| // SPDX-License-Identifier: GPL-2.0 |
| #include <linux/pagewalk.h> |
| #include <linux/mm_inline.h> |
| #include <linux/hugetlb.h> |
| #include <linux/huge_mm.h> |
| #include <linux/mount.h> |
| #include <linux/seq_file.h> |
| #include <linux/highmem.h> |
| #include <linux/ptrace.h> |
| #include <linux/slab.h> |
| #include <linux/pagemap.h> |
| #include <linux/mempolicy.h> |
| #include <linux/rmap.h> |
| #include <linux/swap.h> |
| #include <linux/sched/mm.h> |
| #include <linux/swapops.h> |
| #include <linux/mmu_notifier.h> |
| #include <linux/page_idle.h> |
| #include <linux/shmem_fs.h> |
| #include <linux/uaccess.h> |
| #include <linux/pkeys.h> |
| |
| #include <asm/elf.h> |
| #include <asm/tlb.h> |
| #include <asm/tlbflush.h> |
| #include "internal.h" |
| |
| #define SEQ_PUT_DEC(str, val) \ |
| seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8) |
| void task_mem(struct seq_file *m, struct mm_struct *mm) |
| { |
| unsigned long text, lib, swap, anon, file, shmem; |
| unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss; |
| |
| anon = get_mm_counter(mm, MM_ANONPAGES); |
| file = get_mm_counter(mm, MM_FILEPAGES); |
| shmem = get_mm_counter(mm, MM_SHMEMPAGES); |
| |
| /* |
| * Note: to minimize their overhead, mm maintains hiwater_vm and |
| * hiwater_rss only when about to *lower* total_vm or rss. Any |
| * collector of these hiwater stats must therefore get total_vm |
| * and rss too, which will usually be the higher. Barriers? not |
| * worth the effort, such snapshots can always be inconsistent. |
| */ |
| hiwater_vm = total_vm = mm->total_vm; |
| if (hiwater_vm < mm->hiwater_vm) |
| hiwater_vm = mm->hiwater_vm; |
| hiwater_rss = total_rss = anon + file + shmem; |
| if (hiwater_rss < mm->hiwater_rss) |
| hiwater_rss = mm->hiwater_rss; |
| |
| /* split executable areas between text and lib */ |
| text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK); |
| text = min(text, mm->exec_vm << PAGE_SHIFT); |
| lib = (mm->exec_vm << PAGE_SHIFT) - text; |
| |
| swap = get_mm_counter(mm, MM_SWAPENTS); |
| SEQ_PUT_DEC("VmPeak:\t", hiwater_vm); |
| SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm); |
| SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm); |
| SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm)); |
| SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss); |
| SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss); |
| SEQ_PUT_DEC(" kB\nRssAnon:\t", anon); |
| SEQ_PUT_DEC(" kB\nRssFile:\t", file); |
| SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem); |
| SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm); |
| SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm); |
| seq_put_decimal_ull_width(m, |
| " kB\nVmExe:\t", text >> 10, 8); |
| seq_put_decimal_ull_width(m, |
| " kB\nVmLib:\t", lib >> 10, 8); |
| seq_put_decimal_ull_width(m, |
| " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8); |
| SEQ_PUT_DEC(" kB\nVmSwap:\t", swap); |
| seq_puts(m, " kB\n"); |
| hugetlb_report_usage(m, mm); |
| } |
| #undef SEQ_PUT_DEC |
| |
| unsigned long task_vsize(struct mm_struct *mm) |
| { |
| return PAGE_SIZE * mm->total_vm; |
| } |
| |
| unsigned long task_statm(struct mm_struct *mm, |
| unsigned long *shared, unsigned long *text, |
| unsigned long *data, unsigned long *resident) |
| { |
| *shared = get_mm_counter(mm, MM_FILEPAGES) + |
| get_mm_counter(mm, MM_SHMEMPAGES); |
| *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) |
| >> PAGE_SHIFT; |
| *data = mm->data_vm + mm->stack_vm; |
| *resident = *shared + get_mm_counter(mm, MM_ANONPAGES); |
| return mm->total_vm; |
| } |
| |
| #ifdef CONFIG_NUMA |
| /* |
| * Save get_task_policy() for show_numa_map(). |
| */ |
| static void hold_task_mempolicy(struct proc_maps_private *priv) |
| { |
| struct task_struct *task = priv->task; |
| |
| task_lock(task); |
| priv->task_mempolicy = get_task_policy(task); |
| mpol_get(priv->task_mempolicy); |
| task_unlock(task); |
| } |
| static void release_task_mempolicy(struct proc_maps_private *priv) |
| { |
| mpol_put(priv->task_mempolicy); |
| } |
| #else |
| static void hold_task_mempolicy(struct proc_maps_private *priv) |
| { |
| } |
| static void release_task_mempolicy(struct proc_maps_private *priv) |
| { |
| } |
| #endif |
| |
| static struct vm_area_struct *proc_get_vma(struct proc_maps_private *priv, |
| loff_t *ppos) |
| { |
| struct vm_area_struct *vma = vma_next(&priv->iter); |
| |
| if (vma) { |
| *ppos = vma->vm_start; |
| } else { |
| *ppos = -2UL; |
| vma = get_gate_vma(priv->mm); |
| } |
| |
| return vma; |
| } |
| |
| static void *m_start(struct seq_file *m, loff_t *ppos) |
| { |
| struct proc_maps_private *priv = m->private; |
| unsigned long last_addr = *ppos; |
| struct mm_struct *mm; |
| |
| /* See m_next(). Zero at the start or after lseek. */ |
| if (last_addr == -1UL) |
| return NULL; |
| |
| priv->task = get_proc_task(priv->inode); |
| if (!priv->task) |
| return ERR_PTR(-ESRCH); |
| |
| mm = priv->mm; |
| if (!mm || !mmget_not_zero(mm)) { |
| put_task_struct(priv->task); |
| priv->task = NULL; |
| return NULL; |
| } |
| |
| if (mmap_read_lock_killable(mm)) { |
| mmput(mm); |
| put_task_struct(priv->task); |
| priv->task = NULL; |
| return ERR_PTR(-EINTR); |
| } |
| |
| vma_iter_init(&priv->iter, mm, last_addr); |
| hold_task_mempolicy(priv); |
| if (last_addr == -2UL) |
| return get_gate_vma(mm); |
| |
| return proc_get_vma(priv, ppos); |
| } |
| |
| static void *m_next(struct seq_file *m, void *v, loff_t *ppos) |
| { |
| if (*ppos == -2UL) { |
| *ppos = -1UL; |
| return NULL; |
| } |
| return proc_get_vma(m->private, ppos); |
| } |
| |
| static void m_stop(struct seq_file *m, void *v) |
| { |
| struct proc_maps_private *priv = m->private; |
| struct mm_struct *mm = priv->mm; |
| |
| if (!priv->task) |
| return; |
| |
| release_task_mempolicy(priv); |
| mmap_read_unlock(mm); |
| mmput(mm); |
| put_task_struct(priv->task); |
| priv->task = NULL; |
| } |
| |
| static int proc_maps_open(struct inode *inode, struct file *file, |
| const struct seq_operations *ops, int psize) |
| { |
| struct proc_maps_private *priv = __seq_open_private(file, ops, psize); |
| |
| if (!priv) |
| return -ENOMEM; |
| |
| priv->inode = inode; |
| priv->mm = proc_mem_open(inode, PTRACE_MODE_READ); |
| if (IS_ERR(priv->mm)) { |
| int err = PTR_ERR(priv->mm); |
| |
| seq_release_private(inode, file); |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static int proc_map_release(struct inode *inode, struct file *file) |
| { |
| struct seq_file *seq = file->private_data; |
| struct proc_maps_private *priv = seq->private; |
| |
| if (priv->mm) |
| mmdrop(priv->mm); |
| |
| return seq_release_private(inode, file); |
| } |
| |
| static int do_maps_open(struct inode *inode, struct file *file, |
| const struct seq_operations *ops) |
| { |
| return proc_maps_open(inode, file, ops, |
| sizeof(struct proc_maps_private)); |
| } |
| |
| /* |
| * Indicate if the VMA is a stack for the given task; for |
| * /proc/PID/maps that is the stack of the main task. |
| */ |
| static int is_stack(struct vm_area_struct *vma) |
| { |
| /* |
| * We make no effort to guess what a given thread considers to be |
| * its "stack". It's not even well-defined for programs written |
| * languages like Go. |
| */ |
| return vma->vm_start <= vma->vm_mm->start_stack && |
| vma->vm_end >= vma->vm_mm->start_stack; |
| } |
| |
| static void show_vma_header_prefix(struct seq_file *m, |
| unsigned long start, unsigned long end, |
| vm_flags_t flags, unsigned long long pgoff, |
| dev_t dev, unsigned long ino) |
| { |
| seq_setwidth(m, 25 + sizeof(void *) * 6 - 1); |
| seq_put_hex_ll(m, NULL, start, 8); |
| seq_put_hex_ll(m, "-", end, 8); |
| seq_putc(m, ' '); |
| seq_putc(m, flags & VM_READ ? 'r' : '-'); |
| seq_putc(m, flags & VM_WRITE ? 'w' : '-'); |
| seq_putc(m, flags & VM_EXEC ? 'x' : '-'); |
| seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p'); |
| seq_put_hex_ll(m, " ", pgoff, 8); |
| seq_put_hex_ll(m, " ", MAJOR(dev), 2); |
| seq_put_hex_ll(m, ":", MINOR(dev), 2); |
| seq_put_decimal_ull(m, " ", ino); |
| seq_putc(m, ' '); |
| } |
| |
| static void |
| show_map_vma(struct seq_file *m, struct vm_area_struct *vma) |
| { |
| struct anon_vma_name *anon_name = NULL; |
| struct mm_struct *mm = vma->vm_mm; |
| struct file *file = vma->vm_file; |
| vm_flags_t flags = vma->vm_flags; |
| unsigned long ino = 0; |
| unsigned long long pgoff = 0; |
| unsigned long start, end; |
| dev_t dev = 0; |
| const char *name = NULL; |
| |
| if (file) { |
| struct inode *inode = file_inode(vma->vm_file); |
| dev = inode->i_sb->s_dev; |
| ino = inode->i_ino; |
| pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT; |
| } |
| |
| start = vma->vm_start; |
| end = vma->vm_end; |
| show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino); |
| if (mm) |
| anon_name = anon_vma_name(vma); |
| |
| /* |
| * Print the dentry name for named mappings, and a |
| * special [heap] marker for the heap: |
| */ |
| if (file) { |
| seq_pad(m, ' '); |
| /* |
| * If user named this anon shared memory via |
| * prctl(PR_SET_VMA ..., use the provided name. |
| */ |
| if (anon_name) |
| seq_printf(m, "[anon_shmem:%s]", anon_name->name); |
| else |
| seq_file_path(m, file, "\n"); |
| goto done; |
| } |
| |
| if (vma->vm_ops && vma->vm_ops->name) { |
| name = vma->vm_ops->name(vma); |
| if (name) |
| goto done; |
| } |
| |
| name = arch_vma_name(vma); |
| if (!name) { |
| if (!mm) { |
| name = "[vdso]"; |
| goto done; |
| } |
| |
| if (vma->vm_start <= mm->brk && |
| vma->vm_end >= mm->start_brk) { |
| name = "[heap]"; |
| goto done; |
| } |
| |
| if (is_stack(vma)) { |
| name = "[stack]"; |
| goto done; |
| } |
| |
| if (anon_name) { |
| seq_pad(m, ' '); |
| seq_printf(m, "[anon:%s]", anon_name->name); |
| } |
| } |
| |
| done: |
| if (name) { |
| seq_pad(m, ' '); |
| seq_puts(m, name); |
| } |
| seq_putc(m, '\n'); |
| } |
| |
| static int show_map(struct seq_file *m, void *v) |
| { |
| show_map_vma(m, v); |
| return 0; |
| } |
| |
| static const struct seq_operations proc_pid_maps_op = { |
| .start = m_start, |
| .next = m_next, |
| .stop = m_stop, |
| .show = show_map |
| }; |
| |
| static int pid_maps_open(struct inode *inode, struct file *file) |
| { |
| return do_maps_open(inode, file, &proc_pid_maps_op); |
| } |
| |
| const struct file_operations proc_pid_maps_operations = { |
| .open = pid_maps_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = proc_map_release, |
| }; |
| |
| /* |
| * Proportional Set Size(PSS): my share of RSS. |
| * |
| * PSS of a process is the count of pages it has in memory, where each |
| * page is divided by the number of processes sharing it. So if a |
| * process has 1000 pages all to itself, and 1000 shared with one other |
| * process, its PSS will be 1500. |
| * |
| * To keep (accumulated) division errors low, we adopt a 64bit |
| * fixed-point pss counter to minimize division errors. So (pss >> |
| * PSS_SHIFT) would be the real byte count. |
| * |
| * A shift of 12 before division means (assuming 4K page size): |
| * - 1M 3-user-pages add up to 8KB errors; |
| * - supports mapcount up to 2^24, or 16M; |
| * - supports PSS up to 2^52 bytes, or 4PB. |
| */ |
| #define PSS_SHIFT 12 |
| |
| #ifdef CONFIG_PROC_PAGE_MONITOR |
| struct mem_size_stats { |
| unsigned long resident; |
| unsigned long shared_clean; |
| unsigned long shared_dirty; |
| unsigned long private_clean; |
| unsigned long private_dirty; |
| unsigned long referenced; |
| unsigned long anonymous; |
| unsigned long lazyfree; |
| unsigned long anonymous_thp; |
| unsigned long shmem_thp; |
| unsigned long file_thp; |
| unsigned long swap; |
| unsigned long shared_hugetlb; |
| unsigned long private_hugetlb; |
| u64 pss; |
| u64 pss_anon; |
| u64 pss_file; |
| u64 pss_shmem; |
| u64 pss_dirty; |
| u64 pss_locked; |
| u64 swap_pss; |
| }; |
| |
| static void smaps_page_accumulate(struct mem_size_stats *mss, |
| struct page *page, unsigned long size, unsigned long pss, |
| bool dirty, bool locked, bool private) |
| { |
| mss->pss += pss; |
| |
| if (PageAnon(page)) |
| mss->pss_anon += pss; |
| else if (PageSwapBacked(page)) |
| mss->pss_shmem += pss; |
| else |
| mss->pss_file += pss; |
| |
| if (locked) |
| mss->pss_locked += pss; |
| |
| if (dirty || PageDirty(page)) { |
| mss->pss_dirty += pss; |
| if (private) |
| mss->private_dirty += size; |
| else |
| mss->shared_dirty += size; |
| } else { |
| if (private) |
| mss->private_clean += size; |
| else |
| mss->shared_clean += size; |
| } |
| } |
| |
| static void smaps_account(struct mem_size_stats *mss, struct page *page, |
| bool compound, bool young, bool dirty, bool locked, |
| bool migration) |
| { |
| int i, nr = compound ? compound_nr(page) : 1; |
| unsigned long size = nr * PAGE_SIZE; |
| |
| /* |
| * First accumulate quantities that depend only on |size| and the type |
| * of the compound page. |
| */ |
| if (PageAnon(page)) { |
| mss->anonymous += size; |
| if (!PageSwapBacked(page) && !dirty && !PageDirty(page)) |
| mss->lazyfree += size; |
| } |
| |
| mss->resident += size; |
| /* Accumulate the size in pages that have been accessed. */ |
| if (young || page_is_young(page) || PageReferenced(page)) |
| mss->referenced += size; |
| |
| /* |
| * Then accumulate quantities that may depend on sharing, or that may |
| * differ page-by-page. |
| * |
| * page_count(page) == 1 guarantees the page is mapped exactly once. |
| * If any subpage of the compound page mapped with PTE it would elevate |
| * page_count(). |
| * |
| * The page_mapcount() is called to get a snapshot of the mapcount. |
| * Without holding the page lock this snapshot can be slightly wrong as |
| * we cannot always read the mapcount atomically. It is not safe to |
| * call page_mapcount() even with PTL held if the page is not mapped, |
| * especially for migration entries. Treat regular migration entries |
| * as mapcount == 1. |
| */ |
| if ((page_count(page) == 1) || migration) { |
| smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty, |
| locked, true); |
| return; |
| } |
| for (i = 0; i < nr; i++, page++) { |
| int mapcount = page_mapcount(page); |
| unsigned long pss = PAGE_SIZE << PSS_SHIFT; |
| if (mapcount >= 2) |
| pss /= mapcount; |
| smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked, |
| mapcount < 2); |
| } |
| } |
| |
| #ifdef CONFIG_SHMEM |
| static int smaps_pte_hole(unsigned long addr, unsigned long end, |
| __always_unused int depth, struct mm_walk *walk) |
| { |
| struct mem_size_stats *mss = walk->private; |
| struct vm_area_struct *vma = walk->vma; |
| |
| mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping, |
| linear_page_index(vma, addr), |
| linear_page_index(vma, end)); |
| |
| return 0; |
| } |
| #else |
| #define smaps_pte_hole NULL |
| #endif /* CONFIG_SHMEM */ |
| |
| static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk) |
| { |
| #ifdef CONFIG_SHMEM |
| if (walk->ops->pte_hole) { |
| /* depth is not used */ |
| smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk); |
| } |
| #endif |
| } |
| |
| static void smaps_pte_entry(pte_t *pte, unsigned long addr, |
| struct mm_walk *walk) |
| { |
| struct mem_size_stats *mss = walk->private; |
| struct vm_area_struct *vma = walk->vma; |
| bool locked = !!(vma->vm_flags & VM_LOCKED); |
| struct page *page = NULL; |
| bool migration = false, young = false, dirty = false; |
| |
| if (pte_present(*pte)) { |
| page = vm_normal_page(vma, addr, *pte); |
| young = pte_young(*pte); |
| dirty = pte_dirty(*pte); |
| } else if (is_swap_pte(*pte)) { |
| swp_entry_t swpent = pte_to_swp_entry(*pte); |
| |
| if (!non_swap_entry(swpent)) { |
| int mapcount; |
| |
| mss->swap += PAGE_SIZE; |
| mapcount = swp_swapcount(swpent); |
| if (mapcount >= 2) { |
| u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT; |
| |
| do_div(pss_delta, mapcount); |
| mss->swap_pss += pss_delta; |
| } else { |
| mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT; |
| } |
| } else if (is_pfn_swap_entry(swpent)) { |
| if (is_migration_entry(swpent)) |
| migration = true; |
| page = pfn_swap_entry_to_page(swpent); |
| } |
| } else { |
| smaps_pte_hole_lookup(addr, walk); |
| return; |
| } |
| |
| if (!page) |
| return; |
| |
| smaps_account(mss, page, false, young, dirty, locked, migration); |
| } |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, |
| struct mm_walk *walk) |
| { |
| struct mem_size_stats *mss = walk->private; |
| struct vm_area_struct *vma = walk->vma; |
| bool locked = !!(vma->vm_flags & VM_LOCKED); |
| struct page *page = NULL; |
| bool migration = false; |
| |
| if (pmd_present(*pmd)) { |
| /* FOLL_DUMP will return -EFAULT on huge zero page */ |
| page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP); |
| } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) { |
| swp_entry_t entry = pmd_to_swp_entry(*pmd); |
| |
| if (is_migration_entry(entry)) { |
| migration = true; |
| page = pfn_swap_entry_to_page(entry); |
| } |
| } |
| if (IS_ERR_OR_NULL(page)) |
| return; |
| if (PageAnon(page)) |
| mss->anonymous_thp += HPAGE_PMD_SIZE; |
| else if (PageSwapBacked(page)) |
| mss->shmem_thp += HPAGE_PMD_SIZE; |
| else if (is_zone_device_page(page)) |
| /* pass */; |
| else |
| mss->file_thp += HPAGE_PMD_SIZE; |
| |
| smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), |
| locked, migration); |
| } |
| #else |
| static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, |
| struct mm_walk *walk) |
| { |
| } |
| #endif |
| |
| static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, |
| struct mm_walk *walk) |
| { |
| struct vm_area_struct *vma = walk->vma; |
| pte_t *pte; |
| spinlock_t *ptl; |
| |
| ptl = pmd_trans_huge_lock(pmd, vma); |
| if (ptl) { |
| smaps_pmd_entry(pmd, addr, walk); |
| spin_unlock(ptl); |
| goto out; |
| } |
| |
| if (pmd_trans_unstable(pmd)) |
| goto out; |
| /* |
| * The mmap_lock held all the way back in m_start() is what |
| * keeps khugepaged out of here and from collapsing things |
| * in here. |
| */ |
| pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); |
| for (; addr != end; pte++, addr += PAGE_SIZE) |
| smaps_pte_entry(pte, addr, walk); |
| pte_unmap_unlock(pte - 1, ptl); |
| out: |
| cond_resched(); |
| return 0; |
| } |
| |
| static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma) |
| { |
| /* |
| * Don't forget to update Documentation/ on changes. |
| */ |
| static const char mnemonics[BITS_PER_LONG][2] = { |
| /* |
| * In case if we meet a flag we don't know about. |
| */ |
| [0 ... (BITS_PER_LONG-1)] = "??", |
| |
| [ilog2(VM_READ)] = "rd", |
| [ilog2(VM_WRITE)] = "wr", |
| [ilog2(VM_EXEC)] = "ex", |
| [ilog2(VM_SHARED)] = "sh", |
| [ilog2(VM_MAYREAD)] = "mr", |
| [ilog2(VM_MAYWRITE)] = "mw", |
| [ilog2(VM_MAYEXEC)] = "me", |
| [ilog2(VM_MAYSHARE)] = "ms", |
| [ilog2(VM_GROWSDOWN)] = "gd", |
| [ilog2(VM_PFNMAP)] = "pf", |
| [ilog2(VM_LOCKED)] = "lo", |
| [ilog2(VM_IO)] = "io", |
| [ilog2(VM_SEQ_READ)] = "sr", |
| [ilog2(VM_RAND_READ)] = "rr", |
| [ilog2(VM_DONTCOPY)] = "dc", |
| [ilog2(VM_DONTEXPAND)] = "de", |
| [ilog2(VM_LOCKONFAULT)] = "lf", |
| [ilog2(VM_ACCOUNT)] = "ac", |
| [ilog2(VM_NORESERVE)] = "nr", |
| [ilog2(VM_HUGETLB)] = "ht", |
| [ilog2(VM_SYNC)] = "sf", |
| [ilog2(VM_ARCH_1)] = "ar", |
| [ilog2(VM_WIPEONFORK)] = "wf", |
| [ilog2(VM_DONTDUMP)] = "dd", |
| #ifdef CONFIG_ARM64_BTI |
| [ilog2(VM_ARM64_BTI)] = "bt", |
| #endif |
| #ifdef CONFIG_MEM_SOFT_DIRTY |
| [ilog2(VM_SOFTDIRTY)] = "sd", |
| #endif |
| [ilog2(VM_MIXEDMAP)] = "mm", |
| [ilog2(VM_HUGEPAGE)] = "hg", |
| [ilog2(VM_NOHUGEPAGE)] = "nh", |
| [ilog2(VM_MERGEABLE)] = "mg", |
| [ilog2(VM_UFFD_MISSING)]= "um", |
| [ilog2(VM_UFFD_WP)] = "uw", |
| #ifdef CONFIG_ARM64_MTE |
| [ilog2(VM_MTE)] = "mt", |
| [ilog2(VM_MTE_ALLOWED)] = "", |
| #endif |
| #ifdef CONFIG_ARCH_HAS_PKEYS |
| /* These come out via ProtectionKey: */ |
| [ilog2(VM_PKEY_BIT0)] = "", |
| [ilog2(VM_PKEY_BIT1)] = "", |
| [ilog2(VM_PKEY_BIT2)] = "", |
| [ilog2(VM_PKEY_BIT3)] = "", |
| #if VM_PKEY_BIT4 |
| [ilog2(VM_PKEY_BIT4)] = "", |
| #endif |
| #endif /* CONFIG_ARCH_HAS_PKEYS */ |
| #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR |
| [ilog2(VM_UFFD_MINOR)] = "ui", |
| #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ |
| }; |
| size_t i; |
| |
| seq_puts(m, "VmFlags: "); |
| for (i = 0; i < BITS_PER_LONG; i++) { |
| if (!mnemonics[i][0]) |
| continue; |
| if (vma->vm_flags & (1UL << i)) { |
| seq_putc(m, mnemonics[i][0]); |
| seq_putc(m, mnemonics[i][1]); |
| seq_putc(m, ' '); |
| } |
| } |
| seq_putc(m, '\n'); |
| } |
| |
| #ifdef CONFIG_HUGETLB_PAGE |
| static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask, |
| unsigned long addr, unsigned long end, |
| struct mm_walk *walk) |
| { |
| struct mem_size_stats *mss = walk->private; |
| struct vm_area_struct *vma = walk->vma; |
| struct page *page = NULL; |
| |
| if (pte_present(*pte)) { |
| page = vm_normal_page(vma, addr, *pte); |
| } else if (is_swap_pte(*pte)) { |
| swp_entry_t swpent = pte_to_swp_entry(*pte); |
| |
| if (is_pfn_swap_entry(swpent)) |
| page = pfn_swap_entry_to_page(swpent); |
| } |
| if (page) { |
| if (page_mapcount(page) >= 2 || hugetlb_pmd_shared(pte)) |
| mss->shared_hugetlb += huge_page_size(hstate_vma(vma)); |
| else |
| mss->private_hugetlb += huge_page_size(hstate_vma(vma)); |
| } |
| return 0; |
| } |
| #else |
| #define smaps_hugetlb_range NULL |
| #endif /* HUGETLB_PAGE */ |
| |
| static const struct mm_walk_ops smaps_walk_ops = { |
| .pmd_entry = smaps_pte_range, |
| .hugetlb_entry = smaps_hugetlb_range, |
| }; |
| |
| static const struct mm_walk_ops smaps_shmem_walk_ops = { |
| .pmd_entry = smaps_pte_range, |
| .hugetlb_entry = smaps_hugetlb_range, |
| .pte_hole = smaps_pte_hole, |
| }; |
| |
| /* |
| * Gather mem stats from @vma with the indicated beginning |
| * address @start, and keep them in @mss. |
| * |
| * Use vm_start of @vma as the beginning address if @start is 0. |
| */ |
| static void smap_gather_stats(struct vm_area_struct *vma, |
| struct mem_size_stats *mss, unsigned long start) |
| { |
| const struct mm_walk_ops *ops = &smaps_walk_ops; |
| |
| /* Invalid start */ |
| if (start >= vma->vm_end) |
| return; |
| |
| #ifdef CONFIG_SHMEM |
| if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) { |
| /* |
| * For shared or readonly shmem mappings we know that all |
| * swapped out pages belong to the shmem object, and we can |
| * obtain the swap value much more efficiently. For private |
| * writable mappings, we might have COW pages that are |
| * not affected by the parent swapped out pages of the shmem |
| * object, so we have to distinguish them during the page walk. |
| * Unless we know that the shmem object (or the part mapped by |
| * our VMA) has no swapped out pages at all. |
| */ |
| unsigned long shmem_swapped = shmem_swap_usage(vma); |
| |
| if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) || |
| !(vma->vm_flags & VM_WRITE))) { |
| mss->swap += shmem_swapped; |
| } else { |
| ops = &smaps_shmem_walk_ops; |
| } |
| } |
| #endif |
| /* mmap_lock is held in m_start */ |
| if (!start) |
| walk_page_vma(vma, ops, mss); |
| else |
| walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss); |
| } |
| |
| #define SEQ_PUT_DEC(str, val) \ |
| seq_put_decimal_ull_width(m, str, (val) >> 10, 8) |
| |
| /* Show the contents common for smaps and smaps_rollup */ |
| static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss, |
| bool rollup_mode) |
| { |
| SEQ_PUT_DEC("Rss: ", mss->resident); |
| SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT); |
| SEQ_PUT_DEC(" kB\nPss_Dirty: ", mss->pss_dirty >> PSS_SHIFT); |
| if (rollup_mode) { |
| /* |
| * These are meaningful only for smaps_rollup, otherwise two of |
| * them are zero, and the other one is the same as Pss. |
| */ |
| SEQ_PUT_DEC(" kB\nPss_Anon: ", |
| mss->pss_anon >> PSS_SHIFT); |
| SEQ_PUT_DEC(" kB\nPss_File: ", |
| mss->pss_file >> PSS_SHIFT); |
| SEQ_PUT_DEC(" kB\nPss_Shmem: ", |
| mss->pss_shmem >> PSS_SHIFT); |
| } |
| SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean); |
| SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty); |
| SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean); |
| SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty); |
| SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced); |
| SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous); |
| SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree); |
| SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp); |
| SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp); |
| SEQ_PUT_DEC(" kB\nFilePmdMapped: ", mss->file_thp); |
| SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb); |
| seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ", |
| mss->private_hugetlb >> 10, 7); |
| SEQ_PUT_DEC(" kB\nSwap: ", mss->swap); |
| SEQ_PUT_DEC(" kB\nSwapPss: ", |
| mss->swap_pss >> PSS_SHIFT); |
| SEQ_PUT_DEC(" kB\nLocked: ", |
| mss->pss_locked >> PSS_SHIFT); |
| seq_puts(m, " kB\n"); |
| } |
| |
| static int show_smap(struct seq_file *m, void *v) |
| { |
| struct vm_area_struct *vma = v; |
| struct mem_size_stats mss; |
| |
| memset(&mss, 0, sizeof(mss)); |
| |
| smap_gather_stats(vma, &mss, 0); |
| |
| show_map_vma(m, vma); |
| |
| SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start); |
| SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma)); |
| SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma)); |
| seq_puts(m, " kB\n"); |
| |
| __show_smap(m, &mss, false); |
| |
| seq_printf(m, "THPeligible: %d\n", |
| hugepage_vma_check(vma, vma->vm_flags, true, false, true)); |
| |
| if (arch_pkeys_enabled()) |
| seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma)); |
| show_smap_vma_flags(m, vma); |
| |
| return 0; |
| } |
| |
| static int show_smaps_rollup(struct seq_file *m, void *v) |
| { |
| struct proc_maps_private *priv = m->private; |
| struct mem_size_stats mss; |
| struct mm_struct *mm = priv->mm; |
| struct vm_area_struct *vma; |
| unsigned long vma_start = 0, last_vma_end = 0; |
| int ret = 0; |
| VMA_ITERATOR(vmi, mm, 0); |
| |
| priv->task = get_proc_task(priv->inode); |
| if (!priv->task) |
| return -ESRCH; |
| |
| if (!mm || !mmget_not_zero(mm)) { |
| ret = -ESRCH; |
| goto out_put_task; |
| } |
| |
| memset(&mss, 0, sizeof(mss)); |
| |
| ret = mmap_read_lock_killable(mm); |
| if (ret) |
| goto out_put_mm; |
| |
| hold_task_mempolicy(priv); |
| vma = vma_next(&vmi); |
| |
| if (unlikely(!vma)) |
| goto empty_set; |
| |
| vma_start = vma->vm_start; |
| do { |
| smap_gather_stats(vma, &mss, 0); |
| last_vma_end = vma->vm_end; |
| |
| /* |
| * Release mmap_lock temporarily if someone wants to |
| * access it for write request. |
| */ |
| if (mmap_lock_is_contended(mm)) { |
| vma_iter_invalidate(&vmi); |
| mmap_read_unlock(mm); |
| ret = mmap_read_lock_killable(mm); |
| if (ret) { |
| release_task_mempolicy(priv); |
| goto out_put_mm; |
| } |
| |
| /* |
| * After dropping the lock, there are four cases to |
| * consider. See the following example for explanation. |
| * |
| * +------+------+-----------+ |
| * | VMA1 | VMA2 | VMA3 | |
| * +------+------+-----------+ |
| * | | | | |
| * 4k 8k 16k 400k |
| * |
| * Suppose we drop the lock after reading VMA2 due to |
| * contention, then we get: |
| * |
| * last_vma_end = 16k |
| * |
| * 1) VMA2 is freed, but VMA3 exists: |
| * |
| * vma_next(vmi) will return VMA3. |
| * In this case, just continue from VMA3. |
| * |
| * 2) VMA2 still exists: |
| * |
| * vma_next(vmi) will return VMA3. |
| * In this case, just continue from VMA3. |
| * |
| * 3) No more VMAs can be found: |
| * |
| * vma_next(vmi) will return NULL. |
| * No more things to do, just break. |
| * |
| * 4) (last_vma_end - 1) is the middle of a vma (VMA'): |
| * |
| * vma_next(vmi) will return VMA' whose range |
| * contains last_vma_end. |
| * Iterate VMA' from last_vma_end. |
| */ |
| vma = vma_next(&vmi); |
| /* Case 3 above */ |
| if (!vma) |
| break; |
| |
| /* Case 1 and 2 above */ |
| if (vma->vm_start >= last_vma_end) |
| continue; |
| |
| /* Case 4 above */ |
| if (vma->vm_end > last_vma_end) |
| smap_gather_stats(vma, &mss, last_vma_end); |
| } |
| } for_each_vma(vmi, vma); |
| |
| empty_set: |
| show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0); |
| seq_pad(m, ' '); |
| seq_puts(m, "[rollup]\n"); |
| |
| __show_smap(m, &mss, true); |
| |
| release_task_mempolicy(priv); |
| mmap_read_unlock(mm); |
| |
| out_put_mm: |
| mmput(mm); |
| out_put_task: |
| put_task_struct(priv->task); |
| priv->task = NULL; |
| |
| return ret; |
| } |
| #undef SEQ_PUT_DEC |
| |
| static const struct seq_operations proc_pid_smaps_op = { |
| .start = m_start, |
| .next = m_next, |
| .stop = m_stop, |
| .show = show_smap |
| }; |
| |
| static int pid_smaps_open(struct inode *inode, struct file *file) |
| { |
| return do_maps_open(inode, file, &proc_pid_smaps_op); |
| } |
| |
| static int smaps_rollup_open(struct inode *inode, struct file *file) |
| { |
| int ret; |
| struct proc_maps_private *priv; |
| |
| priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT); |
| if (!priv) |
| return -ENOMEM; |
| |
| ret = single_open(file, show_smaps_rollup, priv); |
| if (ret) |
| goto out_free; |
| |
| priv->inode = inode; |
| priv->mm = proc_mem_open(inode, PTRACE_MODE_READ); |
| if (IS_ERR(priv->mm)) { |
| ret = PTR_ERR(priv->mm); |
| |
| single_release(inode, file); |
| goto out_free; |
| } |
| |
| return 0; |
| |
| out_free: |
| kfree(priv); |
| return ret; |
| } |
| |
| static int smaps_rollup_release(struct inode *inode, struct file *file) |
| { |
| struct seq_file *seq = file->private_data; |
| struct proc_maps_private *priv = seq->private; |
| |
| if (priv->mm) |
| mmdrop(priv->mm); |
| |
| kfree(priv); |
| return single_release(inode, file); |
| } |
| |
| const struct file_operations proc_pid_smaps_operations = { |
| .open = pid_smaps_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = proc_map_release, |
| }; |
| |
| const struct file_operations proc_pid_smaps_rollup_operations = { |
| .open = smaps_rollup_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = smaps_rollup_release, |
| }; |
| |
| enum clear_refs_types { |
| CLEAR_REFS_ALL = 1, |
| CLEAR_REFS_ANON, |
| CLEAR_REFS_MAPPED, |
| CLEAR_REFS_SOFT_DIRTY, |
| CLEAR_REFS_MM_HIWATER_RSS, |
| CLEAR_REFS_LAST, |
| }; |
| |
| struct clear_refs_private { |
| enum clear_refs_types type; |
| }; |
| |
| #ifdef CONFIG_MEM_SOFT_DIRTY |
| |
| static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte) |
| { |
| struct page *page; |
| |
| if (!pte_write(pte)) |
| return false; |
| if (!is_cow_mapping(vma->vm_flags)) |
| return false; |
| if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))) |
| return false; |
| page = vm_normal_page(vma, addr, pte); |
| if (!page) |
| return false; |
| return page_maybe_dma_pinned(page); |
| } |
| |
| static inline void clear_soft_dirty(struct vm_area_struct *vma, |
| unsigned long addr, pte_t *pte) |
| { |
| /* |
| * The soft-dirty tracker uses #PF-s to catch writes |
| * to pages, so write-protect the pte as well. See the |
| * Documentation/admin-guide/mm/soft-dirty.rst for full description |
| * of how soft-dirty works. |
| */ |
| pte_t ptent = *pte; |
| |
| if (pte_present(ptent)) { |
| pte_t old_pte; |
| |
| if (pte_is_pinned(vma, addr, ptent)) |
| return; |
| old_pte = ptep_modify_prot_start(vma, addr, pte); |
| ptent = pte_wrprotect(old_pte); |
| ptent = pte_clear_soft_dirty(ptent); |
| ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent); |
| } else if (is_swap_pte(ptent)) { |
| ptent = pte_swp_clear_soft_dirty(ptent); |
| set_pte_at(vma->vm_mm, addr, pte, ptent); |
| } |
| } |
| #else |
| static inline void clear_soft_dirty(struct vm_area_struct *vma, |
| unsigned long addr, pte_t *pte) |
| { |
| } |
| #endif |
| |
| #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE) |
| static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, |
| unsigned long addr, pmd_t *pmdp) |
| { |
| pmd_t old, pmd = *pmdp; |
| |
| if (pmd_present(pmd)) { |
| /* See comment in change_huge_pmd() */ |
| old = pmdp_invalidate(vma, addr, pmdp); |
| if (pmd_dirty(old)) |
| pmd = pmd_mkdirty(pmd); |
| if (pmd_young(old)) |
| pmd = pmd_mkyoung(pmd); |
| |
| pmd = pmd_wrprotect(pmd); |
| pmd = pmd_clear_soft_dirty(pmd); |
| |
| set_pmd_at(vma->vm_mm, addr, pmdp, pmd); |
| } else if (is_migration_entry(pmd_to_swp_entry(pmd))) { |
| pmd = pmd_swp_clear_soft_dirty(pmd); |
| set_pmd_at(vma->vm_mm, addr, pmdp, pmd); |
| } |
| } |
| #else |
| static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, |
| unsigned long addr, pmd_t *pmdp) |
| { |
| } |
| #endif |
| |
| static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr, |
| unsigned long end, struct mm_walk *walk) |
| { |
| struct clear_refs_private *cp = walk->private; |
| struct vm_area_struct *vma = walk->vma; |
| pte_t *pte, ptent; |
| spinlock_t *ptl; |
| struct page *page; |
| |
| ptl = pmd_trans_huge_lock(pmd, vma); |
| if (ptl) { |
| if (cp->type == CLEAR_REFS_SOFT_DIRTY) { |
| clear_soft_dirty_pmd(vma, addr, pmd); |
| goto out; |
| } |
| |
| if (!pmd_present(*pmd)) |
| goto out; |
| |
| page = pmd_page(*pmd); |
| |
| /* Clear accessed and referenced bits. */ |
| pmdp_test_and_clear_young(vma, addr, pmd); |
| test_and_clear_page_young(page); |
| ClearPageReferenced(page); |
| out: |
| spin_unlock(ptl); |
| return 0; |
| } |
| |
| if (pmd_trans_unstable(pmd)) |
| return 0; |
| |
| pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); |
| for (; addr != end; pte++, addr += PAGE_SIZE) { |
| ptent = *pte; |
| |
| if (cp->type == CLEAR_REFS_SOFT_DIRTY) { |
| clear_soft_dirty(vma, addr, pte); |
| continue; |
| } |
| |
| if (!pte_present(ptent)) |
| continue; |
| |
| page = vm_normal_page(vma, addr, ptent); |
| if (!page) |
| continue; |
| |
| /* Clear accessed and referenced bits. */ |
| ptep_test_and_clear_young(vma, addr, pte); |
| test_and_clear_page_young(page); |
| ClearPageReferenced(page); |
| } |
| pte_unmap_unlock(pte - 1, ptl); |
| cond_resched(); |
| return 0; |
| } |
| |
| static int clear_refs_test_walk(unsigned long start, unsigned long end, |
| struct mm_walk *walk) |
| { |
| struct clear_refs_private *cp = walk->private; |
| struct vm_area_struct *vma = walk->vma; |
| |
| if (vma->vm_flags & VM_PFNMAP) |
| return 1; |
| |
| /* |
| * Writing 1 to /proc/pid/clear_refs affects all pages. |
| * Writing 2 to /proc/pid/clear_refs only affects anonymous pages. |
| * Writing 3 to /proc/pid/clear_refs only affects file mapped pages. |
| * Writing 4 to /proc/pid/clear_refs affects all pages. |
| */ |
| if (cp->type == CLEAR_REFS_ANON && vma->vm_file) |
| return 1; |
| if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file) |
| return 1; |
| return 0; |
| } |
| |
| static const struct mm_walk_ops clear_refs_walk_ops = { |
| .pmd_entry = clear_refs_pte_range, |
| .test_walk = clear_refs_test_walk, |
| }; |
| |
| static ssize_t clear_refs_write(struct file *file, const char __user *buf, |
| size_t count, loff_t *ppos) |
| { |
| struct task_struct *task; |
| char buffer[PROC_NUMBUF]; |
| struct mm_struct *mm; |
| struct vm_area_struct *vma; |
| enum clear_refs_types type; |
| int itype; |
| int rv; |
| |
| memset(buffer, 0, sizeof(buffer)); |
| if (count > sizeof(buffer) - 1) |
| count = sizeof(buffer) - 1; |
| if (copy_from_user(buffer, buf, count)) |
| return -EFAULT; |
| rv = kstrtoint(strstrip(buffer), 10, &itype); |
| if (rv < 0) |
| return rv; |
| type = (enum clear_refs_types)itype; |
| if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST) |
| return -EINVAL; |
| |
| task = get_proc_task(file_inode(file)); |
| if (!task) |
| return -ESRCH; |
| mm = get_task_mm(task); |
| if (mm) { |
| VMA_ITERATOR(vmi, mm, 0); |
| struct mmu_notifier_range range; |
| struct clear_refs_private cp = { |
| .type = type, |
| }; |
| |
| if (mmap_write_lock_killable(mm)) { |
| count = -EINTR; |
| goto out_mm; |
| } |
| if (type == CLEAR_REFS_MM_HIWATER_RSS) { |
| /* |
| * Writing 5 to /proc/pid/clear_refs resets the peak |
| * resident set size to this mm's current rss value. |
| */ |
| reset_mm_hiwater_rss(mm); |
| goto out_unlock; |
| } |
| |
| if (type == CLEAR_REFS_SOFT_DIRTY) { |
| for_each_vma(vmi, vma) { |
| if (!(vma->vm_flags & VM_SOFTDIRTY)) |
| continue; |
| vm_flags_clear(vma, VM_SOFTDIRTY); |
| vma_set_page_prot(vma); |
| } |
| |
| inc_tlb_flush_pending(mm); |
| mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY, |
| 0, mm, 0, -1UL); |
| mmu_notifier_invalidate_range_start(&range); |
| } |
| walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp); |
| if (type == CLEAR_REFS_SOFT_DIRTY) { |
| mmu_notifier_invalidate_range_end(&range); |
| flush_tlb_mm(mm); |
| dec_tlb_flush_pending(mm); |
| } |
| out_unlock: |
| mmap_write_unlock(mm); |
| out_mm: |
| mmput(mm); |
| } |
| put_task_struct(task); |
| |
| return count; |
| } |
| |
| const struct file_operations proc_clear_refs_operations = { |
| .write = clear_refs_write, |
| .llseek = noop_llseek, |
| }; |
| |
| typedef struct { |
| u64 pme; |
| } pagemap_entry_t; |
| |
| struct pagemapread { |
| int pos, len; /* units: PM_ENTRY_BYTES, not bytes */ |
| pagemap_entry_t *buffer; |
| bool show_pfn; |
| }; |
| |
| #define PAGEMAP_WALK_SIZE (PMD_SIZE) |
| #define PAGEMAP_WALK_MASK (PMD_MASK) |
| |
| #define PM_ENTRY_BYTES sizeof(pagemap_entry_t) |
| #define PM_PFRAME_BITS 55 |
| #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0) |
| #define PM_SOFT_DIRTY BIT_ULL(55) |
| #define PM_MMAP_EXCLUSIVE BIT_ULL(56) |
| #define PM_UFFD_WP BIT_ULL(57) |
| #define PM_FILE BIT_ULL(61) |
| #define PM_SWAP BIT_ULL(62) |
| #define PM_PRESENT BIT_ULL(63) |
| |
| #define PM_END_OF_BUFFER 1 |
| |
| static inline pagemap_entry_t make_pme(u64 frame, u64 flags) |
| { |
| return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags }; |
| } |
| |
| static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme, |
| struct pagemapread *pm) |
| { |
| pm->buffer[pm->pos++] = *pme; |
| if (pm->pos >= pm->len) |
| return PM_END_OF_BUFFER; |
| return 0; |
| } |
| |
| static int pagemap_pte_hole(unsigned long start, unsigned long end, |
| __always_unused int depth, struct mm_walk *walk) |
| { |
| struct pagemapread *pm = walk->private; |
| unsigned long addr = start; |
| int err = 0; |
| |
| while (addr < end) { |
| struct vm_area_struct *vma = find_vma(walk->mm, addr); |
| pagemap_entry_t pme = make_pme(0, 0); |
| /* End of address space hole, which we mark as non-present. */ |
| unsigned long hole_end; |
| |
| if (vma) |
| hole_end = min(end, vma->vm_start); |
| else |
| hole_end = end; |
| |
| for (; addr < hole_end; addr += PAGE_SIZE) { |
| err = add_to_pagemap(addr, &pme, pm); |
| if (err) |
| goto out; |
| } |
| |
| if (!vma) |
| break; |
| |
| /* Addresses in the VMA. */ |
| if (vma->vm_flags & VM_SOFTDIRTY) |
| pme = make_pme(0, PM_SOFT_DIRTY); |
| for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) { |
| err = add_to_pagemap(addr, &pme, pm); |
| if (err) |
| goto out; |
| } |
| } |
| out: |
| return err; |
| } |
| |
| static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm, |
| struct vm_area_struct *vma, unsigned long addr, pte_t pte) |
| { |
| u64 frame = 0, flags = 0; |
| struct page *page = NULL; |
| bool migration = false; |
| |
| if (pte_present(pte)) { |
| if (pm->show_pfn) |
| frame = pte_pfn(pte); |
| flags |= PM_PRESENT; |
| page = vm_normal_page(vma, addr, pte); |
| if (pte_soft_dirty(pte)) |
| flags |= PM_SOFT_DIRTY; |
| if (pte_uffd_wp(pte)) |
| flags |= PM_UFFD_WP; |
| } else if (is_swap_pte(pte)) { |
| swp_entry_t entry; |
| if (pte_swp_soft_dirty(pte)) |
| flags |= PM_SOFT_DIRTY; |
| if (pte_swp_uffd_wp(pte)) |
| flags |= PM_UFFD_WP; |
| entry = pte_to_swp_entry(pte); |
| if (pm->show_pfn) { |
| pgoff_t offset; |
| /* |
| * For PFN swap offsets, keeping the offset field |
| * to be PFN only to be compatible with old smaps. |
| */ |
| if (is_pfn_swap_entry(entry)) |
| offset = swp_offset_pfn(entry); |
| else |
| offset = swp_offset(entry); |
| frame = swp_type(entry) | |
| (offset << MAX_SWAPFILES_SHIFT); |
| } |
| flags |= PM_SWAP; |
| migration = is_migration_entry(entry); |
| if (is_pfn_swap_entry(entry)) |
| page = pfn_swap_entry_to_page(entry); |
| if (pte_marker_entry_uffd_wp(entry)) |
| flags |= PM_UFFD_WP; |
| } |
| |
| if (page && !PageAnon(page)) |
| flags |= PM_FILE; |
| if (page && !migration && page_mapcount(page) == 1) |
| flags |= PM_MMAP_EXCLUSIVE; |
| if (vma->vm_flags & VM_SOFTDIRTY) |
| flags |= PM_SOFT_DIRTY; |
| |
| return make_pme(frame, flags); |
| } |
| |
| static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end, |
| struct mm_walk *walk) |
| { |
| struct vm_area_struct *vma = walk->vma; |
| struct pagemapread *pm = walk->private; |
| spinlock_t *ptl; |
| pte_t *pte, *orig_pte; |
| int err = 0; |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| bool migration = false; |
| |
| ptl = pmd_trans_huge_lock(pmdp, vma); |
| if (ptl) { |
| u64 flags = 0, frame = 0; |
| pmd_t pmd = *pmdp; |
| struct page *page = NULL; |
| |
| if (vma->vm_flags & VM_SOFTDIRTY) |
| flags |= PM_SOFT_DIRTY; |
| |
| if (pmd_present(pmd)) { |
| page = pmd_page(pmd); |
| |
| flags |= PM_PRESENT; |
| if (pmd_soft_dirty(pmd)) |
| flags |= PM_SOFT_DIRTY; |
| if (pmd_uffd_wp(pmd)) |
| flags |= PM_UFFD_WP; |
| if (pm->show_pfn) |
| frame = pmd_pfn(pmd) + |
| ((addr & ~PMD_MASK) >> PAGE_SHIFT); |
| } |
| #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION |
| else if (is_swap_pmd(pmd)) { |
| swp_entry_t entry = pmd_to_swp_entry(pmd); |
| unsigned long offset; |
| |
| if (pm->show_pfn) { |
| if (is_pfn_swap_entry(entry)) |
| offset = swp_offset_pfn(entry); |
| else |
| offset = swp_offset(entry); |
| offset = offset + |
| ((addr & ~PMD_MASK) >> PAGE_SHIFT); |
| frame = swp_type(entry) | |
| (offset << MAX_SWAPFILES_SHIFT); |
| } |
| flags |= PM_SWAP; |
| if (pmd_swp_soft_dirty(pmd)) |
| flags |= PM_SOFT_DIRTY; |
| if (pmd_swp_uffd_wp(pmd)) |
| flags |= PM_UFFD_WP; |
| VM_BUG_ON(!is_pmd_migration_entry(pmd)); |
| migration = is_migration_entry(entry); |
| page = pfn_swap_entry_to_page(entry); |
| } |
| #endif |
| |
| if (page && !migration && page_mapcount(page) == 1) |
| flags |= PM_MMAP_EXCLUSIVE; |
| |
| for (; addr != end; addr += PAGE_SIZE) { |
| pagemap_entry_t pme = make_pme(frame, flags); |
| |
| err = add_to_pagemap(addr, &pme, pm); |
| if (err) |
| break; |
| if (pm->show_pfn) { |
| if (flags & PM_PRESENT) |
| frame++; |
| else if (flags & PM_SWAP) |
| frame += (1 << MAX_SWAPFILES_SHIFT); |
| } |
| } |
| spin_unlock(ptl); |
| return err; |
| } |
| |
| if (pmd_trans_unstable(pmdp)) |
| return 0; |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| |
| /* |
| * We can assume that @vma always points to a valid one and @end never |
| * goes beyond vma->vm_end. |
| */ |
| orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl); |
| for (; addr < end; pte++, addr += PAGE_SIZE) { |
| pagemap_entry_t pme; |
| |
| pme = pte_to_pagemap_entry(pm, vma, addr, *pte); |
| err = add_to_pagemap(addr, &pme, pm); |
| if (err) |
| break; |
| } |
| pte_unmap_unlock(orig_pte, ptl); |
| |
| cond_resched(); |
| |
| return err; |
| } |
| |
| #ifdef CONFIG_HUGETLB_PAGE |
| /* This function walks within one hugetlb entry in the single call */ |
| static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask, |
| unsigned long addr, unsigned long end, |
| struct mm_walk *walk) |
| { |
| struct pagemapread *pm = walk->private; |
| struct vm_area_struct *vma = walk->vma; |
| u64 flags = 0, frame = 0; |
| int err = 0; |
| pte_t pte; |
| |
| if (vma->vm_flags & VM_SOFTDIRTY) |
| flags |= PM_SOFT_DIRTY; |
| |
| pte = huge_ptep_get(ptep); |
| if (pte_present(pte)) { |
| struct page *page = pte_page(pte); |
| |
| if (!PageAnon(page)) |
| flags |= PM_FILE; |
| |
| if (page_mapcount(page) == 1) |
| flags |= PM_MMAP_EXCLUSIVE; |
| |
| if (huge_pte_uffd_wp(pte)) |
| flags |= PM_UFFD_WP; |
| |
| flags |= PM_PRESENT; |
| if (pm->show_pfn) |
| frame = pte_pfn(pte) + |
| ((addr & ~hmask) >> PAGE_SHIFT); |
| } else if (pte_swp_uffd_wp_any(pte)) { |
| flags |= PM_UFFD_WP; |
| } |
| |
| for (; addr != end; addr += PAGE_SIZE) { |
| pagemap_entry_t pme = make_pme(frame, flags); |
| |
| err = add_to_pagemap(addr, &pme, pm); |
| if (err) |
| return err; |
| if (pm->show_pfn && (flags & PM_PRESENT)) |
| frame++; |
| } |
| |
| cond_resched(); |
| |
| return err; |
| } |
| #else |
| #define pagemap_hugetlb_range NULL |
| #endif /* HUGETLB_PAGE */ |
| |
| static const struct mm_walk_ops pagemap_ops = { |
| .pmd_entry = pagemap_pmd_range, |
| .pte_hole = pagemap_pte_hole, |
| .hugetlb_entry = pagemap_hugetlb_range, |
| }; |
| |
| /* |
| * /proc/pid/pagemap - an array mapping virtual pages to pfns |
| * |
| * For each page in the address space, this file contains one 64-bit entry |
| * consisting of the following: |
| * |
| * Bits 0-54 page frame number (PFN) if present |
| * Bits 0-4 swap type if swapped |
| * Bits 5-54 swap offset if swapped |
| * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst) |
| * Bit 56 page exclusively mapped |
| * Bit 57 pte is uffd-wp write-protected |
| * Bits 58-60 zero |
| * Bit 61 page is file-page or shared-anon |
| * Bit 62 page swapped |
| * Bit 63 page present |
| * |
| * If the page is not present but in swap, then the PFN contains an |
| * encoding of the swap file number and the page's offset into the |
| * swap. Unmapped pages return a null PFN. This allows determining |
| * precisely which pages are mapped (or in swap) and comparing mapped |
| * pages between processes. |
| * |
| * Efficient users of this interface will use /proc/pid/maps to |
| * determine which areas of memory are actually mapped and llseek to |
| * skip over unmapped regions. |
| */ |
| static ssize_t pagemap_read(struct file *file, char __user *buf, |
| size_t count, loff_t *ppos) |
| { |
| struct mm_struct *mm = file->private_data; |
| struct pagemapread pm; |
| unsigned long src; |
| unsigned long svpfn; |
| unsigned long start_vaddr; |
| unsigned long end_vaddr; |
| int ret = 0, copied = 0; |
| |
| if (!mm || !mmget_not_zero(mm)) |
| goto out; |
| |
| ret = -EINVAL; |
| /* file position must be aligned */ |
| if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES)) |
| goto out_mm; |
| |
| ret = 0; |
| if (!count) |
| goto out_mm; |
| |
| /* do not disclose physical addresses: attack vector */ |
| pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN); |
| |
| pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT); |
| pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL); |
| ret = -ENOMEM; |
| if (!pm.buffer) |
| goto out_mm; |
| |
| src = *ppos; |
| svpfn = src / PM_ENTRY_BYTES; |
| end_vaddr = mm->task_size; |
| |
| /* watch out for wraparound */ |
| start_vaddr = end_vaddr; |
| if (svpfn <= (ULONG_MAX >> PAGE_SHIFT)) |
| start_vaddr = untagged_addr(svpfn << PAGE_SHIFT); |
| |
| /* Ensure the address is inside the task */ |
| if (start_vaddr > mm->task_size) |
| start_vaddr = end_vaddr; |
| |
| /* |
| * The odds are that this will stop walking way |
| * before end_vaddr, because the length of the |
| * user buffer is tracked in "pm", and the walk |
| * will stop when we hit the end of the buffer. |
| */ |
| ret = 0; |
| while (count && (start_vaddr < end_vaddr)) { |
| int len; |
| unsigned long end; |
| |
| pm.pos = 0; |
| end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK; |
| /* overflow ? */ |
| if (end < start_vaddr || end > end_vaddr) |
| end = end_vaddr; |
| ret = mmap_read_lock_killable(mm); |
| if (ret) |
| goto out_free; |
| ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm); |
| mmap_read_unlock(mm); |
| start_vaddr = end; |
| |
| len = min(count, PM_ENTRY_BYTES * pm.pos); |
| if (copy_to_user(buf, pm.buffer, len)) { |
| ret = -EFAULT; |
| goto out_free; |
| } |
| copied += len; |
| buf += len; |
| count -= len; |
| } |
| *ppos += copied; |
| if (!ret || ret == PM_END_OF_BUFFER) |
| ret = copied; |
| |
| out_free: |
| kfree(pm.buffer); |
| out_mm: |
| mmput(mm); |
| out: |
| return ret; |
| } |
| |
| static int pagemap_open(struct inode *inode, struct file *file) |
| { |
| struct mm_struct *mm; |
| |
| mm = proc_mem_open(inode, PTRACE_MODE_READ); |
| if (IS_ERR(mm)) |
| return PTR_ERR(mm); |
| file->private_data = mm; |
| return 0; |
| } |
| |
| static int pagemap_release(struct inode *inode, struct file *file) |
| { |
| struct mm_struct *mm = file->private_data; |
| |
| if (mm) |
| mmdrop(mm); |
| return 0; |
| } |
| |
| const struct file_operations proc_pagemap_operations = { |
| .llseek = mem_lseek, /* borrow this */ |
| .read = pagemap_read, |
| .open = pagemap_open, |
| .release = pagemap_release, |
| }; |
| #endif /* CONFIG_PROC_PAGE_MONITOR */ |
| |
| #ifdef CONFIG_NUMA |
| |
| struct numa_maps { |
| unsigned long pages; |
| unsigned long anon; |
| unsigned long active; |
| unsigned long writeback; |
| unsigned long mapcount_max; |
| unsigned long dirty; |
| unsigned long swapcache; |
| unsigned long node[MAX_NUMNODES]; |
| }; |
| |
| struct numa_maps_private { |
| struct proc_maps_private proc_maps; |
| struct numa_maps md; |
| }; |
| |
| static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty, |
| unsigned long nr_pages) |
| { |
| int count = page_mapcount(page); |
| |
| md->pages += nr_pages; |
| if (pte_dirty || PageDirty(page)) |
| md->dirty += nr_pages; |
| |
| if (PageSwapCache(page)) |
| md->swapcache += nr_pages; |
| |
| if (PageActive(page) || PageUnevictable(page)) |
| md->active += nr_pages; |
| |
| if (PageWriteback(page)) |
| md->writeback += nr_pages; |
| |
| if (PageAnon(page)) |
| md->anon += nr_pages; |
| |
| if (count > md->mapcount_max) |
| md->mapcount_max = count; |
| |
| md->node[page_to_nid(page)] += nr_pages; |
| } |
| |
| static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma, |
| unsigned long addr) |
| { |
| struct page *page; |
| int nid; |
| |
| if (!pte_present(pte)) |
| return NULL; |
| |
| page = vm_normal_page(vma, addr, pte); |
| if (!page || is_zone_device_page(page)) |
| return NULL; |
| |
| if (PageReserved(page)) |
| return NULL; |
| |
| nid = page_to_nid(page); |
| if (!node_isset(nid, node_states[N_MEMORY])) |
| return NULL; |
| |
| return page; |
| } |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| static struct page *can_gather_numa_stats_pmd(pmd_t pmd, |
| struct vm_area_struct *vma, |
| unsigned long addr) |
| { |
| struct page *page; |
| int nid; |
| |
| if (!pmd_present(pmd)) |
| return NULL; |
| |
| page = vm_normal_page_pmd(vma, addr, pmd); |
| if (!page) |
| return NULL; |
| |
| if (PageReserved(page)) |
| return NULL; |
| |
| nid = page_to_nid(page); |
| if (!node_isset(nid, node_states[N_MEMORY])) |
| return NULL; |
| |
| return page; |
| } |
| #endif |
| |
| static int gather_pte_stats(pmd_t *pmd, unsigned long addr, |
| unsigned long end, struct mm_walk *walk) |
| { |
| struct numa_maps *md = walk->private; |
| struct vm_area_struct *vma = walk->vma; |
| spinlock_t *ptl; |
| pte_t *orig_pte; |
| pte_t *pte; |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| ptl = pmd_trans_huge_lock(pmd, vma); |
| if (ptl) { |
| struct page *page; |
| |
| page = can_gather_numa_stats_pmd(*pmd, vma, addr); |
| if (page) |
| gather_stats(page, md, pmd_dirty(*pmd), |
| HPAGE_PMD_SIZE/PAGE_SIZE); |
| spin_unlock(ptl); |
| return 0; |
| } |
| |
| if (pmd_trans_unstable(pmd)) |
| return 0; |
| #endif |
| orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); |
| do { |
| struct page *page = can_gather_numa_stats(*pte, vma, addr); |
| if (!page) |
| continue; |
| gather_stats(page, md, pte_dirty(*pte), 1); |
| |
| } while (pte++, addr += PAGE_SIZE, addr != end); |
| pte_unmap_unlock(orig_pte, ptl); |
| cond_resched(); |
| return 0; |
| } |
| #ifdef CONFIG_HUGETLB_PAGE |
| static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, |
| unsigned long addr, unsigned long end, struct mm_walk *walk) |
| { |
| pte_t huge_pte = huge_ptep_get(pte); |
| struct numa_maps *md; |
| struct page *page; |
| |
| if (!pte_present(huge_pte)) |
| return 0; |
| |
| page = pte_page(huge_pte); |
| |
| md = walk->private; |
| gather_stats(page, md, pte_dirty(huge_pte), 1); |
| return 0; |
| } |
| |
| #else |
| static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, |
| unsigned long addr, unsigned long end, struct mm_walk *walk) |
| { |
| return 0; |
| } |
| #endif |
| |
| static const struct mm_walk_ops show_numa_ops = { |
| .hugetlb_entry = gather_hugetlb_stats, |
| .pmd_entry = gather_pte_stats, |
| }; |
| |
| /* |
| * Display pages allocated per node and memory policy via /proc. |
| */ |
| static int show_numa_map(struct seq_file *m, void *v) |
| { |
| struct numa_maps_private *numa_priv = m->private; |
| struct proc_maps_private *proc_priv = &numa_priv->proc_maps; |
| struct vm_area_struct *vma = v; |
| struct numa_maps *md = &numa_priv->md; |
| struct file *file = vma->vm_file; |
| struct mm_struct *mm = vma->vm_mm; |
| struct mempolicy *pol; |
| char buffer[64]; |
| int nid; |
| |
| if (!mm) |
| return 0; |
| |
| /* Ensure we start with an empty set of numa_maps statistics. */ |
| memset(md, 0, sizeof(*md)); |
| |
| pol = __get_vma_policy(vma, vma->vm_start); |
| if (pol) { |
| mpol_to_str(buffer, sizeof(buffer), pol); |
| mpol_cond_put(pol); |
| } else { |
| mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy); |
| } |
| |
| seq_printf(m, "%08lx %s", vma->vm_start, buffer); |
| |
| if (file) { |
| seq_puts(m, " file="); |
| seq_file_path(m, file, "\n\t= "); |
| } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) { |
| seq_puts(m, " heap"); |
| } else if (is_stack(vma)) { |
| seq_puts(m, " stack"); |
| } |
| |
| if (is_vm_hugetlb_page(vma)) |
| seq_puts(m, " huge"); |
| |
| /* mmap_lock is held by m_start */ |
| walk_page_vma(vma, &show_numa_ops, md); |
| |
| if (!md->pages) |
| goto out; |
| |
| if (md->anon) |
| seq_printf(m, " anon=%lu", md->anon); |
| |
| if (md->dirty) |
| seq_printf(m, " dirty=%lu", md->dirty); |
| |
| if (md->pages != md->anon && md->pages != md->dirty) |
| seq_printf(m, " mapped=%lu", md->pages); |
| |
| if (md->mapcount_max > 1) |
| seq_printf(m, " mapmax=%lu", md->mapcount_max); |
| |
| if (md->swapcache) |
| seq_printf(m, " swapcache=%lu", md->swapcache); |
| |
| if (md->active < md->pages && !is_vm_hugetlb_page(vma)) |
| seq_printf(m, " active=%lu", md->active); |
| |
| if (md->writeback) |
| seq_printf(m, " writeback=%lu", md->writeback); |
| |
| for_each_node_state(nid, N_MEMORY) |
| if (md->node[nid]) |
| seq_printf(m, " N%d=%lu", nid, md->node[nid]); |
| |
| seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10); |
| out: |
| seq_putc(m, '\n'); |
| return 0; |
| } |
| |
| static const struct seq_operations proc_pid_numa_maps_op = { |
| .start = m_start, |
| .next = m_next, |
| .stop = m_stop, |
| .show = show_numa_map, |
| }; |
| |
| static int pid_numa_maps_open(struct inode *inode, struct file *file) |
| { |
| return proc_maps_open(inode, file, &proc_pid_numa_maps_op, |
| sizeof(struct numa_maps_private)); |
| } |
| |
| const struct file_operations proc_pid_numa_maps_operations = { |
| .open = pid_numa_maps_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = proc_map_release, |
| }; |
| |
| #endif /* CONFIG_NUMA */ |