blob: 21be93bf006dd60438abb181003759f09f6aff53 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2019 Oracle. All Rights Reserved.
* Author: Darrick J. Wong <darrick.wong@oracle.com>
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
#include "xfs_btree.h"
#include "xfs_ialloc.h"
#include "xfs_ialloc_btree.h"
#include "xfs_iwalk.h"
#include "xfs_error.h"
#include "xfs_trace.h"
#include "xfs_icache.h"
#include "xfs_health.h"
#include "xfs_trans.h"
#include "xfs_pwork.h"
#include "xfs_ag.h"
/*
* Walking Inodes in the Filesystem
* ================================
*
* This iterator function walks a subset of filesystem inodes in increasing
* order from @startino until there are no more inodes. For each allocated
* inode it finds, it calls a walk function with the relevant inode number and
* a pointer to caller-provided data. The walk function can return the usual
* negative error code to stop the iteration; 0 to continue the iteration; or
* -ECANCELED to stop the iteration. This return value is returned to the
* caller.
*
* Internally, we allow the walk function to do anything, which means that we
* cannot maintain the inobt cursor or our lock on the AGI buffer. We
* therefore cache the inobt records in kernel memory and only call the walk
* function when our memory buffer is full. @nr_recs is the number of records
* that we've cached, and @sz_recs is the size of our cache.
*
* It is the responsibility of the walk function to ensure it accesses
* allocated inodes, as the inobt records may be stale by the time they are
* acted upon.
*/
struct xfs_iwalk_ag {
/* parallel work control data; will be null if single threaded */
struct xfs_pwork pwork;
struct xfs_mount *mp;
struct xfs_trans *tp;
struct xfs_perag *pag;
/* Where do we start the traversal? */
xfs_ino_t startino;
/* What was the last inode number we saw when iterating the inobt? */
xfs_ino_t lastino;
/* Array of inobt records we cache. */
struct xfs_inobt_rec_incore *recs;
/* Number of entries allocated for the @recs array. */
unsigned int sz_recs;
/* Number of entries in the @recs array that are in use. */
unsigned int nr_recs;
/* Inode walk function and data pointer. */
xfs_iwalk_fn iwalk_fn;
xfs_inobt_walk_fn inobt_walk_fn;
void *data;
/*
* Make it look like the inodes up to startino are free so that
* bulkstat can start its inode iteration at the correct place without
* needing to special case everywhere.
*/
unsigned int trim_start:1;
/* Skip empty inobt records? */
unsigned int skip_empty:1;
/* Drop the (hopefully empty) transaction when calling iwalk_fn. */
unsigned int drop_trans:1;
};
/*
* Loop over all clusters in a chunk for a given incore inode allocation btree
* record. Do a readahead if there are any allocated inodes in that cluster.
*/
STATIC void
xfs_iwalk_ichunk_ra(
struct xfs_mount *mp,
struct xfs_perag *pag,
struct xfs_inobt_rec_incore *irec)
{
struct xfs_ino_geometry *igeo = M_IGEO(mp);
xfs_agblock_t agbno;
struct blk_plug plug;
int i; /* inode chunk index */
agbno = XFS_AGINO_TO_AGBNO(mp, irec->ir_startino);
blk_start_plug(&plug);
for (i = 0; i < XFS_INODES_PER_CHUNK; i += igeo->inodes_per_cluster) {
xfs_inofree_t imask;
imask = xfs_inobt_maskn(i, igeo->inodes_per_cluster);
if (imask & ~irec->ir_free) {
xfs_btree_reada_bufs(mp, pag->pag_agno, agbno,
igeo->blocks_per_cluster,
&xfs_inode_buf_ops);
}
agbno += igeo->blocks_per_cluster;
}
blk_finish_plug(&plug);
}
/*
* Set the bits in @irec's free mask that correspond to the inodes before
* @agino so that we skip them. This is how we restart an inode walk that was
* interrupted in the middle of an inode record.
*/
STATIC void
xfs_iwalk_adjust_start(
xfs_agino_t agino, /* starting inode of chunk */
struct xfs_inobt_rec_incore *irec) /* btree record */
{
int idx; /* index into inode chunk */
int i;
idx = agino - irec->ir_startino;
/*
* We got a right chunk with some left inodes allocated at it. Grab
* the chunk record. Mark all the uninteresting inodes free because
* they're before our start point.
*/
for (i = 0; i < idx; i++) {
if (XFS_INOBT_MASK(i) & ~irec->ir_free)
irec->ir_freecount++;
}
irec->ir_free |= xfs_inobt_maskn(0, idx);
}
/* Allocate memory for a walk. */
STATIC int
xfs_iwalk_alloc(
struct xfs_iwalk_ag *iwag)
{
size_t size;
ASSERT(iwag->recs == NULL);
iwag->nr_recs = 0;
/* Allocate a prefetch buffer for inobt records. */
size = iwag->sz_recs * sizeof(struct xfs_inobt_rec_incore);
iwag->recs = kmem_alloc(size, KM_MAYFAIL);
if (iwag->recs == NULL)
return -ENOMEM;
return 0;
}
/* Free memory we allocated for a walk. */
STATIC void
xfs_iwalk_free(
struct xfs_iwalk_ag *iwag)
{
kmem_free(iwag->recs);
iwag->recs = NULL;
}
/* For each inuse inode in each cached inobt record, call our function. */
STATIC int
xfs_iwalk_ag_recs(
struct xfs_iwalk_ag *iwag)
{
struct xfs_mount *mp = iwag->mp;
struct xfs_trans *tp = iwag->tp;
struct xfs_perag *pag = iwag->pag;
xfs_ino_t ino;
unsigned int i, j;
int error;
for (i = 0; i < iwag->nr_recs; i++) {
struct xfs_inobt_rec_incore *irec = &iwag->recs[i];
trace_xfs_iwalk_ag_rec(mp, pag->pag_agno, irec);
if (xfs_pwork_want_abort(&iwag->pwork))
return 0;
if (iwag->inobt_walk_fn) {
error = iwag->inobt_walk_fn(mp, tp, pag->pag_agno, irec,
iwag->data);
if (error)
return error;
}
if (!iwag->iwalk_fn)
continue;
for (j = 0; j < XFS_INODES_PER_CHUNK; j++) {
if (xfs_pwork_want_abort(&iwag->pwork))
return 0;
/* Skip if this inode is free */
if (XFS_INOBT_MASK(j) & irec->ir_free)
continue;
/* Otherwise call our function. */
ino = XFS_AGINO_TO_INO(mp, pag->pag_agno,
irec->ir_startino + j);
error = iwag->iwalk_fn(mp, tp, ino, iwag->data);
if (error)
return error;
}
}
return 0;
}
/* Delete cursor and let go of AGI. */
static inline void
xfs_iwalk_del_inobt(
struct xfs_trans *tp,
struct xfs_btree_cur **curpp,
struct xfs_buf **agi_bpp,
int error)
{
if (*curpp) {
xfs_btree_del_cursor(*curpp, error);
*curpp = NULL;
}
if (*agi_bpp) {
xfs_trans_brelse(tp, *agi_bpp);
*agi_bpp = NULL;
}
}
/*
* Set ourselves up for walking inobt records starting from a given point in
* the filesystem.
*
* If caller passed in a nonzero start inode number, load the record from the
* inobt and make the record look like all the inodes before agino are free so
* that we skip them, and then move the cursor to the next inobt record. This
* is how we support starting an iwalk in the middle of an inode chunk.
*
* If the caller passed in a start number of zero, move the cursor to the first
* inobt record.
*
* The caller is responsible for cleaning up the cursor and buffer pointer
* regardless of the error status.
*/
STATIC int
xfs_iwalk_ag_start(
struct xfs_iwalk_ag *iwag,
xfs_agino_t agino,
struct xfs_btree_cur **curpp,
struct xfs_buf **agi_bpp,
int *has_more)
{
struct xfs_mount *mp = iwag->mp;
struct xfs_trans *tp = iwag->tp;
struct xfs_perag *pag = iwag->pag;
struct xfs_inobt_rec_incore *irec;
int error;
/* Set up a fresh cursor and empty the inobt cache. */
iwag->nr_recs = 0;
error = xfs_inobt_cur(pag, tp, XFS_BTNUM_INO, curpp, agi_bpp);
if (error)
return error;
/* Starting at the beginning of the AG? That's easy! */
if (agino == 0)
return xfs_inobt_lookup(*curpp, 0, XFS_LOOKUP_GE, has_more);
/*
* Otherwise, we have to grab the inobt record where we left off, stuff
* the record into our cache, and then see if there are more records.
* We require a lookup cache of at least two elements so that the
* caller doesn't have to deal with tearing down the cursor to walk the
* records.
*/
error = xfs_inobt_lookup(*curpp, agino, XFS_LOOKUP_LE, has_more);
if (error)
return error;
/*
* If the LE lookup at @agino yields no records, jump ahead to the
* inobt cursor increment to see if there are more records to process.
*/
if (!*has_more)
goto out_advance;
/* Get the record, should always work */
irec = &iwag->recs[iwag->nr_recs];
error = xfs_inobt_get_rec(*curpp, irec, has_more);
if (error)
return error;
if (XFS_IS_CORRUPT(mp, *has_more != 1))
return -EFSCORRUPTED;
iwag->lastino = XFS_AGINO_TO_INO(mp, pag->pag_agno,
irec->ir_startino + XFS_INODES_PER_CHUNK - 1);
/*
* If the LE lookup yielded an inobt record before the cursor position,
* skip it and see if there's another one after it.
*/
if (irec->ir_startino + XFS_INODES_PER_CHUNK <= agino)
goto out_advance;
/*
* If agino fell in the middle of the inode record, make it look like
* the inodes up to agino are free so that we don't return them again.
*/
if (iwag->trim_start)
xfs_iwalk_adjust_start(agino, irec);
/*
* The prefetch calculation is supposed to give us a large enough inobt
* record cache that grab_ichunk can stage a partial first record and
* the loop body can cache a record without having to check for cache
* space until after it reads an inobt record.
*/
iwag->nr_recs++;
ASSERT(iwag->nr_recs < iwag->sz_recs);
out_advance:
return xfs_btree_increment(*curpp, 0, has_more);
}
/*
* The inobt record cache is full, so preserve the inobt cursor state and
* run callbacks on the cached inobt records. When we're done, restore the
* cursor state to wherever the cursor would have been had the cache not been
* full (and therefore we could've just incremented the cursor) if *@has_more
* is true. On exit, *@has_more will indicate whether or not the caller should
* try for more inode records.
*/
STATIC int
xfs_iwalk_run_callbacks(
struct xfs_iwalk_ag *iwag,
struct xfs_btree_cur **curpp,
struct xfs_buf **agi_bpp,
int *has_more)
{
struct xfs_mount *mp = iwag->mp;
struct xfs_inobt_rec_incore *irec;
xfs_agino_t next_agino;
int error;
next_agino = XFS_INO_TO_AGINO(mp, iwag->lastino) + 1;
ASSERT(iwag->nr_recs > 0);
/* Delete cursor but remember the last record we cached... */
xfs_iwalk_del_inobt(iwag->tp, curpp, agi_bpp, 0);
irec = &iwag->recs[iwag->nr_recs - 1];
ASSERT(next_agino >= irec->ir_startino + XFS_INODES_PER_CHUNK);
if (iwag->drop_trans) {
xfs_trans_cancel(iwag->tp);
iwag->tp = NULL;
}
error = xfs_iwalk_ag_recs(iwag);
if (error)
return error;
/* ...empty the cache... */
iwag->nr_recs = 0;
if (!has_more)
return 0;
if (iwag->drop_trans) {
error = xfs_trans_alloc_empty(mp, &iwag->tp);
if (error)
return error;
}
/* ...and recreate the cursor just past where we left off. */
error = xfs_inobt_cur(iwag->pag, iwag->tp, XFS_BTNUM_INO, curpp,
agi_bpp);
if (error)
return error;
return xfs_inobt_lookup(*curpp, next_agino, XFS_LOOKUP_GE, has_more);
}
/* Walk all inodes in a single AG, from @iwag->startino to the end of the AG. */
STATIC int
xfs_iwalk_ag(
struct xfs_iwalk_ag *iwag)
{
struct xfs_mount *mp = iwag->mp;
struct xfs_perag *pag = iwag->pag;
struct xfs_buf *agi_bp = NULL;
struct xfs_btree_cur *cur = NULL;
xfs_agino_t agino;
int has_more;
int error = 0;
/* Set up our cursor at the right place in the inode btree. */
ASSERT(pag->pag_agno == XFS_INO_TO_AGNO(mp, iwag->startino));
agino = XFS_INO_TO_AGINO(mp, iwag->startino);
error = xfs_iwalk_ag_start(iwag, agino, &cur, &agi_bp, &has_more);
while (!error && has_more) {
struct xfs_inobt_rec_incore *irec;
xfs_ino_t rec_fsino;
cond_resched();
if (xfs_pwork_want_abort(&iwag->pwork))
goto out;
/* Fetch the inobt record. */
irec = &iwag->recs[iwag->nr_recs];
error = xfs_inobt_get_rec(cur, irec, &has_more);
if (error || !has_more)
break;
/* Make sure that we always move forward. */
rec_fsino = XFS_AGINO_TO_INO(mp, pag->pag_agno, irec->ir_startino);
if (iwag->lastino != NULLFSINO &&
XFS_IS_CORRUPT(mp, iwag->lastino >= rec_fsino)) {
error = -EFSCORRUPTED;
goto out;
}
iwag->lastino = rec_fsino + XFS_INODES_PER_CHUNK - 1;
/* No allocated inodes in this chunk; skip it. */
if (iwag->skip_empty && irec->ir_freecount == irec->ir_count) {
error = xfs_btree_increment(cur, 0, &has_more);
if (error)
break;
continue;
}
/*
* Start readahead for this inode chunk in anticipation of
* walking the inodes.
*/
if (iwag->iwalk_fn)
xfs_iwalk_ichunk_ra(mp, pag, irec);
/*
* If there's space in the buffer for more records, increment
* the btree cursor and grab more.
*/
if (++iwag->nr_recs < iwag->sz_recs) {
error = xfs_btree_increment(cur, 0, &has_more);
if (error || !has_more)
break;
continue;
}
/*
* Otherwise, we need to save cursor state and run the callback
* function on the cached records. The run_callbacks function
* is supposed to return a cursor pointing to the record where
* we would be if we had been able to increment like above.
*/
ASSERT(has_more);
error = xfs_iwalk_run_callbacks(iwag, &cur, &agi_bp, &has_more);
}
if (iwag->nr_recs == 0 || error)
goto out;
/* Walk the unprocessed records in the cache. */
error = xfs_iwalk_run_callbacks(iwag, &cur, &agi_bp, &has_more);
out:
xfs_iwalk_del_inobt(iwag->tp, &cur, &agi_bp, error);
return error;
}
/*
* We experimentally determined that the reduction in ioctl call overhead
* diminishes when userspace asks for more than 2048 inodes, so we'll cap
* prefetch at this point.
*/
#define IWALK_MAX_INODE_PREFETCH (2048U)
/*
* Given the number of inodes to prefetch, set the number of inobt records that
* we cache in memory, which controls the number of inodes we try to read
* ahead. Set the maximum if @inodes == 0.
*/
static inline unsigned int
xfs_iwalk_prefetch(
unsigned int inodes)
{
unsigned int inobt_records;
/*
* If the caller didn't tell us the number of inodes they wanted,
* assume the maximum prefetch possible for best performance.
* Otherwise, cap prefetch at that maximum so that we don't start an
* absurd amount of prefetch.
*/
if (inodes == 0)
inodes = IWALK_MAX_INODE_PREFETCH;
inodes = min(inodes, IWALK_MAX_INODE_PREFETCH);
/* Round the inode count up to a full chunk. */
inodes = round_up(inodes, XFS_INODES_PER_CHUNK);
/*
* In order to convert the number of inodes to prefetch into an
* estimate of the number of inobt records to cache, we require a
* conversion factor that reflects our expectations of the average
* loading factor of an inode chunk. Based on data gathered, most
* (but not all) filesystems manage to keep the inode chunks totally
* full, so we'll underestimate slightly so that our readahead will
* still deliver the performance we want on aging filesystems:
*
* inobt = inodes / (INODES_PER_CHUNK * (4 / 5));
*
* The funny math is to avoid integer division.
*/
inobt_records = (inodes * 5) / (4 * XFS_INODES_PER_CHUNK);
/*
* Allocate enough space to prefetch at least two inobt records so that
* we can cache both the record where the iwalk started and the next
* record. This simplifies the AG inode walk loop setup code.
*/
return max(inobt_records, 2U);
}
/*
* Walk all inodes in the filesystem starting from @startino. The @iwalk_fn
* will be called for each allocated inode, being passed the inode's number and
* @data. @max_prefetch controls how many inobt records' worth of inodes we
* try to readahead.
*/
int
xfs_iwalk(
struct xfs_mount *mp,
struct xfs_trans *tp,
xfs_ino_t startino,
unsigned int flags,
xfs_iwalk_fn iwalk_fn,
unsigned int inode_records,
void *data)
{
struct xfs_iwalk_ag iwag = {
.mp = mp,
.tp = tp,
.iwalk_fn = iwalk_fn,
.data = data,
.startino = startino,
.sz_recs = xfs_iwalk_prefetch(inode_records),
.trim_start = 1,
.skip_empty = 1,
.pwork = XFS_PWORK_SINGLE_THREADED,
.lastino = NULLFSINO,
};
struct xfs_perag *pag;
xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, startino);
int error;
ASSERT(agno < mp->m_sb.sb_agcount);
ASSERT(!(flags & ~XFS_IWALK_FLAGS_ALL));
error = xfs_iwalk_alloc(&iwag);
if (error)
return error;
for_each_perag_from(mp, agno, pag) {
iwag.pag = pag;
error = xfs_iwalk_ag(&iwag);
if (error)
break;
iwag.startino = XFS_AGINO_TO_INO(mp, agno + 1, 0);
if (flags & XFS_INOBT_WALK_SAME_AG)
break;
iwag.pag = NULL;
}
if (iwag.pag)
xfs_perag_rele(pag);
xfs_iwalk_free(&iwag);
return error;
}
/* Run per-thread iwalk work. */
static int
xfs_iwalk_ag_work(
struct xfs_mount *mp,
struct xfs_pwork *pwork)
{
struct xfs_iwalk_ag *iwag;
int error = 0;
iwag = container_of(pwork, struct xfs_iwalk_ag, pwork);
if (xfs_pwork_want_abort(pwork))
goto out;
error = xfs_iwalk_alloc(iwag);
if (error)
goto out;
/*
* Grab an empty transaction so that we can use its recursive buffer
* locking abilities to detect cycles in the inobt without deadlocking.
*/
error = xfs_trans_alloc_empty(mp, &iwag->tp);
if (error)
goto out;
iwag->drop_trans = 1;
error = xfs_iwalk_ag(iwag);
if (iwag->tp)
xfs_trans_cancel(iwag->tp);
xfs_iwalk_free(iwag);
out:
xfs_perag_put(iwag->pag);
kmem_free(iwag);
return error;
}
/*
* Walk all the inodes in the filesystem using multiple threads to process each
* AG.
*/
int
xfs_iwalk_threaded(
struct xfs_mount *mp,
xfs_ino_t startino,
unsigned int flags,
xfs_iwalk_fn iwalk_fn,
unsigned int inode_records,
bool polled,
void *data)
{
struct xfs_pwork_ctl pctl;
struct xfs_perag *pag;
xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, startino);
int error;
ASSERT(agno < mp->m_sb.sb_agcount);
ASSERT(!(flags & ~XFS_IWALK_FLAGS_ALL));
error = xfs_pwork_init(mp, &pctl, xfs_iwalk_ag_work, "xfs_iwalk");
if (error)
return error;
for_each_perag_from(mp, agno, pag) {
struct xfs_iwalk_ag *iwag;
if (xfs_pwork_ctl_want_abort(&pctl))
break;
iwag = kmem_zalloc(sizeof(struct xfs_iwalk_ag), 0);
iwag->mp = mp;
/*
* perag is being handed off to async work, so take another
* reference for the async work to release.
*/
atomic_inc(&pag->pag_ref);
iwag->pag = pag;
iwag->iwalk_fn = iwalk_fn;
iwag->data = data;
iwag->startino = startino;
iwag->sz_recs = xfs_iwalk_prefetch(inode_records);
iwag->lastino = NULLFSINO;
xfs_pwork_queue(&pctl, &iwag->pwork);
startino = XFS_AGINO_TO_INO(mp, pag->pag_agno + 1, 0);
if (flags & XFS_INOBT_WALK_SAME_AG)
break;
}
if (pag)
xfs_perag_rele(pag);
if (polled)
xfs_pwork_poll(&pctl);
return xfs_pwork_destroy(&pctl);
}
/*
* Allow callers to cache up to a page's worth of inobt records. This reflects
* the existing inumbers prefetching behavior. Since the inobt walk does not
* itself do anything with the inobt records, we can set a fairly high limit
* here.
*/
#define MAX_INOBT_WALK_PREFETCH \
(PAGE_SIZE / sizeof(struct xfs_inobt_rec_incore))
/*
* Given the number of records that the user wanted, set the number of inobt
* records that we buffer in memory. Set the maximum if @inobt_records == 0.
*/
static inline unsigned int
xfs_inobt_walk_prefetch(
unsigned int inobt_records)
{
/*
* If the caller didn't tell us the number of inobt records they
* wanted, assume the maximum prefetch possible for best performance.
*/
if (inobt_records == 0)
inobt_records = MAX_INOBT_WALK_PREFETCH;
/*
* Allocate enough space to prefetch at least two inobt records so that
* we can cache both the record where the iwalk started and the next
* record. This simplifies the AG inode walk loop setup code.
*/
inobt_records = max(inobt_records, 2U);
/*
* Cap prefetch at that maximum so that we don't use an absurd amount
* of memory.
*/
return min_t(unsigned int, inobt_records, MAX_INOBT_WALK_PREFETCH);
}
/*
* Walk all inode btree records in the filesystem starting from @startino. The
* @inobt_walk_fn will be called for each btree record, being passed the incore
* record and @data. @max_prefetch controls how many inobt records we try to
* cache ahead of time.
*/
int
xfs_inobt_walk(
struct xfs_mount *mp,
struct xfs_trans *tp,
xfs_ino_t startino,
unsigned int flags,
xfs_inobt_walk_fn inobt_walk_fn,
unsigned int inobt_records,
void *data)
{
struct xfs_iwalk_ag iwag = {
.mp = mp,
.tp = tp,
.inobt_walk_fn = inobt_walk_fn,
.data = data,
.startino = startino,
.sz_recs = xfs_inobt_walk_prefetch(inobt_records),
.pwork = XFS_PWORK_SINGLE_THREADED,
.lastino = NULLFSINO,
};
struct xfs_perag *pag;
xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, startino);
int error;
ASSERT(agno < mp->m_sb.sb_agcount);
ASSERT(!(flags & ~XFS_INOBT_WALK_FLAGS_ALL));
error = xfs_iwalk_alloc(&iwag);
if (error)
return error;
for_each_perag_from(mp, agno, pag) {
iwag.pag = pag;
error = xfs_iwalk_ag(&iwag);
if (error)
break;
iwag.startino = XFS_AGINO_TO_INO(mp, pag->pag_agno + 1, 0);
if (flags & XFS_INOBT_WALK_SAME_AG)
break;
iwag.pag = NULL;
}
if (iwag.pag)
xfs_perag_rele(pag);
xfs_iwalk_free(&iwag);
return error;
}