| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Kernel-based Virtual Machine driver for Linux |
| * |
| * AMD SVM support |
| * |
| * Copyright (C) 2006 Qumranet, Inc. |
| * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
| * |
| * Authors: |
| * Yaniv Kamay <yaniv@qumranet.com> |
| * Avi Kivity <avi@qumranet.com> |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/kvm_types.h> |
| #include <linux/kvm_host.h> |
| #include <linux/kernel.h> |
| |
| #include <asm/msr-index.h> |
| #include <asm/debugreg.h> |
| |
| #include "kvm_emulate.h" |
| #include "trace.h" |
| #include "mmu.h" |
| #include "x86.h" |
| #include "smm.h" |
| #include "cpuid.h" |
| #include "lapic.h" |
| #include "svm.h" |
| #include "hyperv.h" |
| |
| #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK |
| |
| static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu, |
| struct x86_exception *fault) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| struct vmcb *vmcb = svm->vmcb; |
| |
| if (vmcb->control.exit_code != SVM_EXIT_NPF) { |
| /* |
| * TODO: track the cause of the nested page fault, and |
| * correctly fill in the high bits of exit_info_1. |
| */ |
| vmcb->control.exit_code = SVM_EXIT_NPF; |
| vmcb->control.exit_code_hi = 0; |
| vmcb->control.exit_info_1 = (1ULL << 32); |
| vmcb->control.exit_info_2 = fault->address; |
| } |
| |
| vmcb->control.exit_info_1 &= ~0xffffffffULL; |
| vmcb->control.exit_info_1 |= fault->error_code; |
| |
| nested_svm_vmexit(svm); |
| } |
| |
| static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| u64 cr3 = svm->nested.ctl.nested_cr3; |
| u64 pdpte; |
| int ret; |
| |
| ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte, |
| offset_in_page(cr3) + index * 8, 8); |
| if (ret) |
| return 0; |
| return pdpte; |
| } |
| |
| static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| return svm->nested.ctl.nested_cr3; |
| } |
| |
| static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| WARN_ON(mmu_is_nested(vcpu)); |
| |
| vcpu->arch.mmu = &vcpu->arch.guest_mmu; |
| |
| /* |
| * The NPT format depends on L1's CR4 and EFER, which is in vmcb01. Note, |
| * when called via KVM_SET_NESTED_STATE, that state may _not_ match current |
| * vCPU state. CR0.WP is explicitly ignored, while CR0.PG is required. |
| */ |
| kvm_init_shadow_npt_mmu(vcpu, X86_CR0_PG, svm->vmcb01.ptr->save.cr4, |
| svm->vmcb01.ptr->save.efer, |
| svm->nested.ctl.nested_cr3); |
| vcpu->arch.mmu->get_guest_pgd = nested_svm_get_tdp_cr3; |
| vcpu->arch.mmu->get_pdptr = nested_svm_get_tdp_pdptr; |
| vcpu->arch.mmu->inject_page_fault = nested_svm_inject_npf_exit; |
| vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu; |
| } |
| |
| static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu) |
| { |
| vcpu->arch.mmu = &vcpu->arch.root_mmu; |
| vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; |
| } |
| |
| static bool nested_vmcb_needs_vls_intercept(struct vcpu_svm *svm) |
| { |
| if (!guest_can_use(&svm->vcpu, X86_FEATURE_V_VMSAVE_VMLOAD)) |
| return true; |
| |
| if (!nested_npt_enabled(svm)) |
| return true; |
| |
| if (!(svm->nested.ctl.virt_ext & VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK)) |
| return true; |
| |
| return false; |
| } |
| |
| void recalc_intercepts(struct vcpu_svm *svm) |
| { |
| struct vmcb_control_area *c, *h; |
| struct vmcb_ctrl_area_cached *g; |
| unsigned int i; |
| |
| vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); |
| |
| if (!is_guest_mode(&svm->vcpu)) |
| return; |
| |
| c = &svm->vmcb->control; |
| h = &svm->vmcb01.ptr->control; |
| g = &svm->nested.ctl; |
| |
| for (i = 0; i < MAX_INTERCEPT; i++) |
| c->intercepts[i] = h->intercepts[i]; |
| |
| if (g->int_ctl & V_INTR_MASKING_MASK) { |
| /* |
| * If L2 is active and V_INTR_MASKING is enabled in vmcb12, |
| * disable intercept of CR8 writes as L2's CR8 does not affect |
| * any interrupt KVM may want to inject. |
| * |
| * Similarly, disable intercept of virtual interrupts (used to |
| * detect interrupt windows) if the saved RFLAGS.IF is '0', as |
| * the effective RFLAGS.IF for L1 interrupts will never be set |
| * while L2 is running (L2's RFLAGS.IF doesn't affect L1 IRQs). |
| */ |
| vmcb_clr_intercept(c, INTERCEPT_CR8_WRITE); |
| if (!(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)) |
| vmcb_clr_intercept(c, INTERCEPT_VINTR); |
| } |
| |
| /* |
| * We want to see VMMCALLs from a nested guest only when Hyper-V L2 TLB |
| * flush feature is enabled. |
| */ |
| if (!nested_svm_l2_tlb_flush_enabled(&svm->vcpu)) |
| vmcb_clr_intercept(c, INTERCEPT_VMMCALL); |
| |
| for (i = 0; i < MAX_INTERCEPT; i++) |
| c->intercepts[i] |= g->intercepts[i]; |
| |
| /* If SMI is not intercepted, ignore guest SMI intercept as well */ |
| if (!intercept_smi) |
| vmcb_clr_intercept(c, INTERCEPT_SMI); |
| |
| if (nested_vmcb_needs_vls_intercept(svm)) { |
| /* |
| * If the virtual VMLOAD/VMSAVE is not enabled for the L2, |
| * we must intercept these instructions to correctly |
| * emulate them in case L1 doesn't intercept them. |
| */ |
| vmcb_set_intercept(c, INTERCEPT_VMLOAD); |
| vmcb_set_intercept(c, INTERCEPT_VMSAVE); |
| } else { |
| WARN_ON(!(c->virt_ext & VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK)); |
| } |
| } |
| |
| /* |
| * Merge L0's (KVM) and L1's (Nested VMCB) MSR permission bitmaps. The function |
| * is optimized in that it only merges the parts where KVM MSR permission bitmap |
| * may contain zero bits. |
| */ |
| static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm) |
| { |
| struct hv_vmcb_enlightenments *hve = &svm->nested.ctl.hv_enlightenments; |
| int i; |
| |
| /* |
| * MSR bitmap update can be skipped when: |
| * - MSR bitmap for L1 hasn't changed. |
| * - Nested hypervisor (L1) is attempting to launch the same L2 as |
| * before. |
| * - Nested hypervisor (L1) is using Hyper-V emulation interface and |
| * tells KVM (L0) there were no changes in MSR bitmap for L2. |
| */ |
| if (!svm->nested.force_msr_bitmap_recalc && |
| kvm_hv_hypercall_enabled(&svm->vcpu) && |
| hve->hv_enlightenments_control.msr_bitmap && |
| (svm->nested.ctl.clean & BIT(HV_VMCB_NESTED_ENLIGHTENMENTS))) |
| goto set_msrpm_base_pa; |
| |
| if (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_MSR_PROT))) |
| return true; |
| |
| for (i = 0; i < MSRPM_OFFSETS; i++) { |
| u32 value, p; |
| u64 offset; |
| |
| if (msrpm_offsets[i] == 0xffffffff) |
| break; |
| |
| p = msrpm_offsets[i]; |
| |
| /* x2apic msrs are intercepted always for the nested guest */ |
| if (is_x2apic_msrpm_offset(p)) |
| continue; |
| |
| offset = svm->nested.ctl.msrpm_base_pa + (p * 4); |
| |
| if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4)) |
| return false; |
| |
| svm->nested.msrpm[p] = svm->msrpm[p] | value; |
| } |
| |
| svm->nested.force_msr_bitmap_recalc = false; |
| |
| set_msrpm_base_pa: |
| svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm)); |
| |
| return true; |
| } |
| |
| /* |
| * Bits 11:0 of bitmap address are ignored by hardware |
| */ |
| static bool nested_svm_check_bitmap_pa(struct kvm_vcpu *vcpu, u64 pa, u32 size) |
| { |
| u64 addr = PAGE_ALIGN(pa); |
| |
| return kvm_vcpu_is_legal_gpa(vcpu, addr) && |
| kvm_vcpu_is_legal_gpa(vcpu, addr + size - 1); |
| } |
| |
| static bool nested_svm_check_tlb_ctl(struct kvm_vcpu *vcpu, u8 tlb_ctl) |
| { |
| /* Nested FLUSHBYASID is not supported yet. */ |
| switch(tlb_ctl) { |
| case TLB_CONTROL_DO_NOTHING: |
| case TLB_CONTROL_FLUSH_ALL_ASID: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static bool __nested_vmcb_check_controls(struct kvm_vcpu *vcpu, |
| struct vmcb_ctrl_area_cached *control) |
| { |
| if (CC(!vmcb12_is_intercept(control, INTERCEPT_VMRUN))) |
| return false; |
| |
| if (CC(control->asid == 0)) |
| return false; |
| |
| if (CC((control->nested_ctl & SVM_NESTED_CTL_NP_ENABLE) && !npt_enabled)) |
| return false; |
| |
| if (CC(!nested_svm_check_bitmap_pa(vcpu, control->msrpm_base_pa, |
| MSRPM_SIZE))) |
| return false; |
| if (CC(!nested_svm_check_bitmap_pa(vcpu, control->iopm_base_pa, |
| IOPM_SIZE))) |
| return false; |
| |
| if (CC(!nested_svm_check_tlb_ctl(vcpu, control->tlb_ctl))) |
| return false; |
| |
| if (CC((control->int_ctl & V_NMI_ENABLE_MASK) && |
| !vmcb12_is_intercept(control, INTERCEPT_NMI))) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* Common checks that apply to both L1 and L2 state. */ |
| static bool __nested_vmcb_check_save(struct kvm_vcpu *vcpu, |
| struct vmcb_save_area_cached *save) |
| { |
| if (CC(!(save->efer & EFER_SVME))) |
| return false; |
| |
| if (CC((save->cr0 & X86_CR0_CD) == 0 && (save->cr0 & X86_CR0_NW)) || |
| CC(save->cr0 & ~0xffffffffULL)) |
| return false; |
| |
| if (CC(!kvm_dr6_valid(save->dr6)) || CC(!kvm_dr7_valid(save->dr7))) |
| return false; |
| |
| /* |
| * These checks are also performed by KVM_SET_SREGS, |
| * except that EFER.LMA is not checked by SVM against |
| * CR0.PG && EFER.LME. |
| */ |
| if ((save->efer & EFER_LME) && (save->cr0 & X86_CR0_PG)) { |
| if (CC(!(save->cr4 & X86_CR4_PAE)) || |
| CC(!(save->cr0 & X86_CR0_PE)) || |
| CC(kvm_vcpu_is_illegal_gpa(vcpu, save->cr3))) |
| return false; |
| } |
| |
| /* Note, SVM doesn't have any additional restrictions on CR4. */ |
| if (CC(!__kvm_is_valid_cr4(vcpu, save->cr4))) |
| return false; |
| |
| if (CC(!kvm_valid_efer(vcpu, save->efer))) |
| return false; |
| |
| return true; |
| } |
| |
| static bool nested_vmcb_check_save(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| struct vmcb_save_area_cached *save = &svm->nested.save; |
| |
| return __nested_vmcb_check_save(vcpu, save); |
| } |
| |
| static bool nested_vmcb_check_controls(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| struct vmcb_ctrl_area_cached *ctl = &svm->nested.ctl; |
| |
| return __nested_vmcb_check_controls(vcpu, ctl); |
| } |
| |
| static |
| void __nested_copy_vmcb_control_to_cache(struct kvm_vcpu *vcpu, |
| struct vmcb_ctrl_area_cached *to, |
| struct vmcb_control_area *from) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < MAX_INTERCEPT; i++) |
| to->intercepts[i] = from->intercepts[i]; |
| |
| to->iopm_base_pa = from->iopm_base_pa; |
| to->msrpm_base_pa = from->msrpm_base_pa; |
| to->tsc_offset = from->tsc_offset; |
| to->tlb_ctl = from->tlb_ctl; |
| to->int_ctl = from->int_ctl; |
| to->int_vector = from->int_vector; |
| to->int_state = from->int_state; |
| to->exit_code = from->exit_code; |
| to->exit_code_hi = from->exit_code_hi; |
| to->exit_info_1 = from->exit_info_1; |
| to->exit_info_2 = from->exit_info_2; |
| to->exit_int_info = from->exit_int_info; |
| to->exit_int_info_err = from->exit_int_info_err; |
| to->nested_ctl = from->nested_ctl; |
| to->event_inj = from->event_inj; |
| to->event_inj_err = from->event_inj_err; |
| to->next_rip = from->next_rip; |
| to->nested_cr3 = from->nested_cr3; |
| to->virt_ext = from->virt_ext; |
| to->pause_filter_count = from->pause_filter_count; |
| to->pause_filter_thresh = from->pause_filter_thresh; |
| |
| /* Copy asid here because nested_vmcb_check_controls will check it. */ |
| to->asid = from->asid; |
| to->msrpm_base_pa &= ~0x0fffULL; |
| to->iopm_base_pa &= ~0x0fffULL; |
| |
| /* Hyper-V extensions (Enlightened VMCB) */ |
| if (kvm_hv_hypercall_enabled(vcpu)) { |
| to->clean = from->clean; |
| memcpy(&to->hv_enlightenments, &from->hv_enlightenments, |
| sizeof(to->hv_enlightenments)); |
| } |
| } |
| |
| void nested_copy_vmcb_control_to_cache(struct vcpu_svm *svm, |
| struct vmcb_control_area *control) |
| { |
| __nested_copy_vmcb_control_to_cache(&svm->vcpu, &svm->nested.ctl, control); |
| } |
| |
| static void __nested_copy_vmcb_save_to_cache(struct vmcb_save_area_cached *to, |
| struct vmcb_save_area *from) |
| { |
| /* |
| * Copy only fields that are validated, as we need them |
| * to avoid TOC/TOU races. |
| */ |
| to->efer = from->efer; |
| to->cr0 = from->cr0; |
| to->cr3 = from->cr3; |
| to->cr4 = from->cr4; |
| |
| to->dr6 = from->dr6; |
| to->dr7 = from->dr7; |
| } |
| |
| void nested_copy_vmcb_save_to_cache(struct vcpu_svm *svm, |
| struct vmcb_save_area *save) |
| { |
| __nested_copy_vmcb_save_to_cache(&svm->nested.save, save); |
| } |
| |
| /* |
| * Synchronize fields that are written by the processor, so that |
| * they can be copied back into the vmcb12. |
| */ |
| void nested_sync_control_from_vmcb02(struct vcpu_svm *svm) |
| { |
| u32 mask; |
| svm->nested.ctl.event_inj = svm->vmcb->control.event_inj; |
| svm->nested.ctl.event_inj_err = svm->vmcb->control.event_inj_err; |
| |
| /* Only a few fields of int_ctl are written by the processor. */ |
| mask = V_IRQ_MASK | V_TPR_MASK; |
| /* |
| * Don't sync vmcb02 V_IRQ back to vmcb12 if KVM (L0) is intercepting |
| * virtual interrupts in order to request an interrupt window, as KVM |
| * has usurped vmcb02's int_ctl. If an interrupt window opens before |
| * the next VM-Exit, svm_clear_vintr() will restore vmcb12's int_ctl. |
| * If no window opens, V_IRQ will be correctly preserved in vmcb12's |
| * int_ctl (because it was never recognized while L2 was running). |
| */ |
| if (svm_is_intercept(svm, INTERCEPT_VINTR) && |
| !test_bit(INTERCEPT_VINTR, (unsigned long *)svm->nested.ctl.intercepts)) |
| mask &= ~V_IRQ_MASK; |
| |
| if (nested_vgif_enabled(svm)) |
| mask |= V_GIF_MASK; |
| |
| if (nested_vnmi_enabled(svm)) |
| mask |= V_NMI_BLOCKING_MASK | V_NMI_PENDING_MASK; |
| |
| svm->nested.ctl.int_ctl &= ~mask; |
| svm->nested.ctl.int_ctl |= svm->vmcb->control.int_ctl & mask; |
| } |
| |
| /* |
| * Transfer any event that L0 or L1 wanted to inject into L2 to |
| * EXIT_INT_INFO. |
| */ |
| static void nested_save_pending_event_to_vmcb12(struct vcpu_svm *svm, |
| struct vmcb *vmcb12) |
| { |
| struct kvm_vcpu *vcpu = &svm->vcpu; |
| u32 exit_int_info = 0; |
| unsigned int nr; |
| |
| if (vcpu->arch.exception.injected) { |
| nr = vcpu->arch.exception.vector; |
| exit_int_info = nr | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT; |
| |
| if (vcpu->arch.exception.has_error_code) { |
| exit_int_info |= SVM_EVTINJ_VALID_ERR; |
| vmcb12->control.exit_int_info_err = |
| vcpu->arch.exception.error_code; |
| } |
| |
| } else if (vcpu->arch.nmi_injected) { |
| exit_int_info = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; |
| |
| } else if (vcpu->arch.interrupt.injected) { |
| nr = vcpu->arch.interrupt.nr; |
| exit_int_info = nr | SVM_EVTINJ_VALID; |
| |
| if (vcpu->arch.interrupt.soft) |
| exit_int_info |= SVM_EVTINJ_TYPE_SOFT; |
| else |
| exit_int_info |= SVM_EVTINJ_TYPE_INTR; |
| } |
| |
| vmcb12->control.exit_int_info = exit_int_info; |
| } |
| |
| static void nested_svm_transition_tlb_flush(struct kvm_vcpu *vcpu) |
| { |
| /* |
| * KVM_REQ_HV_TLB_FLUSH flushes entries from either L1's VP_ID or |
| * L2's VP_ID upon request from the guest. Make sure we check for |
| * pending entries in the right FIFO upon L1/L2 transition as these |
| * requests are put by other vCPUs asynchronously. |
| */ |
| if (to_hv_vcpu(vcpu) && npt_enabled) |
| kvm_make_request(KVM_REQ_HV_TLB_FLUSH, vcpu); |
| |
| /* |
| * TODO: optimize unconditional TLB flush/MMU sync. A partial list of |
| * things to fix before this can be conditional: |
| * |
| * - Flush TLBs for both L1 and L2 remote TLB flush |
| * - Honor L1's request to flush an ASID on nested VMRUN |
| * - Sync nested NPT MMU on VMRUN that flushes L2's ASID[*] |
| * - Don't crush a pending TLB flush in vmcb02 on nested VMRUN |
| * - Flush L1's ASID on KVM_REQ_TLB_FLUSH_GUEST |
| * |
| * [*] Unlike nested EPT, SVM's ASID management can invalidate nested |
| * NPT guest-physical mappings on VMRUN. |
| */ |
| kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); |
| kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); |
| } |
| |
| /* |
| * Load guest's/host's cr3 on nested vmentry or vmexit. @nested_npt is true |
| * if we are emulating VM-Entry into a guest with NPT enabled. |
| */ |
| static int nested_svm_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, |
| bool nested_npt, bool reload_pdptrs) |
| { |
| if (CC(kvm_vcpu_is_illegal_gpa(vcpu, cr3))) |
| return -EINVAL; |
| |
| if (reload_pdptrs && !nested_npt && is_pae_paging(vcpu) && |
| CC(!load_pdptrs(vcpu, cr3))) |
| return -EINVAL; |
| |
| vcpu->arch.cr3 = cr3; |
| |
| /* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */ |
| kvm_init_mmu(vcpu); |
| |
| if (!nested_npt) |
| kvm_mmu_new_pgd(vcpu, cr3); |
| |
| return 0; |
| } |
| |
| void nested_vmcb02_compute_g_pat(struct vcpu_svm *svm) |
| { |
| if (!svm->nested.vmcb02.ptr) |
| return; |
| |
| /* FIXME: merge g_pat from vmcb01 and vmcb12. */ |
| svm->nested.vmcb02.ptr->save.g_pat = svm->vmcb01.ptr->save.g_pat; |
| } |
| |
| static void nested_vmcb02_prepare_save(struct vcpu_svm *svm, struct vmcb *vmcb12) |
| { |
| bool new_vmcb12 = false; |
| struct vmcb *vmcb01 = svm->vmcb01.ptr; |
| struct vmcb *vmcb02 = svm->nested.vmcb02.ptr; |
| struct kvm_vcpu *vcpu = &svm->vcpu; |
| |
| nested_vmcb02_compute_g_pat(svm); |
| |
| /* Load the nested guest state */ |
| if (svm->nested.vmcb12_gpa != svm->nested.last_vmcb12_gpa) { |
| new_vmcb12 = true; |
| svm->nested.last_vmcb12_gpa = svm->nested.vmcb12_gpa; |
| svm->nested.force_msr_bitmap_recalc = true; |
| } |
| |
| if (unlikely(new_vmcb12 || vmcb_is_dirty(vmcb12, VMCB_SEG))) { |
| vmcb02->save.es = vmcb12->save.es; |
| vmcb02->save.cs = vmcb12->save.cs; |
| vmcb02->save.ss = vmcb12->save.ss; |
| vmcb02->save.ds = vmcb12->save.ds; |
| vmcb02->save.cpl = vmcb12->save.cpl; |
| vmcb_mark_dirty(vmcb02, VMCB_SEG); |
| } |
| |
| if (unlikely(new_vmcb12 || vmcb_is_dirty(vmcb12, VMCB_DT))) { |
| vmcb02->save.gdtr = vmcb12->save.gdtr; |
| vmcb02->save.idtr = vmcb12->save.idtr; |
| vmcb_mark_dirty(vmcb02, VMCB_DT); |
| } |
| |
| kvm_set_rflags(vcpu, vmcb12->save.rflags | X86_EFLAGS_FIXED); |
| |
| svm_set_efer(vcpu, svm->nested.save.efer); |
| |
| svm_set_cr0(vcpu, svm->nested.save.cr0); |
| svm_set_cr4(vcpu, svm->nested.save.cr4); |
| |
| svm->vcpu.arch.cr2 = vmcb12->save.cr2; |
| |
| kvm_rax_write(vcpu, vmcb12->save.rax); |
| kvm_rsp_write(vcpu, vmcb12->save.rsp); |
| kvm_rip_write(vcpu, vmcb12->save.rip); |
| |
| /* In case we don't even reach vcpu_run, the fields are not updated */ |
| vmcb02->save.rax = vmcb12->save.rax; |
| vmcb02->save.rsp = vmcb12->save.rsp; |
| vmcb02->save.rip = vmcb12->save.rip; |
| |
| /* These bits will be set properly on the first execution when new_vmc12 is true */ |
| if (unlikely(new_vmcb12 || vmcb_is_dirty(vmcb12, VMCB_DR))) { |
| vmcb02->save.dr7 = svm->nested.save.dr7 | DR7_FIXED_1; |
| svm->vcpu.arch.dr6 = svm->nested.save.dr6 | DR6_ACTIVE_LOW; |
| vmcb_mark_dirty(vmcb02, VMCB_DR); |
| } |
| |
| if (unlikely(guest_can_use(vcpu, X86_FEATURE_LBRV) && |
| (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK))) { |
| /* |
| * Reserved bits of DEBUGCTL are ignored. Be consistent with |
| * svm_set_msr's definition of reserved bits. |
| */ |
| svm_copy_lbrs(vmcb02, vmcb12); |
| vmcb02->save.dbgctl &= ~DEBUGCTL_RESERVED_BITS; |
| svm_update_lbrv(&svm->vcpu); |
| |
| } else if (unlikely(vmcb01->control.virt_ext & LBR_CTL_ENABLE_MASK)) { |
| svm_copy_lbrs(vmcb02, vmcb01); |
| } |
| } |
| |
| static inline bool is_evtinj_soft(u32 evtinj) |
| { |
| u32 type = evtinj & SVM_EVTINJ_TYPE_MASK; |
| u8 vector = evtinj & SVM_EVTINJ_VEC_MASK; |
| |
| if (!(evtinj & SVM_EVTINJ_VALID)) |
| return false; |
| |
| if (type == SVM_EVTINJ_TYPE_SOFT) |
| return true; |
| |
| return type == SVM_EVTINJ_TYPE_EXEPT && kvm_exception_is_soft(vector); |
| } |
| |
| static bool is_evtinj_nmi(u32 evtinj) |
| { |
| u32 type = evtinj & SVM_EVTINJ_TYPE_MASK; |
| |
| if (!(evtinj & SVM_EVTINJ_VALID)) |
| return false; |
| |
| return type == SVM_EVTINJ_TYPE_NMI; |
| } |
| |
| static void nested_vmcb02_prepare_control(struct vcpu_svm *svm, |
| unsigned long vmcb12_rip, |
| unsigned long vmcb12_csbase) |
| { |
| u32 int_ctl_vmcb01_bits = V_INTR_MASKING_MASK; |
| u32 int_ctl_vmcb12_bits = V_TPR_MASK | V_IRQ_INJECTION_BITS_MASK; |
| |
| struct kvm_vcpu *vcpu = &svm->vcpu; |
| struct vmcb *vmcb01 = svm->vmcb01.ptr; |
| struct vmcb *vmcb02 = svm->nested.vmcb02.ptr; |
| u32 pause_count12; |
| u32 pause_thresh12; |
| |
| /* |
| * Filled at exit: exit_code, exit_code_hi, exit_info_1, exit_info_2, |
| * exit_int_info, exit_int_info_err, next_rip, insn_len, insn_bytes. |
| */ |
| |
| if (guest_can_use(vcpu, X86_FEATURE_VGIF) && |
| (svm->nested.ctl.int_ctl & V_GIF_ENABLE_MASK)) |
| int_ctl_vmcb12_bits |= (V_GIF_MASK | V_GIF_ENABLE_MASK); |
| else |
| int_ctl_vmcb01_bits |= (V_GIF_MASK | V_GIF_ENABLE_MASK); |
| |
| if (vnmi) { |
| if (vmcb01->control.int_ctl & V_NMI_PENDING_MASK) { |
| svm->vcpu.arch.nmi_pending++; |
| kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); |
| } |
| if (nested_vnmi_enabled(svm)) |
| int_ctl_vmcb12_bits |= (V_NMI_PENDING_MASK | |
| V_NMI_ENABLE_MASK | |
| V_NMI_BLOCKING_MASK); |
| } |
| |
| /* Copied from vmcb01. msrpm_base can be overwritten later. */ |
| vmcb02->control.nested_ctl = vmcb01->control.nested_ctl; |
| vmcb02->control.iopm_base_pa = vmcb01->control.iopm_base_pa; |
| vmcb02->control.msrpm_base_pa = vmcb01->control.msrpm_base_pa; |
| |
| /* Done at vmrun: asid. */ |
| |
| /* Also overwritten later if necessary. */ |
| vmcb02->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; |
| |
| /* nested_cr3. */ |
| if (nested_npt_enabled(svm)) |
| nested_svm_init_mmu_context(vcpu); |
| |
| vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( |
| vcpu->arch.l1_tsc_offset, |
| svm->nested.ctl.tsc_offset, |
| svm->tsc_ratio_msr); |
| |
| vmcb02->control.tsc_offset = vcpu->arch.tsc_offset; |
| |
| if (guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR) && |
| svm->tsc_ratio_msr != kvm_caps.default_tsc_scaling_ratio) |
| nested_svm_update_tsc_ratio_msr(vcpu); |
| |
| vmcb02->control.int_ctl = |
| (svm->nested.ctl.int_ctl & int_ctl_vmcb12_bits) | |
| (vmcb01->control.int_ctl & int_ctl_vmcb01_bits); |
| |
| vmcb02->control.int_vector = svm->nested.ctl.int_vector; |
| vmcb02->control.int_state = svm->nested.ctl.int_state; |
| vmcb02->control.event_inj = svm->nested.ctl.event_inj; |
| vmcb02->control.event_inj_err = svm->nested.ctl.event_inj_err; |
| |
| /* |
| * next_rip is consumed on VMRUN as the return address pushed on the |
| * stack for injected soft exceptions/interrupts. If nrips is exposed |
| * to L1, take it verbatim from vmcb12. If nrips is supported in |
| * hardware but not exposed to L1, stuff the actual L2 RIP to emulate |
| * what a nrips=0 CPU would do (L1 is responsible for advancing RIP |
| * prior to injecting the event). |
| */ |
| if (guest_can_use(vcpu, X86_FEATURE_NRIPS)) |
| vmcb02->control.next_rip = svm->nested.ctl.next_rip; |
| else if (boot_cpu_has(X86_FEATURE_NRIPS)) |
| vmcb02->control.next_rip = vmcb12_rip; |
| |
| svm->nmi_l1_to_l2 = is_evtinj_nmi(vmcb02->control.event_inj); |
| if (is_evtinj_soft(vmcb02->control.event_inj)) { |
| svm->soft_int_injected = true; |
| svm->soft_int_csbase = vmcb12_csbase; |
| svm->soft_int_old_rip = vmcb12_rip; |
| if (guest_can_use(vcpu, X86_FEATURE_NRIPS)) |
| svm->soft_int_next_rip = svm->nested.ctl.next_rip; |
| else |
| svm->soft_int_next_rip = vmcb12_rip; |
| } |
| |
| vmcb02->control.virt_ext = vmcb01->control.virt_ext & |
| LBR_CTL_ENABLE_MASK; |
| if (guest_can_use(vcpu, X86_FEATURE_LBRV)) |
| vmcb02->control.virt_ext |= |
| (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK); |
| |
| if (!nested_vmcb_needs_vls_intercept(svm)) |
| vmcb02->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; |
| |
| if (guest_can_use(vcpu, X86_FEATURE_PAUSEFILTER)) |
| pause_count12 = svm->nested.ctl.pause_filter_count; |
| else |
| pause_count12 = 0; |
| if (guest_can_use(vcpu, X86_FEATURE_PFTHRESHOLD)) |
| pause_thresh12 = svm->nested.ctl.pause_filter_thresh; |
| else |
| pause_thresh12 = 0; |
| if (kvm_pause_in_guest(svm->vcpu.kvm)) { |
| /* use guest values since host doesn't intercept PAUSE */ |
| vmcb02->control.pause_filter_count = pause_count12; |
| vmcb02->control.pause_filter_thresh = pause_thresh12; |
| |
| } else { |
| /* start from host values otherwise */ |
| vmcb02->control.pause_filter_count = vmcb01->control.pause_filter_count; |
| vmcb02->control.pause_filter_thresh = vmcb01->control.pause_filter_thresh; |
| |
| /* ... but ensure filtering is disabled if so requested. */ |
| if (vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_PAUSE)) { |
| if (!pause_count12) |
| vmcb02->control.pause_filter_count = 0; |
| if (!pause_thresh12) |
| vmcb02->control.pause_filter_thresh = 0; |
| } |
| } |
| |
| nested_svm_transition_tlb_flush(vcpu); |
| |
| /* Enter Guest-Mode */ |
| enter_guest_mode(vcpu); |
| |
| /* |
| * Merge guest and host intercepts - must be called with vcpu in |
| * guest-mode to take effect. |
| */ |
| recalc_intercepts(svm); |
| } |
| |
| static void nested_svm_copy_common_state(struct vmcb *from_vmcb, struct vmcb *to_vmcb) |
| { |
| /* |
| * Some VMCB state is shared between L1 and L2 and thus has to be |
| * moved at the time of nested vmrun and vmexit. |
| * |
| * VMLOAD/VMSAVE state would also belong in this category, but KVM |
| * always performs VMLOAD and VMSAVE from the VMCB01. |
| */ |
| to_vmcb->save.spec_ctrl = from_vmcb->save.spec_ctrl; |
| } |
| |
| int enter_svm_guest_mode(struct kvm_vcpu *vcpu, u64 vmcb12_gpa, |
| struct vmcb *vmcb12, bool from_vmrun) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| int ret; |
| |
| trace_kvm_nested_vmenter(svm->vmcb->save.rip, |
| vmcb12_gpa, |
| vmcb12->save.rip, |
| vmcb12->control.int_ctl, |
| vmcb12->control.event_inj, |
| vmcb12->control.nested_ctl, |
| vmcb12->control.nested_cr3, |
| vmcb12->save.cr3, |
| KVM_ISA_SVM); |
| |
| trace_kvm_nested_intercepts(vmcb12->control.intercepts[INTERCEPT_CR] & 0xffff, |
| vmcb12->control.intercepts[INTERCEPT_CR] >> 16, |
| vmcb12->control.intercepts[INTERCEPT_EXCEPTION], |
| vmcb12->control.intercepts[INTERCEPT_WORD3], |
| vmcb12->control.intercepts[INTERCEPT_WORD4], |
| vmcb12->control.intercepts[INTERCEPT_WORD5]); |
| |
| |
| svm->nested.vmcb12_gpa = vmcb12_gpa; |
| |
| WARN_ON(svm->vmcb == svm->nested.vmcb02.ptr); |
| |
| nested_svm_copy_common_state(svm->vmcb01.ptr, svm->nested.vmcb02.ptr); |
| |
| svm_switch_vmcb(svm, &svm->nested.vmcb02); |
| nested_vmcb02_prepare_control(svm, vmcb12->save.rip, vmcb12->save.cs.base); |
| nested_vmcb02_prepare_save(svm, vmcb12); |
| |
| ret = nested_svm_load_cr3(&svm->vcpu, svm->nested.save.cr3, |
| nested_npt_enabled(svm), from_vmrun); |
| if (ret) |
| return ret; |
| |
| if (!from_vmrun) |
| kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu); |
| |
| svm_set_gif(svm, true); |
| |
| if (kvm_vcpu_apicv_active(vcpu)) |
| kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); |
| |
| nested_svm_hv_update_vm_vp_ids(vcpu); |
| |
| return 0; |
| } |
| |
| int nested_svm_vmrun(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| int ret; |
| struct vmcb *vmcb12; |
| struct kvm_host_map map; |
| u64 vmcb12_gpa; |
| struct vmcb *vmcb01 = svm->vmcb01.ptr; |
| |
| if (!svm->nested.hsave_msr) { |
| kvm_inject_gp(vcpu, 0); |
| return 1; |
| } |
| |
| if (is_smm(vcpu)) { |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return 1; |
| } |
| |
| /* This fails when VP assist page is enabled but the supplied GPA is bogus */ |
| ret = kvm_hv_verify_vp_assist(vcpu); |
| if (ret) { |
| kvm_inject_gp(vcpu, 0); |
| return ret; |
| } |
| |
| vmcb12_gpa = svm->vmcb->save.rax; |
| ret = kvm_vcpu_map(vcpu, gpa_to_gfn(vmcb12_gpa), &map); |
| if (ret == -EINVAL) { |
| kvm_inject_gp(vcpu, 0); |
| return 1; |
| } else if (ret) { |
| return kvm_skip_emulated_instruction(vcpu); |
| } |
| |
| ret = kvm_skip_emulated_instruction(vcpu); |
| |
| vmcb12 = map.hva; |
| |
| if (WARN_ON_ONCE(!svm->nested.initialized)) |
| return -EINVAL; |
| |
| nested_copy_vmcb_control_to_cache(svm, &vmcb12->control); |
| nested_copy_vmcb_save_to_cache(svm, &vmcb12->save); |
| |
| if (!nested_vmcb_check_save(vcpu) || |
| !nested_vmcb_check_controls(vcpu)) { |
| vmcb12->control.exit_code = SVM_EXIT_ERR; |
| vmcb12->control.exit_code_hi = 0; |
| vmcb12->control.exit_info_1 = 0; |
| vmcb12->control.exit_info_2 = 0; |
| goto out; |
| } |
| |
| /* |
| * Since vmcb01 is not in use, we can use it to store some of the L1 |
| * state. |
| */ |
| vmcb01->save.efer = vcpu->arch.efer; |
| vmcb01->save.cr0 = kvm_read_cr0(vcpu); |
| vmcb01->save.cr4 = vcpu->arch.cr4; |
| vmcb01->save.rflags = kvm_get_rflags(vcpu); |
| vmcb01->save.rip = kvm_rip_read(vcpu); |
| |
| if (!npt_enabled) |
| vmcb01->save.cr3 = kvm_read_cr3(vcpu); |
| |
| svm->nested.nested_run_pending = 1; |
| |
| if (enter_svm_guest_mode(vcpu, vmcb12_gpa, vmcb12, true)) |
| goto out_exit_err; |
| |
| if (nested_svm_vmrun_msrpm(svm)) |
| goto out; |
| |
| out_exit_err: |
| svm->nested.nested_run_pending = 0; |
| svm->nmi_l1_to_l2 = false; |
| svm->soft_int_injected = false; |
| |
| svm->vmcb->control.exit_code = SVM_EXIT_ERR; |
| svm->vmcb->control.exit_code_hi = 0; |
| svm->vmcb->control.exit_info_1 = 0; |
| svm->vmcb->control.exit_info_2 = 0; |
| |
| nested_svm_vmexit(svm); |
| |
| out: |
| kvm_vcpu_unmap(vcpu, &map, true); |
| |
| return ret; |
| } |
| |
| /* Copy state save area fields which are handled by VMRUN */ |
| void svm_copy_vmrun_state(struct vmcb_save_area *to_save, |
| struct vmcb_save_area *from_save) |
| { |
| to_save->es = from_save->es; |
| to_save->cs = from_save->cs; |
| to_save->ss = from_save->ss; |
| to_save->ds = from_save->ds; |
| to_save->gdtr = from_save->gdtr; |
| to_save->idtr = from_save->idtr; |
| to_save->rflags = from_save->rflags | X86_EFLAGS_FIXED; |
| to_save->efer = from_save->efer; |
| to_save->cr0 = from_save->cr0; |
| to_save->cr3 = from_save->cr3; |
| to_save->cr4 = from_save->cr4; |
| to_save->rax = from_save->rax; |
| to_save->rsp = from_save->rsp; |
| to_save->rip = from_save->rip; |
| to_save->cpl = 0; |
| } |
| |
| void svm_copy_vmloadsave_state(struct vmcb *to_vmcb, struct vmcb *from_vmcb) |
| { |
| to_vmcb->save.fs = from_vmcb->save.fs; |
| to_vmcb->save.gs = from_vmcb->save.gs; |
| to_vmcb->save.tr = from_vmcb->save.tr; |
| to_vmcb->save.ldtr = from_vmcb->save.ldtr; |
| to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base; |
| to_vmcb->save.star = from_vmcb->save.star; |
| to_vmcb->save.lstar = from_vmcb->save.lstar; |
| to_vmcb->save.cstar = from_vmcb->save.cstar; |
| to_vmcb->save.sfmask = from_vmcb->save.sfmask; |
| to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs; |
| to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp; |
| to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip; |
| } |
| |
| int nested_svm_vmexit(struct vcpu_svm *svm) |
| { |
| struct kvm_vcpu *vcpu = &svm->vcpu; |
| struct vmcb *vmcb01 = svm->vmcb01.ptr; |
| struct vmcb *vmcb02 = svm->nested.vmcb02.ptr; |
| struct vmcb *vmcb12; |
| struct kvm_host_map map; |
| int rc; |
| |
| rc = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.vmcb12_gpa), &map); |
| if (rc) { |
| if (rc == -EINVAL) |
| kvm_inject_gp(vcpu, 0); |
| return 1; |
| } |
| |
| vmcb12 = map.hva; |
| |
| /* Exit Guest-Mode */ |
| leave_guest_mode(vcpu); |
| svm->nested.vmcb12_gpa = 0; |
| WARN_ON_ONCE(svm->nested.nested_run_pending); |
| |
| kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu); |
| |
| /* in case we halted in L2 */ |
| svm->vcpu.arch.mp_state = KVM_MP_STATE_RUNNABLE; |
| |
| /* Give the current vmcb to the guest */ |
| |
| vmcb12->save.es = vmcb02->save.es; |
| vmcb12->save.cs = vmcb02->save.cs; |
| vmcb12->save.ss = vmcb02->save.ss; |
| vmcb12->save.ds = vmcb02->save.ds; |
| vmcb12->save.gdtr = vmcb02->save.gdtr; |
| vmcb12->save.idtr = vmcb02->save.idtr; |
| vmcb12->save.efer = svm->vcpu.arch.efer; |
| vmcb12->save.cr0 = kvm_read_cr0(vcpu); |
| vmcb12->save.cr3 = kvm_read_cr3(vcpu); |
| vmcb12->save.cr2 = vmcb02->save.cr2; |
| vmcb12->save.cr4 = svm->vcpu.arch.cr4; |
| vmcb12->save.rflags = kvm_get_rflags(vcpu); |
| vmcb12->save.rip = kvm_rip_read(vcpu); |
| vmcb12->save.rsp = kvm_rsp_read(vcpu); |
| vmcb12->save.rax = kvm_rax_read(vcpu); |
| vmcb12->save.dr7 = vmcb02->save.dr7; |
| vmcb12->save.dr6 = svm->vcpu.arch.dr6; |
| vmcb12->save.cpl = vmcb02->save.cpl; |
| |
| vmcb12->control.int_state = vmcb02->control.int_state; |
| vmcb12->control.exit_code = vmcb02->control.exit_code; |
| vmcb12->control.exit_code_hi = vmcb02->control.exit_code_hi; |
| vmcb12->control.exit_info_1 = vmcb02->control.exit_info_1; |
| vmcb12->control.exit_info_2 = vmcb02->control.exit_info_2; |
| |
| if (vmcb12->control.exit_code != SVM_EXIT_ERR) |
| nested_save_pending_event_to_vmcb12(svm, vmcb12); |
| |
| if (guest_can_use(vcpu, X86_FEATURE_NRIPS)) |
| vmcb12->control.next_rip = vmcb02->control.next_rip; |
| |
| vmcb12->control.int_ctl = svm->nested.ctl.int_ctl; |
| vmcb12->control.event_inj = svm->nested.ctl.event_inj; |
| vmcb12->control.event_inj_err = svm->nested.ctl.event_inj_err; |
| |
| if (!kvm_pause_in_guest(vcpu->kvm)) { |
| vmcb01->control.pause_filter_count = vmcb02->control.pause_filter_count; |
| vmcb_mark_dirty(vmcb01, VMCB_INTERCEPTS); |
| |
| } |
| |
| nested_svm_copy_common_state(svm->nested.vmcb02.ptr, svm->vmcb01.ptr); |
| |
| svm_switch_vmcb(svm, &svm->vmcb01); |
| |
| /* |
| * Rules for synchronizing int_ctl bits from vmcb02 to vmcb01: |
| * |
| * V_IRQ, V_IRQ_VECTOR, V_INTR_PRIO_MASK, V_IGN_TPR: If L1 doesn't |
| * intercept interrupts, then KVM will use vmcb02's V_IRQ (and related |
| * flags) to detect interrupt windows for L1 IRQs (even if L1 uses |
| * virtual interrupt masking). Raise KVM_REQ_EVENT to ensure that |
| * KVM re-requests an interrupt window if necessary, which implicitly |
| * copies this bits from vmcb02 to vmcb01. |
| * |
| * V_TPR: If L1 doesn't use virtual interrupt masking, then L1's vTPR |
| * is stored in vmcb02, but its value doesn't need to be copied from/to |
| * vmcb01 because it is copied from/to the virtual APIC's TPR register |
| * on each VM entry/exit. |
| * |
| * V_GIF: If nested vGIF is not used, KVM uses vmcb02's V_GIF for L1's |
| * V_GIF. However, GIF is architecturally clear on each VM exit, thus |
| * there is no need to copy V_GIF from vmcb02 to vmcb01. |
| */ |
| if (!nested_exit_on_intr(svm)) |
| kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); |
| |
| if (unlikely(guest_can_use(vcpu, X86_FEATURE_LBRV) && |
| (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK))) { |
| svm_copy_lbrs(vmcb12, vmcb02); |
| svm_update_lbrv(vcpu); |
| } else if (unlikely(vmcb01->control.virt_ext & LBR_CTL_ENABLE_MASK)) { |
| svm_copy_lbrs(vmcb01, vmcb02); |
| svm_update_lbrv(vcpu); |
| } |
| |
| if (vnmi) { |
| if (vmcb02->control.int_ctl & V_NMI_BLOCKING_MASK) |
| vmcb01->control.int_ctl |= V_NMI_BLOCKING_MASK; |
| else |
| vmcb01->control.int_ctl &= ~V_NMI_BLOCKING_MASK; |
| |
| if (vcpu->arch.nmi_pending) { |
| vcpu->arch.nmi_pending--; |
| vmcb01->control.int_ctl |= V_NMI_PENDING_MASK; |
| } else { |
| vmcb01->control.int_ctl &= ~V_NMI_PENDING_MASK; |
| } |
| } |
| |
| /* |
| * On vmexit the GIF is set to false and |
| * no event can be injected in L1. |
| */ |
| svm_set_gif(svm, false); |
| vmcb01->control.exit_int_info = 0; |
| |
| svm->vcpu.arch.tsc_offset = svm->vcpu.arch.l1_tsc_offset; |
| if (vmcb01->control.tsc_offset != svm->vcpu.arch.tsc_offset) { |
| vmcb01->control.tsc_offset = svm->vcpu.arch.tsc_offset; |
| vmcb_mark_dirty(vmcb01, VMCB_INTERCEPTS); |
| } |
| |
| if (kvm_caps.has_tsc_control && |
| vcpu->arch.tsc_scaling_ratio != vcpu->arch.l1_tsc_scaling_ratio) { |
| vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio; |
| svm_write_tsc_multiplier(vcpu); |
| } |
| |
| svm->nested.ctl.nested_cr3 = 0; |
| |
| /* |
| * Restore processor state that had been saved in vmcb01 |
| */ |
| kvm_set_rflags(vcpu, vmcb01->save.rflags); |
| svm_set_efer(vcpu, vmcb01->save.efer); |
| svm_set_cr0(vcpu, vmcb01->save.cr0 | X86_CR0_PE); |
| svm_set_cr4(vcpu, vmcb01->save.cr4); |
| kvm_rax_write(vcpu, vmcb01->save.rax); |
| kvm_rsp_write(vcpu, vmcb01->save.rsp); |
| kvm_rip_write(vcpu, vmcb01->save.rip); |
| |
| svm->vcpu.arch.dr7 = DR7_FIXED_1; |
| kvm_update_dr7(&svm->vcpu); |
| |
| trace_kvm_nested_vmexit_inject(vmcb12->control.exit_code, |
| vmcb12->control.exit_info_1, |
| vmcb12->control.exit_info_2, |
| vmcb12->control.exit_int_info, |
| vmcb12->control.exit_int_info_err, |
| KVM_ISA_SVM); |
| |
| kvm_vcpu_unmap(vcpu, &map, true); |
| |
| nested_svm_transition_tlb_flush(vcpu); |
| |
| nested_svm_uninit_mmu_context(vcpu); |
| |
| rc = nested_svm_load_cr3(vcpu, vmcb01->save.cr3, false, true); |
| if (rc) |
| return 1; |
| |
| /* |
| * Drop what we picked up for L2 via svm_complete_interrupts() so it |
| * doesn't end up in L1. |
| */ |
| svm->vcpu.arch.nmi_injected = false; |
| kvm_clear_exception_queue(vcpu); |
| kvm_clear_interrupt_queue(vcpu); |
| |
| /* |
| * If we are here following the completion of a VMRUN that |
| * is being single-stepped, queue the pending #DB intercept |
| * right now so that it an be accounted for before we execute |
| * L1's next instruction. |
| */ |
| if (unlikely(vmcb01->save.rflags & X86_EFLAGS_TF)) |
| kvm_queue_exception(&(svm->vcpu), DB_VECTOR); |
| |
| /* |
| * Un-inhibit the AVIC right away, so that other vCPUs can start |
| * to benefit from it right away. |
| */ |
| if (kvm_apicv_activated(vcpu->kvm)) |
| __kvm_vcpu_update_apicv(vcpu); |
| |
| return 0; |
| } |
| |
| static void nested_svm_triple_fault(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| if (!vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SHUTDOWN)) |
| return; |
| |
| kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
| nested_svm_simple_vmexit(to_svm(vcpu), SVM_EXIT_SHUTDOWN); |
| } |
| |
| int svm_allocate_nested(struct vcpu_svm *svm) |
| { |
| struct page *vmcb02_page; |
| |
| if (svm->nested.initialized) |
| return 0; |
| |
| vmcb02_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); |
| if (!vmcb02_page) |
| return -ENOMEM; |
| svm->nested.vmcb02.ptr = page_address(vmcb02_page); |
| svm->nested.vmcb02.pa = __sme_set(page_to_pfn(vmcb02_page) << PAGE_SHIFT); |
| |
| svm->nested.msrpm = svm_vcpu_alloc_msrpm(); |
| if (!svm->nested.msrpm) |
| goto err_free_vmcb02; |
| svm_vcpu_init_msrpm(&svm->vcpu, svm->nested.msrpm); |
| |
| svm->nested.initialized = true; |
| return 0; |
| |
| err_free_vmcb02: |
| __free_page(vmcb02_page); |
| return -ENOMEM; |
| } |
| |
| void svm_free_nested(struct vcpu_svm *svm) |
| { |
| if (!svm->nested.initialized) |
| return; |
| |
| if (WARN_ON_ONCE(svm->vmcb != svm->vmcb01.ptr)) |
| svm_switch_vmcb(svm, &svm->vmcb01); |
| |
| svm_vcpu_free_msrpm(svm->nested.msrpm); |
| svm->nested.msrpm = NULL; |
| |
| __free_page(virt_to_page(svm->nested.vmcb02.ptr)); |
| svm->nested.vmcb02.ptr = NULL; |
| |
| /* |
| * When last_vmcb12_gpa matches the current vmcb12 gpa, |
| * some vmcb12 fields are not loaded if they are marked clean |
| * in the vmcb12, since in this case they are up to date already. |
| * |
| * When the vmcb02 is freed, this optimization becomes invalid. |
| */ |
| svm->nested.last_vmcb12_gpa = INVALID_GPA; |
| |
| svm->nested.initialized = false; |
| } |
| |
| void svm_leave_nested(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| if (is_guest_mode(vcpu)) { |
| svm->nested.nested_run_pending = 0; |
| svm->nested.vmcb12_gpa = INVALID_GPA; |
| |
| leave_guest_mode(vcpu); |
| |
| svm_switch_vmcb(svm, &svm->vmcb01); |
| |
| nested_svm_uninit_mmu_context(vcpu); |
| vmcb_mark_all_dirty(svm->vmcb); |
| } |
| |
| kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu); |
| } |
| |
| static int nested_svm_exit_handled_msr(struct vcpu_svm *svm) |
| { |
| u32 offset, msr, value; |
| int write, mask; |
| |
| if (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_MSR_PROT))) |
| return NESTED_EXIT_HOST; |
| |
| msr = svm->vcpu.arch.regs[VCPU_REGS_RCX]; |
| offset = svm_msrpm_offset(msr); |
| write = svm->vmcb->control.exit_info_1 & 1; |
| mask = 1 << ((2 * (msr & 0xf)) + write); |
| |
| if (offset == MSR_INVALID) |
| return NESTED_EXIT_DONE; |
| |
| /* Offset is in 32 bit units but need in 8 bit units */ |
| offset *= 4; |
| |
| if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.ctl.msrpm_base_pa + offset, &value, 4)) |
| return NESTED_EXIT_DONE; |
| |
| return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST; |
| } |
| |
| static int nested_svm_intercept_ioio(struct vcpu_svm *svm) |
| { |
| unsigned port, size, iopm_len; |
| u16 val, mask; |
| u8 start_bit; |
| u64 gpa; |
| |
| if (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_IOIO_PROT))) |
| return NESTED_EXIT_HOST; |
| |
| port = svm->vmcb->control.exit_info_1 >> 16; |
| size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >> |
| SVM_IOIO_SIZE_SHIFT; |
| gpa = svm->nested.ctl.iopm_base_pa + (port / 8); |
| start_bit = port % 8; |
| iopm_len = (start_bit + size > 8) ? 2 : 1; |
| mask = (0xf >> (4 - size)) << start_bit; |
| val = 0; |
| |
| if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len)) |
| return NESTED_EXIT_DONE; |
| |
| return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST; |
| } |
| |
| static int nested_svm_intercept(struct vcpu_svm *svm) |
| { |
| u32 exit_code = svm->vmcb->control.exit_code; |
| int vmexit = NESTED_EXIT_HOST; |
| |
| switch (exit_code) { |
| case SVM_EXIT_MSR: |
| vmexit = nested_svm_exit_handled_msr(svm); |
| break; |
| case SVM_EXIT_IOIO: |
| vmexit = nested_svm_intercept_ioio(svm); |
| break; |
| case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: { |
| if (vmcb12_is_intercept(&svm->nested.ctl, exit_code)) |
| vmexit = NESTED_EXIT_DONE; |
| break; |
| } |
| case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: { |
| if (vmcb12_is_intercept(&svm->nested.ctl, exit_code)) |
| vmexit = NESTED_EXIT_DONE; |
| break; |
| } |
| case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: { |
| /* |
| * Host-intercepted exceptions have been checked already in |
| * nested_svm_exit_special. There is nothing to do here, |
| * the vmexit is injected by svm_check_nested_events. |
| */ |
| vmexit = NESTED_EXIT_DONE; |
| break; |
| } |
| case SVM_EXIT_ERR: { |
| vmexit = NESTED_EXIT_DONE; |
| break; |
| } |
| default: { |
| if (vmcb12_is_intercept(&svm->nested.ctl, exit_code)) |
| vmexit = NESTED_EXIT_DONE; |
| } |
| } |
| |
| return vmexit; |
| } |
| |
| int nested_svm_exit_handled(struct vcpu_svm *svm) |
| { |
| int vmexit; |
| |
| vmexit = nested_svm_intercept(svm); |
| |
| if (vmexit == NESTED_EXIT_DONE) |
| nested_svm_vmexit(svm); |
| |
| return vmexit; |
| } |
| |
| int nested_svm_check_permissions(struct kvm_vcpu *vcpu) |
| { |
| if (!(vcpu->arch.efer & EFER_SVME) || !is_paging(vcpu)) { |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return 1; |
| } |
| |
| if (to_svm(vcpu)->vmcb->save.cpl) { |
| kvm_inject_gp(vcpu, 0); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static bool nested_svm_is_exception_vmexit(struct kvm_vcpu *vcpu, u8 vector, |
| u32 error_code) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| return (svm->nested.ctl.intercepts[INTERCEPT_EXCEPTION] & BIT(vector)); |
| } |
| |
| static void nested_svm_inject_exception_vmexit(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; |
| struct vcpu_svm *svm = to_svm(vcpu); |
| struct vmcb *vmcb = svm->vmcb; |
| |
| vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + ex->vector; |
| vmcb->control.exit_code_hi = 0; |
| |
| if (ex->has_error_code) |
| vmcb->control.exit_info_1 = ex->error_code; |
| |
| /* |
| * EXITINFO2 is undefined for all exception intercepts other |
| * than #PF. |
| */ |
| if (ex->vector == PF_VECTOR) { |
| if (ex->has_payload) |
| vmcb->control.exit_info_2 = ex->payload; |
| else |
| vmcb->control.exit_info_2 = vcpu->arch.cr2; |
| } else if (ex->vector == DB_VECTOR) { |
| /* See kvm_check_and_inject_events(). */ |
| kvm_deliver_exception_payload(vcpu, ex); |
| |
| if (vcpu->arch.dr7 & DR7_GD) { |
| vcpu->arch.dr7 &= ~DR7_GD; |
| kvm_update_dr7(vcpu); |
| } |
| } else { |
| WARN_ON(ex->has_payload); |
| } |
| |
| nested_svm_vmexit(svm); |
| } |
| |
| static inline bool nested_exit_on_init(struct vcpu_svm *svm) |
| { |
| return vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_INIT); |
| } |
| |
| static int svm_check_nested_events(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_lapic *apic = vcpu->arch.apic; |
| struct vcpu_svm *svm = to_svm(vcpu); |
| /* |
| * Only a pending nested run blocks a pending exception. If there is a |
| * previously injected event, the pending exception occurred while said |
| * event was being delivered and thus needs to be handled. |
| */ |
| bool block_nested_exceptions = svm->nested.nested_run_pending; |
| /* |
| * New events (not exceptions) are only recognized at instruction |
| * boundaries. If an event needs reinjection, then KVM is handling a |
| * VM-Exit that occurred _during_ instruction execution; new events are |
| * blocked until the instruction completes. |
| */ |
| bool block_nested_events = block_nested_exceptions || |
| kvm_event_needs_reinjection(vcpu); |
| |
| if (lapic_in_kernel(vcpu) && |
| test_bit(KVM_APIC_INIT, &apic->pending_events)) { |
| if (block_nested_events) |
| return -EBUSY; |
| if (!nested_exit_on_init(svm)) |
| return 0; |
| nested_svm_simple_vmexit(svm, SVM_EXIT_INIT); |
| return 0; |
| } |
| |
| if (vcpu->arch.exception_vmexit.pending) { |
| if (block_nested_exceptions) |
| return -EBUSY; |
| nested_svm_inject_exception_vmexit(vcpu); |
| return 0; |
| } |
| |
| if (vcpu->arch.exception.pending) { |
| if (block_nested_exceptions) |
| return -EBUSY; |
| return 0; |
| } |
| |
| #ifdef CONFIG_KVM_SMM |
| if (vcpu->arch.smi_pending && !svm_smi_blocked(vcpu)) { |
| if (block_nested_events) |
| return -EBUSY; |
| if (!nested_exit_on_smi(svm)) |
| return 0; |
| nested_svm_simple_vmexit(svm, SVM_EXIT_SMI); |
| return 0; |
| } |
| #endif |
| |
| if (vcpu->arch.nmi_pending && !svm_nmi_blocked(vcpu)) { |
| if (block_nested_events) |
| return -EBUSY; |
| if (!nested_exit_on_nmi(svm)) |
| return 0; |
| nested_svm_simple_vmexit(svm, SVM_EXIT_NMI); |
| return 0; |
| } |
| |
| if (kvm_cpu_has_interrupt(vcpu) && !svm_interrupt_blocked(vcpu)) { |
| if (block_nested_events) |
| return -EBUSY; |
| if (!nested_exit_on_intr(svm)) |
| return 0; |
| trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip); |
| nested_svm_simple_vmexit(svm, SVM_EXIT_INTR); |
| return 0; |
| } |
| |
| return 0; |
| } |
| |
| int nested_svm_exit_special(struct vcpu_svm *svm) |
| { |
| u32 exit_code = svm->vmcb->control.exit_code; |
| struct kvm_vcpu *vcpu = &svm->vcpu; |
| |
| switch (exit_code) { |
| case SVM_EXIT_INTR: |
| case SVM_EXIT_NMI: |
| case SVM_EXIT_NPF: |
| return NESTED_EXIT_HOST; |
| case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: { |
| u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE); |
| |
| if (svm->vmcb01.ptr->control.intercepts[INTERCEPT_EXCEPTION] & |
| excp_bits) |
| return NESTED_EXIT_HOST; |
| else if (exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR && |
| svm->vcpu.arch.apf.host_apf_flags) |
| /* Trap async PF even if not shadowing */ |
| return NESTED_EXIT_HOST; |
| break; |
| } |
| case SVM_EXIT_VMMCALL: |
| /* Hyper-V L2 TLB flush hypercall is handled by L0 */ |
| if (guest_hv_cpuid_has_l2_tlb_flush(vcpu) && |
| nested_svm_l2_tlb_flush_enabled(vcpu) && |
| kvm_hv_is_tlb_flush_hcall(vcpu)) |
| return NESTED_EXIT_HOST; |
| break; |
| default: |
| break; |
| } |
| |
| return NESTED_EXIT_CONTINUE; |
| } |
| |
| void nested_svm_update_tsc_ratio_msr(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| vcpu->arch.tsc_scaling_ratio = |
| kvm_calc_nested_tsc_multiplier(vcpu->arch.l1_tsc_scaling_ratio, |
| svm->tsc_ratio_msr); |
| svm_write_tsc_multiplier(vcpu); |
| } |
| |
| /* Inverse operation of nested_copy_vmcb_control_to_cache(). asid is copied too. */ |
| static void nested_copy_vmcb_cache_to_control(struct vmcb_control_area *dst, |
| struct vmcb_ctrl_area_cached *from) |
| { |
| unsigned int i; |
| |
| memset(dst, 0, sizeof(struct vmcb_control_area)); |
| |
| for (i = 0; i < MAX_INTERCEPT; i++) |
| dst->intercepts[i] = from->intercepts[i]; |
| |
| dst->iopm_base_pa = from->iopm_base_pa; |
| dst->msrpm_base_pa = from->msrpm_base_pa; |
| dst->tsc_offset = from->tsc_offset; |
| dst->asid = from->asid; |
| dst->tlb_ctl = from->tlb_ctl; |
| dst->int_ctl = from->int_ctl; |
| dst->int_vector = from->int_vector; |
| dst->int_state = from->int_state; |
| dst->exit_code = from->exit_code; |
| dst->exit_code_hi = from->exit_code_hi; |
| dst->exit_info_1 = from->exit_info_1; |
| dst->exit_info_2 = from->exit_info_2; |
| dst->exit_int_info = from->exit_int_info; |
| dst->exit_int_info_err = from->exit_int_info_err; |
| dst->nested_ctl = from->nested_ctl; |
| dst->event_inj = from->event_inj; |
| dst->event_inj_err = from->event_inj_err; |
| dst->next_rip = from->next_rip; |
| dst->nested_cr3 = from->nested_cr3; |
| dst->virt_ext = from->virt_ext; |
| dst->pause_filter_count = from->pause_filter_count; |
| dst->pause_filter_thresh = from->pause_filter_thresh; |
| /* 'clean' and 'hv_enlightenments' are not changed by KVM */ |
| } |
| |
| static int svm_get_nested_state(struct kvm_vcpu *vcpu, |
| struct kvm_nested_state __user *user_kvm_nested_state, |
| u32 user_data_size) |
| { |
| struct vcpu_svm *svm; |
| struct vmcb_control_area *ctl; |
| unsigned long r; |
| struct kvm_nested_state kvm_state = { |
| .flags = 0, |
| .format = KVM_STATE_NESTED_FORMAT_SVM, |
| .size = sizeof(kvm_state), |
| }; |
| struct vmcb __user *user_vmcb = (struct vmcb __user *) |
| &user_kvm_nested_state->data.svm[0]; |
| |
| if (!vcpu) |
| return kvm_state.size + KVM_STATE_NESTED_SVM_VMCB_SIZE; |
| |
| svm = to_svm(vcpu); |
| |
| if (user_data_size < kvm_state.size) |
| goto out; |
| |
| /* First fill in the header and copy it out. */ |
| if (is_guest_mode(vcpu)) { |
| kvm_state.hdr.svm.vmcb_pa = svm->nested.vmcb12_gpa; |
| kvm_state.size += KVM_STATE_NESTED_SVM_VMCB_SIZE; |
| kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE; |
| |
| if (svm->nested.nested_run_pending) |
| kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING; |
| } |
| |
| if (gif_set(svm)) |
| kvm_state.flags |= KVM_STATE_NESTED_GIF_SET; |
| |
| if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state))) |
| return -EFAULT; |
| |
| if (!is_guest_mode(vcpu)) |
| goto out; |
| |
| /* |
| * Copy over the full size of the VMCB rather than just the size |
| * of the structs. |
| */ |
| if (clear_user(user_vmcb, KVM_STATE_NESTED_SVM_VMCB_SIZE)) |
| return -EFAULT; |
| |
| ctl = kzalloc(sizeof(*ctl), GFP_KERNEL); |
| if (!ctl) |
| return -ENOMEM; |
| |
| nested_copy_vmcb_cache_to_control(ctl, &svm->nested.ctl); |
| r = copy_to_user(&user_vmcb->control, ctl, |
| sizeof(user_vmcb->control)); |
| kfree(ctl); |
| if (r) |
| return -EFAULT; |
| |
| if (copy_to_user(&user_vmcb->save, &svm->vmcb01.ptr->save, |
| sizeof(user_vmcb->save))) |
| return -EFAULT; |
| out: |
| return kvm_state.size; |
| } |
| |
| static int svm_set_nested_state(struct kvm_vcpu *vcpu, |
| struct kvm_nested_state __user *user_kvm_nested_state, |
| struct kvm_nested_state *kvm_state) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| struct vmcb __user *user_vmcb = (struct vmcb __user *) |
| &user_kvm_nested_state->data.svm[0]; |
| struct vmcb_control_area *ctl; |
| struct vmcb_save_area *save; |
| struct vmcb_save_area_cached save_cached; |
| struct vmcb_ctrl_area_cached ctl_cached; |
| unsigned long cr0; |
| int ret; |
| |
| BUILD_BUG_ON(sizeof(struct vmcb_control_area) + sizeof(struct vmcb_save_area) > |
| KVM_STATE_NESTED_SVM_VMCB_SIZE); |
| |
| if (kvm_state->format != KVM_STATE_NESTED_FORMAT_SVM) |
| return -EINVAL; |
| |
| if (kvm_state->flags & ~(KVM_STATE_NESTED_GUEST_MODE | |
| KVM_STATE_NESTED_RUN_PENDING | |
| KVM_STATE_NESTED_GIF_SET)) |
| return -EINVAL; |
| |
| /* |
| * If in guest mode, vcpu->arch.efer actually refers to the L2 guest's |
| * EFER.SVME, but EFER.SVME still has to be 1 for VMRUN to succeed. |
| */ |
| if (!(vcpu->arch.efer & EFER_SVME)) { |
| /* GIF=1 and no guest mode are required if SVME=0. */ |
| if (kvm_state->flags != KVM_STATE_NESTED_GIF_SET) |
| return -EINVAL; |
| } |
| |
| /* SMM temporarily disables SVM, so we cannot be in guest mode. */ |
| if (is_smm(vcpu) && (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE)) |
| return -EINVAL; |
| |
| if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE)) { |
| svm_leave_nested(vcpu); |
| svm_set_gif(svm, !!(kvm_state->flags & KVM_STATE_NESTED_GIF_SET)); |
| return 0; |
| } |
| |
| if (!page_address_valid(vcpu, kvm_state->hdr.svm.vmcb_pa)) |
| return -EINVAL; |
| if (kvm_state->size < sizeof(*kvm_state) + KVM_STATE_NESTED_SVM_VMCB_SIZE) |
| return -EINVAL; |
| |
| ret = -ENOMEM; |
| ctl = kzalloc(sizeof(*ctl), GFP_KERNEL_ACCOUNT); |
| save = kzalloc(sizeof(*save), GFP_KERNEL_ACCOUNT); |
| if (!ctl || !save) |
| goto out_free; |
| |
| ret = -EFAULT; |
| if (copy_from_user(ctl, &user_vmcb->control, sizeof(*ctl))) |
| goto out_free; |
| if (copy_from_user(save, &user_vmcb->save, sizeof(*save))) |
| goto out_free; |
| |
| ret = -EINVAL; |
| __nested_copy_vmcb_control_to_cache(vcpu, &ctl_cached, ctl); |
| if (!__nested_vmcb_check_controls(vcpu, &ctl_cached)) |
| goto out_free; |
| |
| /* |
| * Processor state contains L2 state. Check that it is |
| * valid for guest mode (see nested_vmcb_check_save). |
| */ |
| cr0 = kvm_read_cr0(vcpu); |
| if (((cr0 & X86_CR0_CD) == 0) && (cr0 & X86_CR0_NW)) |
| goto out_free; |
| |
| /* |
| * Validate host state saved from before VMRUN (see |
| * nested_svm_check_permissions). |
| */ |
| __nested_copy_vmcb_save_to_cache(&save_cached, save); |
| if (!(save->cr0 & X86_CR0_PG) || |
| !(save->cr0 & X86_CR0_PE) || |
| (save->rflags & X86_EFLAGS_VM) || |
| !__nested_vmcb_check_save(vcpu, &save_cached)) |
| goto out_free; |
| |
| |
| /* |
| * All checks done, we can enter guest mode. Userspace provides |
| * vmcb12.control, which will be combined with L1 and stored into |
| * vmcb02, and the L1 save state which we store in vmcb01. |
| * L2 registers if needed are moved from the current VMCB to VMCB02. |
| */ |
| |
| if (is_guest_mode(vcpu)) |
| svm_leave_nested(vcpu); |
| else |
| svm->nested.vmcb02.ptr->save = svm->vmcb01.ptr->save; |
| |
| svm_set_gif(svm, !!(kvm_state->flags & KVM_STATE_NESTED_GIF_SET)); |
| |
| svm->nested.nested_run_pending = |
| !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING); |
| |
| svm->nested.vmcb12_gpa = kvm_state->hdr.svm.vmcb_pa; |
| |
| svm_copy_vmrun_state(&svm->vmcb01.ptr->save, save); |
| nested_copy_vmcb_control_to_cache(svm, ctl); |
| |
| svm_switch_vmcb(svm, &svm->nested.vmcb02); |
| nested_vmcb02_prepare_control(svm, svm->vmcb->save.rip, svm->vmcb->save.cs.base); |
| |
| /* |
| * While the nested guest CR3 is already checked and set by |
| * KVM_SET_SREGS, it was set when nested state was yet loaded, |
| * thus MMU might not be initialized correctly. |
| * Set it again to fix this. |
| */ |
| |
| ret = nested_svm_load_cr3(&svm->vcpu, vcpu->arch.cr3, |
| nested_npt_enabled(svm), false); |
| if (WARN_ON_ONCE(ret)) |
| goto out_free; |
| |
| svm->nested.force_msr_bitmap_recalc = true; |
| |
| kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu); |
| ret = 0; |
| out_free: |
| kfree(save); |
| kfree(ctl); |
| |
| return ret; |
| } |
| |
| static bool svm_get_nested_state_pages(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| if (WARN_ON(!is_guest_mode(vcpu))) |
| return true; |
| |
| if (!vcpu->arch.pdptrs_from_userspace && |
| !nested_npt_enabled(svm) && is_pae_paging(vcpu)) |
| /* |
| * Reload the guest's PDPTRs since after a migration |
| * the guest CR3 might be restored prior to setting the nested |
| * state which can lead to a load of wrong PDPTRs. |
| */ |
| if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3))) |
| return false; |
| |
| if (!nested_svm_vmrun_msrpm(svm)) { |
| vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| vcpu->run->internal.suberror = |
| KVM_INTERNAL_ERROR_EMULATION; |
| vcpu->run->internal.ndata = 0; |
| return false; |
| } |
| |
| if (kvm_hv_verify_vp_assist(vcpu)) |
| return false; |
| |
| return true; |
| } |
| |
| struct kvm_x86_nested_ops svm_nested_ops = { |
| .leave_nested = svm_leave_nested, |
| .is_exception_vmexit = nested_svm_is_exception_vmexit, |
| .check_events = svm_check_nested_events, |
| .triple_fault = nested_svm_triple_fault, |
| .get_nested_state_pages = svm_get_nested_state_pages, |
| .get_state = svm_get_nested_state, |
| .set_state = svm_set_nested_state, |
| .hv_inject_synthetic_vmexit_post_tlb_flush = svm_hv_inject_synthetic_vmexit_post_tlb_flush, |
| }; |