|  | /* -*- mode: c; c-basic-offset: 8; -*- | 
|  | * vim: noexpandtab sw=8 ts=8 sts=0: | 
|  | * | 
|  | * journal.c | 
|  | * | 
|  | * Defines functions of journalling api | 
|  | * | 
|  | * Copyright (C) 2003, 2004 Oracle.  All rights reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public | 
|  | * License as published by the Free Software Foundation; either | 
|  | * version 2 of the License, or (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public | 
|  | * License along with this program; if not, write to the | 
|  | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | 
|  | * Boston, MA 021110-1307, USA. | 
|  | */ | 
|  |  | 
|  | #include <linux/fs.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/random.h> | 
|  |  | 
|  | #define MLOG_MASK_PREFIX ML_JOURNAL | 
|  | #include <cluster/masklog.h> | 
|  |  | 
|  | #include "ocfs2.h" | 
|  |  | 
|  | #include "alloc.h" | 
|  | #include "blockcheck.h" | 
|  | #include "dir.h" | 
|  | #include "dlmglue.h" | 
|  | #include "extent_map.h" | 
|  | #include "heartbeat.h" | 
|  | #include "inode.h" | 
|  | #include "journal.h" | 
|  | #include "localalloc.h" | 
|  | #include "slot_map.h" | 
|  | #include "super.h" | 
|  | #include "sysfile.h" | 
|  | #include "uptodate.h" | 
|  | #include "quota.h" | 
|  |  | 
|  | #include "buffer_head_io.h" | 
|  |  | 
|  | DEFINE_SPINLOCK(trans_inc_lock); | 
|  |  | 
|  | #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000 | 
|  |  | 
|  | static int ocfs2_force_read_journal(struct inode *inode); | 
|  | static int ocfs2_recover_node(struct ocfs2_super *osb, | 
|  | int node_num, int slot_num); | 
|  | static int __ocfs2_recovery_thread(void *arg); | 
|  | static int ocfs2_commit_cache(struct ocfs2_super *osb); | 
|  | static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota); | 
|  | static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, | 
|  | int dirty, int replayed); | 
|  | static int ocfs2_trylock_journal(struct ocfs2_super *osb, | 
|  | int slot_num); | 
|  | static int ocfs2_recover_orphans(struct ocfs2_super *osb, | 
|  | int slot); | 
|  | static int ocfs2_commit_thread(void *arg); | 
|  | static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, | 
|  | int slot_num, | 
|  | struct ocfs2_dinode *la_dinode, | 
|  | struct ocfs2_dinode *tl_dinode, | 
|  | struct ocfs2_quota_recovery *qrec); | 
|  |  | 
|  | static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb) | 
|  | { | 
|  | return __ocfs2_wait_on_mount(osb, 0); | 
|  | } | 
|  |  | 
|  | static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb) | 
|  | { | 
|  | return __ocfs2_wait_on_mount(osb, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This replay_map is to track online/offline slots, so we could recover | 
|  | * offline slots during recovery and mount | 
|  | */ | 
|  |  | 
|  | enum ocfs2_replay_state { | 
|  | REPLAY_UNNEEDED = 0,	/* Replay is not needed, so ignore this map */ | 
|  | REPLAY_NEEDED, 		/* Replay slots marked in rm_replay_slots */ | 
|  | REPLAY_DONE 		/* Replay was already queued */ | 
|  | }; | 
|  |  | 
|  | struct ocfs2_replay_map { | 
|  | unsigned int rm_slots; | 
|  | enum ocfs2_replay_state rm_state; | 
|  | unsigned char rm_replay_slots[0]; | 
|  | }; | 
|  |  | 
|  | void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state) | 
|  | { | 
|  | if (!osb->replay_map) | 
|  | return; | 
|  |  | 
|  | /* If we've already queued the replay, we don't have any more to do */ | 
|  | if (osb->replay_map->rm_state == REPLAY_DONE) | 
|  | return; | 
|  |  | 
|  | osb->replay_map->rm_state = state; | 
|  | } | 
|  |  | 
|  | int ocfs2_compute_replay_slots(struct ocfs2_super *osb) | 
|  | { | 
|  | struct ocfs2_replay_map *replay_map; | 
|  | int i, node_num; | 
|  |  | 
|  | /* If replay map is already set, we don't do it again */ | 
|  | if (osb->replay_map) | 
|  | return 0; | 
|  |  | 
|  | replay_map = kzalloc(sizeof(struct ocfs2_replay_map) + | 
|  | (osb->max_slots * sizeof(char)), GFP_KERNEL); | 
|  |  | 
|  | if (!replay_map) { | 
|  | mlog_errno(-ENOMEM); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | spin_lock(&osb->osb_lock); | 
|  |  | 
|  | replay_map->rm_slots = osb->max_slots; | 
|  | replay_map->rm_state = REPLAY_UNNEEDED; | 
|  |  | 
|  | /* set rm_replay_slots for offline slot(s) */ | 
|  | for (i = 0; i < replay_map->rm_slots; i++) { | 
|  | if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT) | 
|  | replay_map->rm_replay_slots[i] = 1; | 
|  | } | 
|  |  | 
|  | osb->replay_map = replay_map; | 
|  | spin_unlock(&osb->osb_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void ocfs2_queue_replay_slots(struct ocfs2_super *osb) | 
|  | { | 
|  | struct ocfs2_replay_map *replay_map = osb->replay_map; | 
|  | int i; | 
|  |  | 
|  | if (!replay_map) | 
|  | return; | 
|  |  | 
|  | if (replay_map->rm_state != REPLAY_NEEDED) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < replay_map->rm_slots; i++) | 
|  | if (replay_map->rm_replay_slots[i]) | 
|  | ocfs2_queue_recovery_completion(osb->journal, i, NULL, | 
|  | NULL, NULL); | 
|  | replay_map->rm_state = REPLAY_DONE; | 
|  | } | 
|  |  | 
|  | void ocfs2_free_replay_slots(struct ocfs2_super *osb) | 
|  | { | 
|  | struct ocfs2_replay_map *replay_map = osb->replay_map; | 
|  |  | 
|  | if (!osb->replay_map) | 
|  | return; | 
|  |  | 
|  | kfree(replay_map); | 
|  | osb->replay_map = NULL; | 
|  | } | 
|  |  | 
|  | int ocfs2_recovery_init(struct ocfs2_super *osb) | 
|  | { | 
|  | struct ocfs2_recovery_map *rm; | 
|  |  | 
|  | mutex_init(&osb->recovery_lock); | 
|  | osb->disable_recovery = 0; | 
|  | osb->recovery_thread_task = NULL; | 
|  | init_waitqueue_head(&osb->recovery_event); | 
|  |  | 
|  | rm = kzalloc(sizeof(struct ocfs2_recovery_map) + | 
|  | osb->max_slots * sizeof(unsigned int), | 
|  | GFP_KERNEL); | 
|  | if (!rm) { | 
|  | mlog_errno(-ENOMEM); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | rm->rm_entries = (unsigned int *)((char *)rm + | 
|  | sizeof(struct ocfs2_recovery_map)); | 
|  | osb->recovery_map = rm; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* we can't grab the goofy sem lock from inside wait_event, so we use | 
|  | * memory barriers to make sure that we'll see the null task before | 
|  | * being woken up */ | 
|  | static int ocfs2_recovery_thread_running(struct ocfs2_super *osb) | 
|  | { | 
|  | mb(); | 
|  | return osb->recovery_thread_task != NULL; | 
|  | } | 
|  |  | 
|  | void ocfs2_recovery_exit(struct ocfs2_super *osb) | 
|  | { | 
|  | struct ocfs2_recovery_map *rm; | 
|  |  | 
|  | /* disable any new recovery threads and wait for any currently | 
|  | * running ones to exit. Do this before setting the vol_state. */ | 
|  | mutex_lock(&osb->recovery_lock); | 
|  | osb->disable_recovery = 1; | 
|  | mutex_unlock(&osb->recovery_lock); | 
|  | wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb)); | 
|  |  | 
|  | /* At this point, we know that no more recovery threads can be | 
|  | * launched, so wait for any recovery completion work to | 
|  | * complete. */ | 
|  | flush_workqueue(ocfs2_wq); | 
|  |  | 
|  | /* | 
|  | * Now that recovery is shut down, and the osb is about to be | 
|  | * freed,  the osb_lock is not taken here. | 
|  | */ | 
|  | rm = osb->recovery_map; | 
|  | /* XXX: Should we bug if there are dirty entries? */ | 
|  |  | 
|  | kfree(rm); | 
|  | } | 
|  |  | 
|  | static int __ocfs2_recovery_map_test(struct ocfs2_super *osb, | 
|  | unsigned int node_num) | 
|  | { | 
|  | int i; | 
|  | struct ocfs2_recovery_map *rm = osb->recovery_map; | 
|  |  | 
|  | assert_spin_locked(&osb->osb_lock); | 
|  |  | 
|  | for (i = 0; i < rm->rm_used; i++) { | 
|  | if (rm->rm_entries[i] == node_num) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Behaves like test-and-set.  Returns the previous value */ | 
|  | static int ocfs2_recovery_map_set(struct ocfs2_super *osb, | 
|  | unsigned int node_num) | 
|  | { | 
|  | struct ocfs2_recovery_map *rm = osb->recovery_map; | 
|  |  | 
|  | spin_lock(&osb->osb_lock); | 
|  | if (__ocfs2_recovery_map_test(osb, node_num)) { | 
|  | spin_unlock(&osb->osb_lock); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* XXX: Can this be exploited? Not from o2dlm... */ | 
|  | BUG_ON(rm->rm_used >= osb->max_slots); | 
|  |  | 
|  | rm->rm_entries[rm->rm_used] = node_num; | 
|  | rm->rm_used++; | 
|  | spin_unlock(&osb->osb_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void ocfs2_recovery_map_clear(struct ocfs2_super *osb, | 
|  | unsigned int node_num) | 
|  | { | 
|  | int i; | 
|  | struct ocfs2_recovery_map *rm = osb->recovery_map; | 
|  |  | 
|  | spin_lock(&osb->osb_lock); | 
|  |  | 
|  | for (i = 0; i < rm->rm_used; i++) { | 
|  | if (rm->rm_entries[i] == node_num) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (i < rm->rm_used) { | 
|  | /* XXX: be careful with the pointer math */ | 
|  | memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]), | 
|  | (rm->rm_used - i - 1) * sizeof(unsigned int)); | 
|  | rm->rm_used--; | 
|  | } | 
|  |  | 
|  | spin_unlock(&osb->osb_lock); | 
|  | } | 
|  |  | 
|  | static int ocfs2_commit_cache(struct ocfs2_super *osb) | 
|  | { | 
|  | int status = 0; | 
|  | unsigned int flushed; | 
|  | unsigned long old_id; | 
|  | struct ocfs2_journal *journal = NULL; | 
|  |  | 
|  | mlog_entry_void(); | 
|  |  | 
|  | journal = osb->journal; | 
|  |  | 
|  | /* Flush all pending commits and checkpoint the journal. */ | 
|  | down_write(&journal->j_trans_barrier); | 
|  |  | 
|  | if (atomic_read(&journal->j_num_trans) == 0) { | 
|  | up_write(&journal->j_trans_barrier); | 
|  | mlog(0, "No transactions for me to flush!\n"); | 
|  | goto finally; | 
|  | } | 
|  |  | 
|  | jbd2_journal_lock_updates(journal->j_journal); | 
|  | status = jbd2_journal_flush(journal->j_journal); | 
|  | jbd2_journal_unlock_updates(journal->j_journal); | 
|  | if (status < 0) { | 
|  | up_write(&journal->j_trans_barrier); | 
|  | mlog_errno(status); | 
|  | goto finally; | 
|  | } | 
|  |  | 
|  | old_id = ocfs2_inc_trans_id(journal); | 
|  |  | 
|  | flushed = atomic_read(&journal->j_num_trans); | 
|  | atomic_set(&journal->j_num_trans, 0); | 
|  | up_write(&journal->j_trans_barrier); | 
|  |  | 
|  | mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n", | 
|  | journal->j_trans_id, flushed); | 
|  |  | 
|  | ocfs2_wake_downconvert_thread(osb); | 
|  | wake_up(&journal->j_checkpointed); | 
|  | finally: | 
|  | mlog_exit(status); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /* pass it NULL and it will allocate a new handle object for you.  If | 
|  | * you pass it a handle however, it may still return error, in which | 
|  | * case it has free'd the passed handle for you. */ | 
|  | handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs) | 
|  | { | 
|  | journal_t *journal = osb->journal->j_journal; | 
|  | handle_t *handle; | 
|  |  | 
|  | BUG_ON(!osb || !osb->journal->j_journal); | 
|  |  | 
|  | if (ocfs2_is_hard_readonly(osb)) | 
|  | return ERR_PTR(-EROFS); | 
|  |  | 
|  | BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE); | 
|  | BUG_ON(max_buffs <= 0); | 
|  |  | 
|  | /* Nested transaction? Just return the handle... */ | 
|  | if (journal_current_handle()) | 
|  | return jbd2_journal_start(journal, max_buffs); | 
|  |  | 
|  | down_read(&osb->journal->j_trans_barrier); | 
|  |  | 
|  | handle = jbd2_journal_start(journal, max_buffs); | 
|  | if (IS_ERR(handle)) { | 
|  | up_read(&osb->journal->j_trans_barrier); | 
|  |  | 
|  | mlog_errno(PTR_ERR(handle)); | 
|  |  | 
|  | if (is_journal_aborted(journal)) { | 
|  | ocfs2_abort(osb->sb, "Detected aborted journal"); | 
|  | handle = ERR_PTR(-EROFS); | 
|  | } | 
|  | } else { | 
|  | if (!ocfs2_mount_local(osb)) | 
|  | atomic_inc(&(osb->journal->j_num_trans)); | 
|  | } | 
|  |  | 
|  | return handle; | 
|  | } | 
|  |  | 
|  | int ocfs2_commit_trans(struct ocfs2_super *osb, | 
|  | handle_t *handle) | 
|  | { | 
|  | int ret, nested; | 
|  | struct ocfs2_journal *journal = osb->journal; | 
|  |  | 
|  | BUG_ON(!handle); | 
|  |  | 
|  | nested = handle->h_ref > 1; | 
|  | ret = jbd2_journal_stop(handle); | 
|  | if (ret < 0) | 
|  | mlog_errno(ret); | 
|  |  | 
|  | if (!nested) | 
|  | up_read(&journal->j_trans_barrier); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * 'nblocks' is what you want to add to the current | 
|  | * transaction. extend_trans will either extend the current handle by | 
|  | * nblocks, or commit it and start a new one with nblocks credits. | 
|  | * | 
|  | * This might call jbd2_journal_restart() which will commit dirty buffers | 
|  | * and then restart the transaction. Before calling | 
|  | * ocfs2_extend_trans(), any changed blocks should have been | 
|  | * dirtied. After calling it, all blocks which need to be changed must | 
|  | * go through another set of journal_access/journal_dirty calls. | 
|  | * | 
|  | * WARNING: This will not release any semaphores or disk locks taken | 
|  | * during the transaction, so make sure they were taken *before* | 
|  | * start_trans or we'll have ordering deadlocks. | 
|  | * | 
|  | * WARNING2: Note that we do *not* drop j_trans_barrier here. This is | 
|  | * good because transaction ids haven't yet been recorded on the | 
|  | * cluster locks associated with this handle. | 
|  | */ | 
|  | int ocfs2_extend_trans(handle_t *handle, int nblocks) | 
|  | { | 
|  | int status; | 
|  |  | 
|  | BUG_ON(!handle); | 
|  | BUG_ON(!nblocks); | 
|  |  | 
|  | mlog_entry_void(); | 
|  |  | 
|  | mlog(0, "Trying to extend transaction by %d blocks\n", nblocks); | 
|  |  | 
|  | #ifdef CONFIG_OCFS2_DEBUG_FS | 
|  | status = 1; | 
|  | #else | 
|  | status = jbd2_journal_extend(handle, nblocks); | 
|  | if (status < 0) { | 
|  | mlog_errno(status); | 
|  | goto bail; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (status > 0) { | 
|  | mlog(0, | 
|  | "jbd2_journal_extend failed, trying " | 
|  | "jbd2_journal_restart\n"); | 
|  | status = jbd2_journal_restart(handle, nblocks); | 
|  | if (status < 0) { | 
|  | mlog_errno(status); | 
|  | goto bail; | 
|  | } | 
|  | } | 
|  |  | 
|  | status = 0; | 
|  | bail: | 
|  |  | 
|  | mlog_exit(status); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | struct ocfs2_triggers { | 
|  | struct jbd2_buffer_trigger_type	ot_triggers; | 
|  | int				ot_offset; | 
|  | }; | 
|  |  | 
|  | static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers) | 
|  | { | 
|  | return container_of(triggers, struct ocfs2_triggers, ot_triggers); | 
|  | } | 
|  |  | 
|  | static void ocfs2_commit_trigger(struct jbd2_buffer_trigger_type *triggers, | 
|  | struct buffer_head *bh, | 
|  | void *data, size_t size) | 
|  | { | 
|  | struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers); | 
|  |  | 
|  | /* | 
|  | * We aren't guaranteed to have the superblock here, so we | 
|  | * must unconditionally compute the ecc data. | 
|  | * __ocfs2_journal_access() will only set the triggers if | 
|  | * metaecc is enabled. | 
|  | */ | 
|  | ocfs2_block_check_compute(data, size, data + ot->ot_offset); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Quota blocks have their own trigger because the struct ocfs2_block_check | 
|  | * offset depends on the blocksize. | 
|  | */ | 
|  | static void ocfs2_dq_commit_trigger(struct jbd2_buffer_trigger_type *triggers, | 
|  | struct buffer_head *bh, | 
|  | void *data, size_t size) | 
|  | { | 
|  | struct ocfs2_disk_dqtrailer *dqt = | 
|  | ocfs2_block_dqtrailer(size, data); | 
|  |  | 
|  | /* | 
|  | * We aren't guaranteed to have the superblock here, so we | 
|  | * must unconditionally compute the ecc data. | 
|  | * __ocfs2_journal_access() will only set the triggers if | 
|  | * metaecc is enabled. | 
|  | */ | 
|  | ocfs2_block_check_compute(data, size, &dqt->dq_check); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Directory blocks also have their own trigger because the | 
|  | * struct ocfs2_block_check offset depends on the blocksize. | 
|  | */ | 
|  | static void ocfs2_db_commit_trigger(struct jbd2_buffer_trigger_type *triggers, | 
|  | struct buffer_head *bh, | 
|  | void *data, size_t size) | 
|  | { | 
|  | struct ocfs2_dir_block_trailer *trailer = | 
|  | ocfs2_dir_trailer_from_size(size, data); | 
|  |  | 
|  | /* | 
|  | * We aren't guaranteed to have the superblock here, so we | 
|  | * must unconditionally compute the ecc data. | 
|  | * __ocfs2_journal_access() will only set the triggers if | 
|  | * metaecc is enabled. | 
|  | */ | 
|  | ocfs2_block_check_compute(data, size, &trailer->db_check); | 
|  | } | 
|  |  | 
|  | static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers, | 
|  | struct buffer_head *bh) | 
|  | { | 
|  | mlog(ML_ERROR, | 
|  | "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, " | 
|  | "bh->b_blocknr = %llu\n", | 
|  | (unsigned long)bh, | 
|  | (unsigned long long)bh->b_blocknr); | 
|  |  | 
|  | /* We aren't guaranteed to have the superblock here - but if we | 
|  | * don't, it'll just crash. */ | 
|  | ocfs2_error(bh->b_assoc_map->host->i_sb, | 
|  | "JBD2 has aborted our journal, ocfs2 cannot continue\n"); | 
|  | } | 
|  |  | 
|  | static struct ocfs2_triggers di_triggers = { | 
|  | .ot_triggers = { | 
|  | .t_commit = ocfs2_commit_trigger, | 
|  | .t_abort = ocfs2_abort_trigger, | 
|  | }, | 
|  | .ot_offset	= offsetof(struct ocfs2_dinode, i_check), | 
|  | }; | 
|  |  | 
|  | static struct ocfs2_triggers eb_triggers = { | 
|  | .ot_triggers = { | 
|  | .t_commit = ocfs2_commit_trigger, | 
|  | .t_abort = ocfs2_abort_trigger, | 
|  | }, | 
|  | .ot_offset	= offsetof(struct ocfs2_extent_block, h_check), | 
|  | }; | 
|  |  | 
|  | static struct ocfs2_triggers rb_triggers = { | 
|  | .ot_triggers = { | 
|  | .t_commit = ocfs2_commit_trigger, | 
|  | .t_abort = ocfs2_abort_trigger, | 
|  | }, | 
|  | .ot_offset	= offsetof(struct ocfs2_refcount_block, rf_check), | 
|  | }; | 
|  |  | 
|  | static struct ocfs2_triggers gd_triggers = { | 
|  | .ot_triggers = { | 
|  | .t_commit = ocfs2_commit_trigger, | 
|  | .t_abort = ocfs2_abort_trigger, | 
|  | }, | 
|  | .ot_offset	= offsetof(struct ocfs2_group_desc, bg_check), | 
|  | }; | 
|  |  | 
|  | static struct ocfs2_triggers db_triggers = { | 
|  | .ot_triggers = { | 
|  | .t_commit = ocfs2_db_commit_trigger, | 
|  | .t_abort = ocfs2_abort_trigger, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static struct ocfs2_triggers xb_triggers = { | 
|  | .ot_triggers = { | 
|  | .t_commit = ocfs2_commit_trigger, | 
|  | .t_abort = ocfs2_abort_trigger, | 
|  | }, | 
|  | .ot_offset	= offsetof(struct ocfs2_xattr_block, xb_check), | 
|  | }; | 
|  |  | 
|  | static struct ocfs2_triggers dq_triggers = { | 
|  | .ot_triggers = { | 
|  | .t_commit = ocfs2_dq_commit_trigger, | 
|  | .t_abort = ocfs2_abort_trigger, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static struct ocfs2_triggers dr_triggers = { | 
|  | .ot_triggers = { | 
|  | .t_commit = ocfs2_commit_trigger, | 
|  | .t_abort = ocfs2_abort_trigger, | 
|  | }, | 
|  | .ot_offset	= offsetof(struct ocfs2_dx_root_block, dr_check), | 
|  | }; | 
|  |  | 
|  | static struct ocfs2_triggers dl_triggers = { | 
|  | .ot_triggers = { | 
|  | .t_commit = ocfs2_commit_trigger, | 
|  | .t_abort = ocfs2_abort_trigger, | 
|  | }, | 
|  | .ot_offset	= offsetof(struct ocfs2_dx_leaf, dl_check), | 
|  | }; | 
|  |  | 
|  | static int __ocfs2_journal_access(handle_t *handle, | 
|  | struct ocfs2_caching_info *ci, | 
|  | struct buffer_head *bh, | 
|  | struct ocfs2_triggers *triggers, | 
|  | int type) | 
|  | { | 
|  | int status; | 
|  | struct ocfs2_super *osb = | 
|  | OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); | 
|  |  | 
|  | BUG_ON(!ci || !ci->ci_ops); | 
|  | BUG_ON(!handle); | 
|  | BUG_ON(!bh); | 
|  |  | 
|  | mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n", | 
|  | (unsigned long long)bh->b_blocknr, type, | 
|  | (type == OCFS2_JOURNAL_ACCESS_CREATE) ? | 
|  | "OCFS2_JOURNAL_ACCESS_CREATE" : | 
|  | "OCFS2_JOURNAL_ACCESS_WRITE", | 
|  | bh->b_size); | 
|  |  | 
|  | /* we can safely remove this assertion after testing. */ | 
|  | if (!buffer_uptodate(bh)) { | 
|  | mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n"); | 
|  | mlog(ML_ERROR, "b_blocknr=%llu\n", | 
|  | (unsigned long long)bh->b_blocknr); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* Set the current transaction information on the ci so | 
|  | * that the locking code knows whether it can drop it's locks | 
|  | * on this ci or not. We're protected from the commit | 
|  | * thread updating the current transaction id until | 
|  | * ocfs2_commit_trans() because ocfs2_start_trans() took | 
|  | * j_trans_barrier for us. */ | 
|  | ocfs2_set_ci_lock_trans(osb->journal, ci); | 
|  |  | 
|  | ocfs2_metadata_cache_io_lock(ci); | 
|  | switch (type) { | 
|  | case OCFS2_JOURNAL_ACCESS_CREATE: | 
|  | case OCFS2_JOURNAL_ACCESS_WRITE: | 
|  | status = jbd2_journal_get_write_access(handle, bh); | 
|  | break; | 
|  |  | 
|  | case OCFS2_JOURNAL_ACCESS_UNDO: | 
|  | status = jbd2_journal_get_undo_access(handle, bh); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | status = -EINVAL; | 
|  | mlog(ML_ERROR, "Unknown access type!\n"); | 
|  | } | 
|  | if (!status && ocfs2_meta_ecc(osb) && triggers) | 
|  | jbd2_journal_set_triggers(bh, &triggers->ot_triggers); | 
|  | ocfs2_metadata_cache_io_unlock(ci); | 
|  |  | 
|  | if (status < 0) | 
|  | mlog(ML_ERROR, "Error %d getting %d access to buffer!\n", | 
|  | status, type); | 
|  |  | 
|  | mlog_exit(status); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci, | 
|  | struct buffer_head *bh, int type) | 
|  | { | 
|  | return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type); | 
|  | } | 
|  |  | 
|  | int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci, | 
|  | struct buffer_head *bh, int type) | 
|  | { | 
|  | return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type); | 
|  | } | 
|  |  | 
|  | int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci, | 
|  | struct buffer_head *bh, int type) | 
|  | { | 
|  | return __ocfs2_journal_access(handle, ci, bh, &rb_triggers, | 
|  | type); | 
|  | } | 
|  |  | 
|  | int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci, | 
|  | struct buffer_head *bh, int type) | 
|  | { | 
|  | return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type); | 
|  | } | 
|  |  | 
|  | int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci, | 
|  | struct buffer_head *bh, int type) | 
|  | { | 
|  | return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type); | 
|  | } | 
|  |  | 
|  | int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci, | 
|  | struct buffer_head *bh, int type) | 
|  | { | 
|  | return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type); | 
|  | } | 
|  |  | 
|  | int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci, | 
|  | struct buffer_head *bh, int type) | 
|  | { | 
|  | return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type); | 
|  | } | 
|  |  | 
|  | int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci, | 
|  | struct buffer_head *bh, int type) | 
|  | { | 
|  | return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type); | 
|  | } | 
|  |  | 
|  | int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci, | 
|  | struct buffer_head *bh, int type) | 
|  | { | 
|  | return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type); | 
|  | } | 
|  |  | 
|  | int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci, | 
|  | struct buffer_head *bh, int type) | 
|  | { | 
|  | return __ocfs2_journal_access(handle, ci, bh, NULL, type); | 
|  | } | 
|  |  | 
|  | int ocfs2_journal_dirty(handle_t *handle, | 
|  | struct buffer_head *bh) | 
|  | { | 
|  | int status; | 
|  |  | 
|  | mlog_entry("(bh->b_blocknr=%llu)\n", | 
|  | (unsigned long long)bh->b_blocknr); | 
|  |  | 
|  | status = jbd2_journal_dirty_metadata(handle, bh); | 
|  | if (status < 0) | 
|  | mlog(ML_ERROR, "Could not dirty metadata buffer. " | 
|  | "(bh->b_blocknr=%llu)\n", | 
|  | (unsigned long long)bh->b_blocknr); | 
|  |  | 
|  | mlog_exit(status); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | #define OCFS2_DEFAULT_COMMIT_INTERVAL	(HZ * JBD2_DEFAULT_MAX_COMMIT_AGE) | 
|  |  | 
|  | void ocfs2_set_journal_params(struct ocfs2_super *osb) | 
|  | { | 
|  | journal_t *journal = osb->journal->j_journal; | 
|  | unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL; | 
|  |  | 
|  | if (osb->osb_commit_interval) | 
|  | commit_interval = osb->osb_commit_interval; | 
|  |  | 
|  | spin_lock(&journal->j_state_lock); | 
|  | journal->j_commit_interval = commit_interval; | 
|  | if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER) | 
|  | journal->j_flags |= JBD2_BARRIER; | 
|  | else | 
|  | journal->j_flags &= ~JBD2_BARRIER; | 
|  | spin_unlock(&journal->j_state_lock); | 
|  | } | 
|  |  | 
|  | int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty) | 
|  | { | 
|  | int status = -1; | 
|  | struct inode *inode = NULL; /* the journal inode */ | 
|  | journal_t *j_journal = NULL; | 
|  | struct ocfs2_dinode *di = NULL; | 
|  | struct buffer_head *bh = NULL; | 
|  | struct ocfs2_super *osb; | 
|  | int inode_lock = 0; | 
|  |  | 
|  | mlog_entry_void(); | 
|  |  | 
|  | BUG_ON(!journal); | 
|  |  | 
|  | osb = journal->j_osb; | 
|  |  | 
|  | /* already have the inode for our journal */ | 
|  | inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, | 
|  | osb->slot_num); | 
|  | if (inode == NULL) { | 
|  | status = -EACCES; | 
|  | mlog_errno(status); | 
|  | goto done; | 
|  | } | 
|  | if (is_bad_inode(inode)) { | 
|  | mlog(ML_ERROR, "access error (bad inode)\n"); | 
|  | iput(inode); | 
|  | inode = NULL; | 
|  | status = -EACCES; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | SET_INODE_JOURNAL(inode); | 
|  | OCFS2_I(inode)->ip_open_count++; | 
|  |  | 
|  | /* Skip recovery waits here - journal inode metadata never | 
|  | * changes in a live cluster so it can be considered an | 
|  | * exception to the rule. */ | 
|  | status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); | 
|  | if (status < 0) { | 
|  | if (status != -ERESTARTSYS) | 
|  | mlog(ML_ERROR, "Could not get lock on journal!\n"); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | inode_lock = 1; | 
|  | di = (struct ocfs2_dinode *)bh->b_data; | 
|  |  | 
|  | if (inode->i_size <  OCFS2_MIN_JOURNAL_SIZE) { | 
|  | mlog(ML_ERROR, "Journal file size (%lld) is too small!\n", | 
|  | inode->i_size); | 
|  | status = -EINVAL; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | mlog(0, "inode->i_size = %lld\n", inode->i_size); | 
|  | mlog(0, "inode->i_blocks = %llu\n", | 
|  | (unsigned long long)inode->i_blocks); | 
|  | mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters); | 
|  |  | 
|  | /* call the kernels journal init function now */ | 
|  | j_journal = jbd2_journal_init_inode(inode); | 
|  | if (j_journal == NULL) { | 
|  | mlog(ML_ERROR, "Linux journal layer error\n"); | 
|  | status = -EINVAL; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | mlog(0, "Returned from jbd2_journal_init_inode\n"); | 
|  | mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen); | 
|  |  | 
|  | *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) & | 
|  | OCFS2_JOURNAL_DIRTY_FL); | 
|  |  | 
|  | journal->j_journal = j_journal; | 
|  | journal->j_inode = inode; | 
|  | journal->j_bh = bh; | 
|  |  | 
|  | ocfs2_set_journal_params(osb); | 
|  |  | 
|  | journal->j_state = OCFS2_JOURNAL_LOADED; | 
|  |  | 
|  | status = 0; | 
|  | done: | 
|  | if (status < 0) { | 
|  | if (inode_lock) | 
|  | ocfs2_inode_unlock(inode, 1); | 
|  | brelse(bh); | 
|  | if (inode) { | 
|  | OCFS2_I(inode)->ip_open_count--; | 
|  | iput(inode); | 
|  | } | 
|  | } | 
|  |  | 
|  | mlog_exit(status); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di) | 
|  | { | 
|  | le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1); | 
|  | } | 
|  |  | 
|  | static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di) | 
|  | { | 
|  | return le32_to_cpu(di->id1.journal1.ij_recovery_generation); | 
|  | } | 
|  |  | 
|  | static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, | 
|  | int dirty, int replayed) | 
|  | { | 
|  | int status; | 
|  | unsigned int flags; | 
|  | struct ocfs2_journal *journal = osb->journal; | 
|  | struct buffer_head *bh = journal->j_bh; | 
|  | struct ocfs2_dinode *fe; | 
|  |  | 
|  | mlog_entry_void(); | 
|  |  | 
|  | fe = (struct ocfs2_dinode *)bh->b_data; | 
|  |  | 
|  | /* The journal bh on the osb always comes from ocfs2_journal_init() | 
|  | * and was validated there inside ocfs2_inode_lock_full().  It's a | 
|  | * code bug if we mess it up. */ | 
|  | BUG_ON(!OCFS2_IS_VALID_DINODE(fe)); | 
|  |  | 
|  | flags = le32_to_cpu(fe->id1.journal1.ij_flags); | 
|  | if (dirty) | 
|  | flags |= OCFS2_JOURNAL_DIRTY_FL; | 
|  | else | 
|  | flags &= ~OCFS2_JOURNAL_DIRTY_FL; | 
|  | fe->id1.journal1.ij_flags = cpu_to_le32(flags); | 
|  |  | 
|  | if (replayed) | 
|  | ocfs2_bump_recovery_generation(fe); | 
|  |  | 
|  | ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); | 
|  | status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode)); | 
|  | if (status < 0) | 
|  | mlog_errno(status); | 
|  |  | 
|  | mlog_exit(status); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the journal has been kmalloc'd it needs to be freed after this | 
|  | * call. | 
|  | */ | 
|  | void ocfs2_journal_shutdown(struct ocfs2_super *osb) | 
|  | { | 
|  | struct ocfs2_journal *journal = NULL; | 
|  | int status = 0; | 
|  | struct inode *inode = NULL; | 
|  | int num_running_trans = 0; | 
|  |  | 
|  | mlog_entry_void(); | 
|  |  | 
|  | BUG_ON(!osb); | 
|  |  | 
|  | journal = osb->journal; | 
|  | if (!journal) | 
|  | goto done; | 
|  |  | 
|  | inode = journal->j_inode; | 
|  |  | 
|  | if (journal->j_state != OCFS2_JOURNAL_LOADED) | 
|  | goto done; | 
|  |  | 
|  | /* need to inc inode use count - jbd2_journal_destroy will iput. */ | 
|  | if (!igrab(inode)) | 
|  | BUG(); | 
|  |  | 
|  | num_running_trans = atomic_read(&(osb->journal->j_num_trans)); | 
|  | if (num_running_trans > 0) | 
|  | mlog(0, "Shutting down journal: must wait on %d " | 
|  | "running transactions!\n", | 
|  | num_running_trans); | 
|  |  | 
|  | /* Do a commit_cache here. It will flush our journal, *and* | 
|  | * release any locks that are still held. | 
|  | * set the SHUTDOWN flag and release the trans lock. | 
|  | * the commit thread will take the trans lock for us below. */ | 
|  | journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN; | 
|  |  | 
|  | /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not | 
|  | * drop the trans_lock (which we want to hold until we | 
|  | * completely destroy the journal. */ | 
|  | if (osb->commit_task) { | 
|  | /* Wait for the commit thread */ | 
|  | mlog(0, "Waiting for ocfs2commit to exit....\n"); | 
|  | kthread_stop(osb->commit_task); | 
|  | osb->commit_task = NULL; | 
|  | } | 
|  |  | 
|  | BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0); | 
|  |  | 
|  | if (ocfs2_mount_local(osb)) { | 
|  | jbd2_journal_lock_updates(journal->j_journal); | 
|  | status = jbd2_journal_flush(journal->j_journal); | 
|  | jbd2_journal_unlock_updates(journal->j_journal); | 
|  | if (status < 0) | 
|  | mlog_errno(status); | 
|  | } | 
|  |  | 
|  | if (status == 0) { | 
|  | /* | 
|  | * Do not toggle if flush was unsuccessful otherwise | 
|  | * will leave dirty metadata in a "clean" journal | 
|  | */ | 
|  | status = ocfs2_journal_toggle_dirty(osb, 0, 0); | 
|  | if (status < 0) | 
|  | mlog_errno(status); | 
|  | } | 
|  |  | 
|  | /* Shutdown the kernel journal system */ | 
|  | jbd2_journal_destroy(journal->j_journal); | 
|  | journal->j_journal = NULL; | 
|  |  | 
|  | OCFS2_I(inode)->ip_open_count--; | 
|  |  | 
|  | /* unlock our journal */ | 
|  | ocfs2_inode_unlock(inode, 1); | 
|  |  | 
|  | brelse(journal->j_bh); | 
|  | journal->j_bh = NULL; | 
|  |  | 
|  | journal->j_state = OCFS2_JOURNAL_FREE; | 
|  |  | 
|  | //	up_write(&journal->j_trans_barrier); | 
|  | done: | 
|  | if (inode) | 
|  | iput(inode); | 
|  | mlog_exit_void(); | 
|  | } | 
|  |  | 
|  | static void ocfs2_clear_journal_error(struct super_block *sb, | 
|  | journal_t *journal, | 
|  | int slot) | 
|  | { | 
|  | int olderr; | 
|  |  | 
|  | olderr = jbd2_journal_errno(journal); | 
|  | if (olderr) { | 
|  | mlog(ML_ERROR, "File system error %d recorded in " | 
|  | "journal %u.\n", olderr, slot); | 
|  | mlog(ML_ERROR, "File system on device %s needs checking.\n", | 
|  | sb->s_id); | 
|  |  | 
|  | jbd2_journal_ack_err(journal); | 
|  | jbd2_journal_clear_err(journal); | 
|  | } | 
|  | } | 
|  |  | 
|  | int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed) | 
|  | { | 
|  | int status = 0; | 
|  | struct ocfs2_super *osb; | 
|  |  | 
|  | mlog_entry_void(); | 
|  |  | 
|  | BUG_ON(!journal); | 
|  |  | 
|  | osb = journal->j_osb; | 
|  |  | 
|  | status = jbd2_journal_load(journal->j_journal); | 
|  | if (status < 0) { | 
|  | mlog(ML_ERROR, "Failed to load journal!\n"); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num); | 
|  |  | 
|  | status = ocfs2_journal_toggle_dirty(osb, 1, replayed); | 
|  | if (status < 0) { | 
|  | mlog_errno(status); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* Launch the commit thread */ | 
|  | if (!local) { | 
|  | osb->commit_task = kthread_run(ocfs2_commit_thread, osb, | 
|  | "ocfs2cmt"); | 
|  | if (IS_ERR(osb->commit_task)) { | 
|  | status = PTR_ERR(osb->commit_task); | 
|  | osb->commit_task = NULL; | 
|  | mlog(ML_ERROR, "unable to launch ocfs2commit thread, " | 
|  | "error=%d", status); | 
|  | goto done; | 
|  | } | 
|  | } else | 
|  | osb->commit_task = NULL; | 
|  |  | 
|  | done: | 
|  | mlog_exit(status); | 
|  | return status; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* 'full' flag tells us whether we clear out all blocks or if we just | 
|  | * mark the journal clean */ | 
|  | int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full) | 
|  | { | 
|  | int status; | 
|  |  | 
|  | mlog_entry_void(); | 
|  |  | 
|  | BUG_ON(!journal); | 
|  |  | 
|  | status = jbd2_journal_wipe(journal->j_journal, full); | 
|  | if (status < 0) { | 
|  | mlog_errno(status); | 
|  | goto bail; | 
|  | } | 
|  |  | 
|  | status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0); | 
|  | if (status < 0) | 
|  | mlog_errno(status); | 
|  |  | 
|  | bail: | 
|  | mlog_exit(status); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static int ocfs2_recovery_completed(struct ocfs2_super *osb) | 
|  | { | 
|  | int empty; | 
|  | struct ocfs2_recovery_map *rm = osb->recovery_map; | 
|  |  | 
|  | spin_lock(&osb->osb_lock); | 
|  | empty = (rm->rm_used == 0); | 
|  | spin_unlock(&osb->osb_lock); | 
|  |  | 
|  | return empty; | 
|  | } | 
|  |  | 
|  | void ocfs2_wait_for_recovery(struct ocfs2_super *osb) | 
|  | { | 
|  | wait_event(osb->recovery_event, ocfs2_recovery_completed(osb)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * JBD Might read a cached version of another nodes journal file. We | 
|  | * don't want this as this file changes often and we get no | 
|  | * notification on those changes. The only way to be sure that we've | 
|  | * got the most up to date version of those blocks then is to force | 
|  | * read them off disk. Just searching through the buffer cache won't | 
|  | * work as there may be pages backing this file which are still marked | 
|  | * up to date. We know things can't change on this file underneath us | 
|  | * as we have the lock by now :) | 
|  | */ | 
|  | static int ocfs2_force_read_journal(struct inode *inode) | 
|  | { | 
|  | int status = 0; | 
|  | int i; | 
|  | u64 v_blkno, p_blkno, p_blocks, num_blocks; | 
|  | #define CONCURRENT_JOURNAL_FILL 32ULL | 
|  | struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL]; | 
|  |  | 
|  | mlog_entry_void(); | 
|  |  | 
|  | memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL); | 
|  |  | 
|  | num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size); | 
|  | v_blkno = 0; | 
|  | while (v_blkno < num_blocks) { | 
|  | status = ocfs2_extent_map_get_blocks(inode, v_blkno, | 
|  | &p_blkno, &p_blocks, NULL); | 
|  | if (status < 0) { | 
|  | mlog_errno(status); | 
|  | goto bail; | 
|  | } | 
|  |  | 
|  | if (p_blocks > CONCURRENT_JOURNAL_FILL) | 
|  | p_blocks = CONCURRENT_JOURNAL_FILL; | 
|  |  | 
|  | /* We are reading journal data which should not | 
|  | * be put in the uptodate cache */ | 
|  | status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb), | 
|  | p_blkno, p_blocks, bhs); | 
|  | if (status < 0) { | 
|  | mlog_errno(status); | 
|  | goto bail; | 
|  | } | 
|  |  | 
|  | for(i = 0; i < p_blocks; i++) { | 
|  | brelse(bhs[i]); | 
|  | bhs[i] = NULL; | 
|  | } | 
|  |  | 
|  | v_blkno += p_blocks; | 
|  | } | 
|  |  | 
|  | bail: | 
|  | for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++) | 
|  | brelse(bhs[i]); | 
|  | mlog_exit(status); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | struct ocfs2_la_recovery_item { | 
|  | struct list_head	lri_list; | 
|  | int			lri_slot; | 
|  | struct ocfs2_dinode	*lri_la_dinode; | 
|  | struct ocfs2_dinode	*lri_tl_dinode; | 
|  | struct ocfs2_quota_recovery *lri_qrec; | 
|  | }; | 
|  |  | 
|  | /* Does the second half of the recovery process. By this point, the | 
|  | * node is marked clean and can actually be considered recovered, | 
|  | * hence it's no longer in the recovery map, but there's still some | 
|  | * cleanup we can do which shouldn't happen within the recovery thread | 
|  | * as locking in that context becomes very difficult if we are to take | 
|  | * recovering nodes into account. | 
|  | * | 
|  | * NOTE: This function can and will sleep on recovery of other nodes | 
|  | * during cluster locking, just like any other ocfs2 process. | 
|  | */ | 
|  | void ocfs2_complete_recovery(struct work_struct *work) | 
|  | { | 
|  | int ret; | 
|  | struct ocfs2_journal *journal = | 
|  | container_of(work, struct ocfs2_journal, j_recovery_work); | 
|  | struct ocfs2_super *osb = journal->j_osb; | 
|  | struct ocfs2_dinode *la_dinode, *tl_dinode; | 
|  | struct ocfs2_la_recovery_item *item, *n; | 
|  | struct ocfs2_quota_recovery *qrec; | 
|  | LIST_HEAD(tmp_la_list); | 
|  |  | 
|  | mlog_entry_void(); | 
|  |  | 
|  | mlog(0, "completing recovery from keventd\n"); | 
|  |  | 
|  | spin_lock(&journal->j_lock); | 
|  | list_splice_init(&journal->j_la_cleanups, &tmp_la_list); | 
|  | spin_unlock(&journal->j_lock); | 
|  |  | 
|  | list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) { | 
|  | list_del_init(&item->lri_list); | 
|  |  | 
|  | mlog(0, "Complete recovery for slot %d\n", item->lri_slot); | 
|  |  | 
|  | ocfs2_wait_on_quotas(osb); | 
|  |  | 
|  | la_dinode = item->lri_la_dinode; | 
|  | if (la_dinode) { | 
|  | mlog(0, "Clean up local alloc %llu\n", | 
|  | (unsigned long long)le64_to_cpu(la_dinode->i_blkno)); | 
|  |  | 
|  | ret = ocfs2_complete_local_alloc_recovery(osb, | 
|  | la_dinode); | 
|  | if (ret < 0) | 
|  | mlog_errno(ret); | 
|  |  | 
|  | kfree(la_dinode); | 
|  | } | 
|  |  | 
|  | tl_dinode = item->lri_tl_dinode; | 
|  | if (tl_dinode) { | 
|  | mlog(0, "Clean up truncate log %llu\n", | 
|  | (unsigned long long)le64_to_cpu(tl_dinode->i_blkno)); | 
|  |  | 
|  | ret = ocfs2_complete_truncate_log_recovery(osb, | 
|  | tl_dinode); | 
|  | if (ret < 0) | 
|  | mlog_errno(ret); | 
|  |  | 
|  | kfree(tl_dinode); | 
|  | } | 
|  |  | 
|  | ret = ocfs2_recover_orphans(osb, item->lri_slot); | 
|  | if (ret < 0) | 
|  | mlog_errno(ret); | 
|  |  | 
|  | qrec = item->lri_qrec; | 
|  | if (qrec) { | 
|  | mlog(0, "Recovering quota files"); | 
|  | ret = ocfs2_finish_quota_recovery(osb, qrec, | 
|  | item->lri_slot); | 
|  | if (ret < 0) | 
|  | mlog_errno(ret); | 
|  | /* Recovery info is already freed now */ | 
|  | } | 
|  |  | 
|  | kfree(item); | 
|  | } | 
|  |  | 
|  | mlog(0, "Recovery completion\n"); | 
|  | mlog_exit_void(); | 
|  | } | 
|  |  | 
|  | /* NOTE: This function always eats your references to la_dinode and | 
|  | * tl_dinode, either manually on error, or by passing them to | 
|  | * ocfs2_complete_recovery */ | 
|  | static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, | 
|  | int slot_num, | 
|  | struct ocfs2_dinode *la_dinode, | 
|  | struct ocfs2_dinode *tl_dinode, | 
|  | struct ocfs2_quota_recovery *qrec) | 
|  | { | 
|  | struct ocfs2_la_recovery_item *item; | 
|  |  | 
|  | item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS); | 
|  | if (!item) { | 
|  | /* Though we wish to avoid it, we are in fact safe in | 
|  | * skipping local alloc cleanup as fsck.ocfs2 is more | 
|  | * than capable of reclaiming unused space. */ | 
|  | if (la_dinode) | 
|  | kfree(la_dinode); | 
|  |  | 
|  | if (tl_dinode) | 
|  | kfree(tl_dinode); | 
|  |  | 
|  | if (qrec) | 
|  | ocfs2_free_quota_recovery(qrec); | 
|  |  | 
|  | mlog_errno(-ENOMEM); | 
|  | return; | 
|  | } | 
|  |  | 
|  | INIT_LIST_HEAD(&item->lri_list); | 
|  | item->lri_la_dinode = la_dinode; | 
|  | item->lri_slot = slot_num; | 
|  | item->lri_tl_dinode = tl_dinode; | 
|  | item->lri_qrec = qrec; | 
|  |  | 
|  | spin_lock(&journal->j_lock); | 
|  | list_add_tail(&item->lri_list, &journal->j_la_cleanups); | 
|  | queue_work(ocfs2_wq, &journal->j_recovery_work); | 
|  | spin_unlock(&journal->j_lock); | 
|  | } | 
|  |  | 
|  | /* Called by the mount code to queue recovery the last part of | 
|  | * recovery for it's own and offline slot(s). */ | 
|  | void ocfs2_complete_mount_recovery(struct ocfs2_super *osb) | 
|  | { | 
|  | struct ocfs2_journal *journal = osb->journal; | 
|  |  | 
|  | /* No need to queue up our truncate_log as regular cleanup will catch | 
|  | * that */ | 
|  | ocfs2_queue_recovery_completion(journal, osb->slot_num, | 
|  | osb->local_alloc_copy, NULL, NULL); | 
|  | ocfs2_schedule_truncate_log_flush(osb, 0); | 
|  |  | 
|  | osb->local_alloc_copy = NULL; | 
|  | osb->dirty = 0; | 
|  |  | 
|  | /* queue to recover orphan slots for all offline slots */ | 
|  | ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); | 
|  | ocfs2_queue_replay_slots(osb); | 
|  | ocfs2_free_replay_slots(osb); | 
|  | } | 
|  |  | 
|  | void ocfs2_complete_quota_recovery(struct ocfs2_super *osb) | 
|  | { | 
|  | if (osb->quota_rec) { | 
|  | ocfs2_queue_recovery_completion(osb->journal, | 
|  | osb->slot_num, | 
|  | NULL, | 
|  | NULL, | 
|  | osb->quota_rec); | 
|  | osb->quota_rec = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __ocfs2_recovery_thread(void *arg) | 
|  | { | 
|  | int status, node_num, slot_num; | 
|  | struct ocfs2_super *osb = arg; | 
|  | struct ocfs2_recovery_map *rm = osb->recovery_map; | 
|  | int *rm_quota = NULL; | 
|  | int rm_quota_used = 0, i; | 
|  | struct ocfs2_quota_recovery *qrec; | 
|  |  | 
|  | mlog_entry_void(); | 
|  |  | 
|  | status = ocfs2_wait_on_mount(osb); | 
|  | if (status < 0) { | 
|  | goto bail; | 
|  | } | 
|  |  | 
|  | rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS); | 
|  | if (!rm_quota) { | 
|  | status = -ENOMEM; | 
|  | goto bail; | 
|  | } | 
|  | restart: | 
|  | status = ocfs2_super_lock(osb, 1); | 
|  | if (status < 0) { | 
|  | mlog_errno(status); | 
|  | goto bail; | 
|  | } | 
|  |  | 
|  | status = ocfs2_compute_replay_slots(osb); | 
|  | if (status < 0) | 
|  | mlog_errno(status); | 
|  |  | 
|  | /* queue recovery for our own slot */ | 
|  | ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL, | 
|  | NULL, NULL); | 
|  |  | 
|  | spin_lock(&osb->osb_lock); | 
|  | while (rm->rm_used) { | 
|  | /* It's always safe to remove entry zero, as we won't | 
|  | * clear it until ocfs2_recover_node() has succeeded. */ | 
|  | node_num = rm->rm_entries[0]; | 
|  | spin_unlock(&osb->osb_lock); | 
|  | mlog(0, "checking node %d\n", node_num); | 
|  | slot_num = ocfs2_node_num_to_slot(osb, node_num); | 
|  | if (slot_num == -ENOENT) { | 
|  | status = 0; | 
|  | mlog(0, "no slot for this node, so no recovery" | 
|  | "required.\n"); | 
|  | goto skip_recovery; | 
|  | } | 
|  | mlog(0, "node %d was using slot %d\n", node_num, slot_num); | 
|  |  | 
|  | /* It is a bit subtle with quota recovery. We cannot do it | 
|  | * immediately because we have to obtain cluster locks from | 
|  | * quota files and we also don't want to just skip it because | 
|  | * then quota usage would be out of sync until some node takes | 
|  | * the slot. So we remember which nodes need quota recovery | 
|  | * and when everything else is done, we recover quotas. */ | 
|  | for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++); | 
|  | if (i == rm_quota_used) | 
|  | rm_quota[rm_quota_used++] = slot_num; | 
|  |  | 
|  | status = ocfs2_recover_node(osb, node_num, slot_num); | 
|  | skip_recovery: | 
|  | if (!status) { | 
|  | ocfs2_recovery_map_clear(osb, node_num); | 
|  | } else { | 
|  | mlog(ML_ERROR, | 
|  | "Error %d recovering node %d on device (%u,%u)!\n", | 
|  | status, node_num, | 
|  | MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); | 
|  | mlog(ML_ERROR, "Volume requires unmount.\n"); | 
|  | } | 
|  |  | 
|  | spin_lock(&osb->osb_lock); | 
|  | } | 
|  | spin_unlock(&osb->osb_lock); | 
|  | mlog(0, "All nodes recovered\n"); | 
|  |  | 
|  | /* Refresh all journal recovery generations from disk */ | 
|  | status = ocfs2_check_journals_nolocks(osb); | 
|  | status = (status == -EROFS) ? 0 : status; | 
|  | if (status < 0) | 
|  | mlog_errno(status); | 
|  |  | 
|  | /* Now it is right time to recover quotas... We have to do this under | 
|  | * superblock lock so that noone can start using the slot (and crash) | 
|  | * before we recover it */ | 
|  | for (i = 0; i < rm_quota_used; i++) { | 
|  | qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]); | 
|  | if (IS_ERR(qrec)) { | 
|  | status = PTR_ERR(qrec); | 
|  | mlog_errno(status); | 
|  | continue; | 
|  | } | 
|  | ocfs2_queue_recovery_completion(osb->journal, rm_quota[i], | 
|  | NULL, NULL, qrec); | 
|  | } | 
|  |  | 
|  | ocfs2_super_unlock(osb, 1); | 
|  |  | 
|  | /* queue recovery for offline slots */ | 
|  | ocfs2_queue_replay_slots(osb); | 
|  |  | 
|  | bail: | 
|  | mutex_lock(&osb->recovery_lock); | 
|  | if (!status && !ocfs2_recovery_completed(osb)) { | 
|  | mutex_unlock(&osb->recovery_lock); | 
|  | goto restart; | 
|  | } | 
|  |  | 
|  | ocfs2_free_replay_slots(osb); | 
|  | osb->recovery_thread_task = NULL; | 
|  | mb(); /* sync with ocfs2_recovery_thread_running */ | 
|  | wake_up(&osb->recovery_event); | 
|  |  | 
|  | mutex_unlock(&osb->recovery_lock); | 
|  |  | 
|  | if (rm_quota) | 
|  | kfree(rm_quota); | 
|  |  | 
|  | mlog_exit(status); | 
|  | /* no one is callint kthread_stop() for us so the kthread() api | 
|  | * requires that we call do_exit().  And it isn't exported, but | 
|  | * complete_and_exit() seems to be a minimal wrapper around it. */ | 
|  | complete_and_exit(NULL, status); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num) | 
|  | { | 
|  | mlog_entry("(node_num=%d, osb->node_num = %d)\n", | 
|  | node_num, osb->node_num); | 
|  |  | 
|  | mutex_lock(&osb->recovery_lock); | 
|  | if (osb->disable_recovery) | 
|  | goto out; | 
|  |  | 
|  | /* People waiting on recovery will wait on | 
|  | * the recovery map to empty. */ | 
|  | if (ocfs2_recovery_map_set(osb, node_num)) | 
|  | mlog(0, "node %d already in recovery map.\n", node_num); | 
|  |  | 
|  | mlog(0, "starting recovery thread...\n"); | 
|  |  | 
|  | if (osb->recovery_thread_task) | 
|  | goto out; | 
|  |  | 
|  | osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb, | 
|  | "ocfs2rec"); | 
|  | if (IS_ERR(osb->recovery_thread_task)) { | 
|  | mlog_errno((int)PTR_ERR(osb->recovery_thread_task)); | 
|  | osb->recovery_thread_task = NULL; | 
|  | } | 
|  |  | 
|  | out: | 
|  | mutex_unlock(&osb->recovery_lock); | 
|  | wake_up(&osb->recovery_event); | 
|  |  | 
|  | mlog_exit_void(); | 
|  | } | 
|  |  | 
|  | static int ocfs2_read_journal_inode(struct ocfs2_super *osb, | 
|  | int slot_num, | 
|  | struct buffer_head **bh, | 
|  | struct inode **ret_inode) | 
|  | { | 
|  | int status = -EACCES; | 
|  | struct inode *inode = NULL; | 
|  |  | 
|  | BUG_ON(slot_num >= osb->max_slots); | 
|  |  | 
|  | inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, | 
|  | slot_num); | 
|  | if (!inode || is_bad_inode(inode)) { | 
|  | mlog_errno(status); | 
|  | goto bail; | 
|  | } | 
|  | SET_INODE_JOURNAL(inode); | 
|  |  | 
|  | status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE); | 
|  | if (status < 0) { | 
|  | mlog_errno(status); | 
|  | goto bail; | 
|  | } | 
|  |  | 
|  | status = 0; | 
|  |  | 
|  | bail: | 
|  | if (inode) { | 
|  | if (status || !ret_inode) | 
|  | iput(inode); | 
|  | else | 
|  | *ret_inode = inode; | 
|  | } | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /* Does the actual journal replay and marks the journal inode as | 
|  | * clean. Will only replay if the journal inode is marked dirty. */ | 
|  | static int ocfs2_replay_journal(struct ocfs2_super *osb, | 
|  | int node_num, | 
|  | int slot_num) | 
|  | { | 
|  | int status; | 
|  | int got_lock = 0; | 
|  | unsigned int flags; | 
|  | struct inode *inode = NULL; | 
|  | struct ocfs2_dinode *fe; | 
|  | journal_t *journal = NULL; | 
|  | struct buffer_head *bh = NULL; | 
|  | u32 slot_reco_gen; | 
|  |  | 
|  | status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode); | 
|  | if (status) { | 
|  | mlog_errno(status); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | fe = (struct ocfs2_dinode *)bh->b_data; | 
|  | slot_reco_gen = ocfs2_get_recovery_generation(fe); | 
|  | brelse(bh); | 
|  | bh = NULL; | 
|  |  | 
|  | /* | 
|  | * As the fs recovery is asynchronous, there is a small chance that | 
|  | * another node mounted (and recovered) the slot before the recovery | 
|  | * thread could get the lock. To handle that, we dirty read the journal | 
|  | * inode for that slot to get the recovery generation. If it is | 
|  | * different than what we expected, the slot has been recovered. | 
|  | * If not, it needs recovery. | 
|  | */ | 
|  | if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) { | 
|  | mlog(0, "Slot %u already recovered (old/new=%u/%u)\n", slot_num, | 
|  | osb->slot_recovery_generations[slot_num], slot_reco_gen); | 
|  | osb->slot_recovery_generations[slot_num] = slot_reco_gen; | 
|  | status = -EBUSY; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* Continue with recovery as the journal has not yet been recovered */ | 
|  |  | 
|  | status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); | 
|  | if (status < 0) { | 
|  | mlog(0, "status returned from ocfs2_inode_lock=%d\n", status); | 
|  | if (status != -ERESTARTSYS) | 
|  | mlog(ML_ERROR, "Could not lock journal!\n"); | 
|  | goto done; | 
|  | } | 
|  | got_lock = 1; | 
|  |  | 
|  | fe = (struct ocfs2_dinode *) bh->b_data; | 
|  |  | 
|  | flags = le32_to_cpu(fe->id1.journal1.ij_flags); | 
|  | slot_reco_gen = ocfs2_get_recovery_generation(fe); | 
|  |  | 
|  | if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) { | 
|  | mlog(0, "No recovery required for node %d\n", node_num); | 
|  | /* Refresh recovery generation for the slot */ | 
|  | osb->slot_recovery_generations[slot_num] = slot_reco_gen; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* we need to run complete recovery for offline orphan slots */ | 
|  | ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); | 
|  |  | 
|  | mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n", | 
|  | node_num, slot_num, | 
|  | MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); | 
|  |  | 
|  | OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters); | 
|  |  | 
|  | status = ocfs2_force_read_journal(inode); | 
|  | if (status < 0) { | 
|  | mlog_errno(status); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | mlog(0, "calling journal_init_inode\n"); | 
|  | journal = jbd2_journal_init_inode(inode); | 
|  | if (journal == NULL) { | 
|  | mlog(ML_ERROR, "Linux journal layer error\n"); | 
|  | status = -EIO; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | status = jbd2_journal_load(journal); | 
|  | if (status < 0) { | 
|  | mlog_errno(status); | 
|  | if (!igrab(inode)) | 
|  | BUG(); | 
|  | jbd2_journal_destroy(journal); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | ocfs2_clear_journal_error(osb->sb, journal, slot_num); | 
|  |  | 
|  | /* wipe the journal */ | 
|  | mlog(0, "flushing the journal.\n"); | 
|  | jbd2_journal_lock_updates(journal); | 
|  | status = jbd2_journal_flush(journal); | 
|  | jbd2_journal_unlock_updates(journal); | 
|  | if (status < 0) | 
|  | mlog_errno(status); | 
|  |  | 
|  | /* This will mark the node clean */ | 
|  | flags = le32_to_cpu(fe->id1.journal1.ij_flags); | 
|  | flags &= ~OCFS2_JOURNAL_DIRTY_FL; | 
|  | fe->id1.journal1.ij_flags = cpu_to_le32(flags); | 
|  |  | 
|  | /* Increment recovery generation to indicate successful recovery */ | 
|  | ocfs2_bump_recovery_generation(fe); | 
|  | osb->slot_recovery_generations[slot_num] = | 
|  | ocfs2_get_recovery_generation(fe); | 
|  |  | 
|  | ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); | 
|  | status = ocfs2_write_block(osb, bh, INODE_CACHE(inode)); | 
|  | if (status < 0) | 
|  | mlog_errno(status); | 
|  |  | 
|  | if (!igrab(inode)) | 
|  | BUG(); | 
|  |  | 
|  | jbd2_journal_destroy(journal); | 
|  |  | 
|  | done: | 
|  | /* drop the lock on this nodes journal */ | 
|  | if (got_lock) | 
|  | ocfs2_inode_unlock(inode, 1); | 
|  |  | 
|  | if (inode) | 
|  | iput(inode); | 
|  |  | 
|  | brelse(bh); | 
|  |  | 
|  | mlog_exit(status); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do the most important parts of node recovery: | 
|  | *  - Replay it's journal | 
|  | *  - Stamp a clean local allocator file | 
|  | *  - Stamp a clean truncate log | 
|  | *  - Mark the node clean | 
|  | * | 
|  | * If this function completes without error, a node in OCFS2 can be | 
|  | * said to have been safely recovered. As a result, failure during the | 
|  | * second part of a nodes recovery process (local alloc recovery) is | 
|  | * far less concerning. | 
|  | */ | 
|  | static int ocfs2_recover_node(struct ocfs2_super *osb, | 
|  | int node_num, int slot_num) | 
|  | { | 
|  | int status = 0; | 
|  | struct ocfs2_dinode *la_copy = NULL; | 
|  | struct ocfs2_dinode *tl_copy = NULL; | 
|  |  | 
|  | mlog_entry("(node_num=%d, slot_num=%d, osb->node_num = %d)\n", | 
|  | node_num, slot_num, osb->node_num); | 
|  |  | 
|  | /* Should not ever be called to recover ourselves -- in that | 
|  | * case we should've called ocfs2_journal_load instead. */ | 
|  | BUG_ON(osb->node_num == node_num); | 
|  |  | 
|  | status = ocfs2_replay_journal(osb, node_num, slot_num); | 
|  | if (status < 0) { | 
|  | if (status == -EBUSY) { | 
|  | mlog(0, "Skipping recovery for slot %u (node %u) " | 
|  | "as another node has recovered it\n", slot_num, | 
|  | node_num); | 
|  | status = 0; | 
|  | goto done; | 
|  | } | 
|  | mlog_errno(status); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* Stamp a clean local alloc file AFTER recovering the journal... */ | 
|  | status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy); | 
|  | if (status < 0) { | 
|  | mlog_errno(status); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* An error from begin_truncate_log_recovery is not | 
|  | * serious enough to warrant halting the rest of | 
|  | * recovery. */ | 
|  | status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy); | 
|  | if (status < 0) | 
|  | mlog_errno(status); | 
|  |  | 
|  | /* Likewise, this would be a strange but ultimately not so | 
|  | * harmful place to get an error... */ | 
|  | status = ocfs2_clear_slot(osb, slot_num); | 
|  | if (status < 0) | 
|  | mlog_errno(status); | 
|  |  | 
|  | /* This will kfree the memory pointed to by la_copy and tl_copy */ | 
|  | ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy, | 
|  | tl_copy, NULL); | 
|  |  | 
|  | status = 0; | 
|  | done: | 
|  |  | 
|  | mlog_exit(status); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /* Test node liveness by trylocking his journal. If we get the lock, | 
|  | * we drop it here. Return 0 if we got the lock, -EAGAIN if node is | 
|  | * still alive (we couldn't get the lock) and < 0 on error. */ | 
|  | static int ocfs2_trylock_journal(struct ocfs2_super *osb, | 
|  | int slot_num) | 
|  | { | 
|  | int status, flags; | 
|  | struct inode *inode = NULL; | 
|  |  | 
|  | inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, | 
|  | slot_num); | 
|  | if (inode == NULL) { | 
|  | mlog(ML_ERROR, "access error\n"); | 
|  | status = -EACCES; | 
|  | goto bail; | 
|  | } | 
|  | if (is_bad_inode(inode)) { | 
|  | mlog(ML_ERROR, "access error (bad inode)\n"); | 
|  | iput(inode); | 
|  | inode = NULL; | 
|  | status = -EACCES; | 
|  | goto bail; | 
|  | } | 
|  | SET_INODE_JOURNAL(inode); | 
|  |  | 
|  | flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE; | 
|  | status = ocfs2_inode_lock_full(inode, NULL, 1, flags); | 
|  | if (status < 0) { | 
|  | if (status != -EAGAIN) | 
|  | mlog_errno(status); | 
|  | goto bail; | 
|  | } | 
|  |  | 
|  | ocfs2_inode_unlock(inode, 1); | 
|  | bail: | 
|  | if (inode) | 
|  | iput(inode); | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /* Call this underneath ocfs2_super_lock. It also assumes that the | 
|  | * slot info struct has been updated from disk. */ | 
|  | int ocfs2_mark_dead_nodes(struct ocfs2_super *osb) | 
|  | { | 
|  | unsigned int node_num; | 
|  | int status, i; | 
|  | u32 gen; | 
|  | struct buffer_head *bh = NULL; | 
|  | struct ocfs2_dinode *di; | 
|  |  | 
|  | /* This is called with the super block cluster lock, so we | 
|  | * know that the slot map can't change underneath us. */ | 
|  |  | 
|  | for (i = 0; i < osb->max_slots; i++) { | 
|  | /* Read journal inode to get the recovery generation */ | 
|  | status = ocfs2_read_journal_inode(osb, i, &bh, NULL); | 
|  | if (status) { | 
|  | mlog_errno(status); | 
|  | goto bail; | 
|  | } | 
|  | di = (struct ocfs2_dinode *)bh->b_data; | 
|  | gen = ocfs2_get_recovery_generation(di); | 
|  | brelse(bh); | 
|  | bh = NULL; | 
|  |  | 
|  | spin_lock(&osb->osb_lock); | 
|  | osb->slot_recovery_generations[i] = gen; | 
|  |  | 
|  | mlog(0, "Slot %u recovery generation is %u\n", i, | 
|  | osb->slot_recovery_generations[i]); | 
|  |  | 
|  | if (i == osb->slot_num) { | 
|  | spin_unlock(&osb->osb_lock); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | status = ocfs2_slot_to_node_num_locked(osb, i, &node_num); | 
|  | if (status == -ENOENT) { | 
|  | spin_unlock(&osb->osb_lock); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (__ocfs2_recovery_map_test(osb, node_num)) { | 
|  | spin_unlock(&osb->osb_lock); | 
|  | continue; | 
|  | } | 
|  | spin_unlock(&osb->osb_lock); | 
|  |  | 
|  | /* Ok, we have a slot occupied by another node which | 
|  | * is not in the recovery map. We trylock his journal | 
|  | * file here to test if he's alive. */ | 
|  | status = ocfs2_trylock_journal(osb, i); | 
|  | if (!status) { | 
|  | /* Since we're called from mount, we know that | 
|  | * the recovery thread can't race us on | 
|  | * setting / checking the recovery bits. */ | 
|  | ocfs2_recovery_thread(osb, node_num); | 
|  | } else if ((status < 0) && (status != -EAGAIN)) { | 
|  | mlog_errno(status); | 
|  | goto bail; | 
|  | } | 
|  | } | 
|  |  | 
|  | status = 0; | 
|  | bail: | 
|  | mlog_exit(status); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some | 
|  | * randomness to the timeout to minimize multple nodes firing the timer at the | 
|  | * same time. | 
|  | */ | 
|  | static inline unsigned long ocfs2_orphan_scan_timeout(void) | 
|  | { | 
|  | unsigned long time; | 
|  |  | 
|  | get_random_bytes(&time, sizeof(time)); | 
|  | time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000); | 
|  | return msecs_to_jiffies(time); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for | 
|  | * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This | 
|  | * is done to catch any orphans that are left over in orphan directories. | 
|  | * | 
|  | * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT | 
|  | * seconds.  It gets an EX lock on os_lockres and checks sequence number | 
|  | * stored in LVB. If the sequence number has changed, it means some other | 
|  | * node has done the scan.  This node skips the scan and tracks the | 
|  | * sequence number.  If the sequence number didn't change, it means a scan | 
|  | * hasn't happened.  The node queues a scan and increments the | 
|  | * sequence number in the LVB. | 
|  | */ | 
|  | void ocfs2_queue_orphan_scan(struct ocfs2_super *osb) | 
|  | { | 
|  | struct ocfs2_orphan_scan *os; | 
|  | int status, i; | 
|  | u32 seqno = 0; | 
|  |  | 
|  | os = &osb->osb_orphan_scan; | 
|  |  | 
|  | if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) | 
|  | goto out; | 
|  |  | 
|  | status = ocfs2_orphan_scan_lock(osb, &seqno); | 
|  | if (status < 0) { | 
|  | if (status != -EAGAIN) | 
|  | mlog_errno(status); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Do no queue the tasks if the volume is being umounted */ | 
|  | if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) | 
|  | goto unlock; | 
|  |  | 
|  | if (os->os_seqno != seqno) { | 
|  | os->os_seqno = seqno; | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < osb->max_slots; i++) | 
|  | ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL, | 
|  | NULL); | 
|  | /* | 
|  | * We queued a recovery on orphan slots, increment the sequence | 
|  | * number and update LVB so other node will skip the scan for a while | 
|  | */ | 
|  | seqno++; | 
|  | os->os_count++; | 
|  | os->os_scantime = CURRENT_TIME; | 
|  | unlock: | 
|  | ocfs2_orphan_scan_unlock(osb, seqno); | 
|  | out: | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */ | 
|  | void ocfs2_orphan_scan_work(struct work_struct *work) | 
|  | { | 
|  | struct ocfs2_orphan_scan *os; | 
|  | struct ocfs2_super *osb; | 
|  |  | 
|  | os = container_of(work, struct ocfs2_orphan_scan, | 
|  | os_orphan_scan_work.work); | 
|  | osb = os->os_osb; | 
|  |  | 
|  | mutex_lock(&os->os_lock); | 
|  | ocfs2_queue_orphan_scan(osb); | 
|  | if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) | 
|  | schedule_delayed_work(&os->os_orphan_scan_work, | 
|  | ocfs2_orphan_scan_timeout()); | 
|  | mutex_unlock(&os->os_lock); | 
|  | } | 
|  |  | 
|  | void ocfs2_orphan_scan_stop(struct ocfs2_super *osb) | 
|  | { | 
|  | struct ocfs2_orphan_scan *os; | 
|  |  | 
|  | os = &osb->osb_orphan_scan; | 
|  | if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) { | 
|  | atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); | 
|  | mutex_lock(&os->os_lock); | 
|  | cancel_delayed_work(&os->os_orphan_scan_work); | 
|  | mutex_unlock(&os->os_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ocfs2_orphan_scan_init(struct ocfs2_super *osb) | 
|  | { | 
|  | struct ocfs2_orphan_scan *os; | 
|  |  | 
|  | os = &osb->osb_orphan_scan; | 
|  | os->os_osb = osb; | 
|  | os->os_count = 0; | 
|  | os->os_seqno = 0; | 
|  | mutex_init(&os->os_lock); | 
|  | INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work); | 
|  | } | 
|  |  | 
|  | void ocfs2_orphan_scan_start(struct ocfs2_super *osb) | 
|  | { | 
|  | struct ocfs2_orphan_scan *os; | 
|  |  | 
|  | os = &osb->osb_orphan_scan; | 
|  | os->os_scantime = CURRENT_TIME; | 
|  | if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb)) | 
|  | atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); | 
|  | else { | 
|  | atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE); | 
|  | schedule_delayed_work(&os->os_orphan_scan_work, | 
|  | ocfs2_orphan_scan_timeout()); | 
|  | } | 
|  | } | 
|  |  | 
|  | struct ocfs2_orphan_filldir_priv { | 
|  | struct inode		*head; | 
|  | struct ocfs2_super	*osb; | 
|  | }; | 
|  |  | 
|  | static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len, | 
|  | loff_t pos, u64 ino, unsigned type) | 
|  | { | 
|  | struct ocfs2_orphan_filldir_priv *p = priv; | 
|  | struct inode *iter; | 
|  |  | 
|  | if (name_len == 1 && !strncmp(".", name, 1)) | 
|  | return 0; | 
|  | if (name_len == 2 && !strncmp("..", name, 2)) | 
|  | return 0; | 
|  |  | 
|  | /* Skip bad inodes so that recovery can continue */ | 
|  | iter = ocfs2_iget(p->osb, ino, | 
|  | OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0); | 
|  | if (IS_ERR(iter)) | 
|  | return 0; | 
|  |  | 
|  | mlog(0, "queue orphan %llu\n", | 
|  | (unsigned long long)OCFS2_I(iter)->ip_blkno); | 
|  | /* No locking is required for the next_orphan queue as there | 
|  | * is only ever a single process doing orphan recovery. */ | 
|  | OCFS2_I(iter)->ip_next_orphan = p->head; | 
|  | p->head = iter; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ocfs2_queue_orphans(struct ocfs2_super *osb, | 
|  | int slot, | 
|  | struct inode **head) | 
|  | { | 
|  | int status; | 
|  | struct inode *orphan_dir_inode = NULL; | 
|  | struct ocfs2_orphan_filldir_priv priv; | 
|  | loff_t pos = 0; | 
|  |  | 
|  | priv.osb = osb; | 
|  | priv.head = *head; | 
|  |  | 
|  | orphan_dir_inode = ocfs2_get_system_file_inode(osb, | 
|  | ORPHAN_DIR_SYSTEM_INODE, | 
|  | slot); | 
|  | if  (!orphan_dir_inode) { | 
|  | status = -ENOENT; | 
|  | mlog_errno(status); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | mutex_lock(&orphan_dir_inode->i_mutex); | 
|  | status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0); | 
|  | if (status < 0) { | 
|  | mlog_errno(status); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv, | 
|  | ocfs2_orphan_filldir); | 
|  | if (status) { | 
|  | mlog_errno(status); | 
|  | goto out_cluster; | 
|  | } | 
|  |  | 
|  | *head = priv.head; | 
|  |  | 
|  | out_cluster: | 
|  | ocfs2_inode_unlock(orphan_dir_inode, 0); | 
|  | out: | 
|  | mutex_unlock(&orphan_dir_inode->i_mutex); | 
|  | iput(orphan_dir_inode); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb, | 
|  | int slot) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | spin_lock(&osb->osb_lock); | 
|  | ret = !osb->osb_orphan_wipes[slot]; | 
|  | spin_unlock(&osb->osb_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb, | 
|  | int slot) | 
|  | { | 
|  | spin_lock(&osb->osb_lock); | 
|  | /* Mark ourselves such that new processes in delete_inode() | 
|  | * know to quit early. */ | 
|  | ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot); | 
|  | while (osb->osb_orphan_wipes[slot]) { | 
|  | /* If any processes are already in the middle of an | 
|  | * orphan wipe on this dir, then we need to wait for | 
|  | * them. */ | 
|  | spin_unlock(&osb->osb_lock); | 
|  | wait_event_interruptible(osb->osb_wipe_event, | 
|  | ocfs2_orphan_recovery_can_continue(osb, slot)); | 
|  | spin_lock(&osb->osb_lock); | 
|  | } | 
|  | spin_unlock(&osb->osb_lock); | 
|  | } | 
|  |  | 
|  | static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb, | 
|  | int slot) | 
|  | { | 
|  | ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Orphan recovery. Each mounted node has it's own orphan dir which we | 
|  | * must run during recovery. Our strategy here is to build a list of | 
|  | * the inodes in the orphan dir and iget/iput them. The VFS does | 
|  | * (most) of the rest of the work. | 
|  | * | 
|  | * Orphan recovery can happen at any time, not just mount so we have a | 
|  | * couple of extra considerations. | 
|  | * | 
|  | * - We grab as many inodes as we can under the orphan dir lock - | 
|  | *   doing iget() outside the orphan dir risks getting a reference on | 
|  | *   an invalid inode. | 
|  | * - We must be sure not to deadlock with other processes on the | 
|  | *   system wanting to run delete_inode(). This can happen when they go | 
|  | *   to lock the orphan dir and the orphan recovery process attempts to | 
|  | *   iget() inside the orphan dir lock. This can be avoided by | 
|  | *   advertising our state to ocfs2_delete_inode(). | 
|  | */ | 
|  | static int ocfs2_recover_orphans(struct ocfs2_super *osb, | 
|  | int slot) | 
|  | { | 
|  | int ret = 0; | 
|  | struct inode *inode = NULL; | 
|  | struct inode *iter; | 
|  | struct ocfs2_inode_info *oi; | 
|  |  | 
|  | mlog(0, "Recover inodes from orphan dir in slot %d\n", slot); | 
|  |  | 
|  | ocfs2_mark_recovering_orphan_dir(osb, slot); | 
|  | ret = ocfs2_queue_orphans(osb, slot, &inode); | 
|  | ocfs2_clear_recovering_orphan_dir(osb, slot); | 
|  |  | 
|  | /* Error here should be noted, but we want to continue with as | 
|  | * many queued inodes as we've got. */ | 
|  | if (ret) | 
|  | mlog_errno(ret); | 
|  |  | 
|  | while (inode) { | 
|  | oi = OCFS2_I(inode); | 
|  | mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno); | 
|  |  | 
|  | iter = oi->ip_next_orphan; | 
|  |  | 
|  | spin_lock(&oi->ip_lock); | 
|  | /* The remote delete code may have set these on the | 
|  | * assumption that the other node would wipe them | 
|  | * successfully.  If they are still in the node's | 
|  | * orphan dir, we need to reset that state. */ | 
|  | oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE); | 
|  |  | 
|  | /* Set the proper information to get us going into | 
|  | * ocfs2_delete_inode. */ | 
|  | oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED; | 
|  | spin_unlock(&oi->ip_lock); | 
|  |  | 
|  | iput(inode); | 
|  |  | 
|  | inode = iter; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota) | 
|  | { | 
|  | /* This check is good because ocfs2 will wait on our recovery | 
|  | * thread before changing it to something other than MOUNTED | 
|  | * or DISABLED. */ | 
|  | wait_event(osb->osb_mount_event, | 
|  | (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) || | 
|  | atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS || | 
|  | atomic_read(&osb->vol_state) == VOLUME_DISABLED); | 
|  |  | 
|  | /* If there's an error on mount, then we may never get to the | 
|  | * MOUNTED flag, but this is set right before | 
|  | * dismount_volume() so we can trust it. */ | 
|  | if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) { | 
|  | mlog(0, "mount error, exiting!\n"); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ocfs2_commit_thread(void *arg) | 
|  | { | 
|  | int status; | 
|  | struct ocfs2_super *osb = arg; | 
|  | struct ocfs2_journal *journal = osb->journal; | 
|  |  | 
|  | /* we can trust j_num_trans here because _should_stop() is only set in | 
|  | * shutdown and nobody other than ourselves should be able to start | 
|  | * transactions.  committing on shutdown might take a few iterations | 
|  | * as final transactions put deleted inodes on the list */ | 
|  | while (!(kthread_should_stop() && | 
|  | atomic_read(&journal->j_num_trans) == 0)) { | 
|  |  | 
|  | wait_event_interruptible(osb->checkpoint_event, | 
|  | atomic_read(&journal->j_num_trans) | 
|  | || kthread_should_stop()); | 
|  |  | 
|  | status = ocfs2_commit_cache(osb); | 
|  | if (status < 0) | 
|  | mlog_errno(status); | 
|  |  | 
|  | if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){ | 
|  | mlog(ML_KTHREAD, | 
|  | "commit_thread: %u transactions pending on " | 
|  | "shutdown\n", | 
|  | atomic_read(&journal->j_num_trans)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Reads all the journal inodes without taking any cluster locks. Used | 
|  | * for hard readonly access to determine whether any journal requires | 
|  | * recovery. Also used to refresh the recovery generation numbers after | 
|  | * a journal has been recovered by another node. | 
|  | */ | 
|  | int ocfs2_check_journals_nolocks(struct ocfs2_super *osb) | 
|  | { | 
|  | int ret = 0; | 
|  | unsigned int slot; | 
|  | struct buffer_head *di_bh = NULL; | 
|  | struct ocfs2_dinode *di; | 
|  | int journal_dirty = 0; | 
|  |  | 
|  | for(slot = 0; slot < osb->max_slots; slot++) { | 
|  | ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL); | 
|  | if (ret) { | 
|  | mlog_errno(ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | di = (struct ocfs2_dinode *) di_bh->b_data; | 
|  |  | 
|  | osb->slot_recovery_generations[slot] = | 
|  | ocfs2_get_recovery_generation(di); | 
|  |  | 
|  | if (le32_to_cpu(di->id1.journal1.ij_flags) & | 
|  | OCFS2_JOURNAL_DIRTY_FL) | 
|  | journal_dirty = 1; | 
|  |  | 
|  | brelse(di_bh); | 
|  | di_bh = NULL; | 
|  | } | 
|  |  | 
|  | out: | 
|  | if (journal_dirty) | 
|  | ret = -EROFS; | 
|  | return ret; | 
|  | } |