mask ?
AC97_PD_EAPD : 0);
}
return err;
}
static int tune_hp_mute_led(struct snd_ac97 *ac97)
{
struct snd_kcontrol *msw = ctl_find(ac97, "Master Playback Switch", NULL);
struct snd_kcontrol *mvol = ctl_find(ac97, "Master Playback Volume", NULL);
if (! msw || ! mvol)
return -ENOENT;
msw->put = hp_master_mute_sw_put;
mvol->put = bind_hp_volsw_put;
snd_ac97_remove_ctl(ac97, "External Amplifier", NULL);
snd_ac97_remove_ctl(ac97, "Headphone Playback", "Switch");
snd_ac97_remove_ctl(ac97, "Headphone Playback", "Volume");
snd_ac97_update_bits(
ac97, AC97_POWERDOWN,
AC97_PD_EAPD, AC97_PD_EAPD /* mute LED on */
);
return 0;
}
struct quirk_table {
const char *name;
int (*func)(struct snd_ac97 *);
};
static const struct quirk_table applicable_quirks[] = {
{ "none", NULL },
{ "hp_only", tune_hp_only },
{ "swap_hp", tune_swap_hp },
{ "swap_surround", tune_swap_surround },
{ "ad_sharing", tune_ad_sharing },
{ "alc_jack", tune_alc_jack },
{ "inv_eapd", tune_inv_eapd },
{ "mute_led", tune_mute_led },
{ "hp_mute_led", tune_hp_mute_led },
};
/* apply the quirk with the given type */
static int apply_quirk(struct snd_ac97 *ac97, int type)
{
if (type <= 0)
return 0;
else if (type >= ARRAY_SIZE(applicable_quirks))
return -EINVAL;
if (applicable_quirks[type].func)
return applicable_quirks[type].func(ac97);
return 0;
}
/* apply the quirk with the given name */
static int apply_quirk_str(struct snd_ac97 *ac97, const char *typestr)
{
int i;
const struct quirk_table *q;
for (i = 0; i < ARRAY_SIZE(applicable_quirks); i++) {
q = &applicable_quirks[i];
if (q->name && ! strcmp(typestr, q->name))
return apply_quirk(ac97, i);
}
/* for compatibility, accept the numbers, too */
if (*typestr >= '0' && *typestr <= '9')
return apply_quirk(ac97, (int)simple_strtoul(typestr, NULL, 10));
return -EINVAL;
}
/**
* snd_ac97_tune_hardware - tune up the hardware
* @ac97: the ac97 instance
* @quirk: quirk list
* @override: explicit quirk value (overrides the list if non-NULL)
*
* Do some workaround for each pci device, such as renaming of the
* headphone (true line-out) control as "Master".
* The quirk-list must be terminated with a zero-filled entry.
*
* Return: Zero if successful, or a negative error code on failure.
*/
int snd_ac97_tune_hardware(struct snd_ac97 *ac97,
const struct ac97_quirk *quirk, const char *override)
{
int result;
/* quirk overriden? */
if (override && strcmp(override, "-1") && strcmp(override, "default")) {
result = apply_quirk_str(ac97, override);
if (result < 0)
ac97_err(ac97, "applying quirk type %s failed (%d)\n",
override, result);
return result;
}
if (! quirk)
return -EINVAL;
for (; quirk->subvendor; quirk++) {
if (quirk->subvendor != ac97->subsystem_vendor)
continue;
if ((! quirk->mask && quirk->subdevice == ac97->subsystem_device) ||
quirk->subdevice == (quirk->mask & ac97->subsystem_device)) {
if (quirk->codec_id && quirk->codec_id != ac97->id)
continue;
ac97_dbg(ac97, "ac97 quirk for %s (%04x:%04x)\n",
quirk->name, ac97->subsystem_vendor,
ac97->subsystem_device);
result = apply_quirk(ac97, quirk->type);
if (result < 0)
ac97_err(ac97,
"applying quirk type %d for %s failed (%d)\n",
quirk->type, quirk->name, result);
return result;
}
}
return 0;
}
EXPORT_SYMBOL(snd_ac97_tune_hardware);