blob: 9729a69d3e2e3656b30fd7612b00d86914bfcaa9 [file] [log] [blame]
/*
* Copyright (c) 2008-2011 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <asm/unaligned.h>
#include "hw.h"
#include "ar9002_phy.h"
static void ath9k_get_txgain_index(struct ath_hw *ah,
struct ath9k_channel *chan,
struct calDataPerFreqOpLoop *rawDatasetOpLoop,
u8 *calChans, u16 availPiers, u8 *pwr, u8 *pcdacIdx)
{
u8 pcdac, i = 0;
u16 idxL = 0, idxR = 0, numPiers;
bool match;
struct chan_centers centers;
ath9k_hw_get_channel_centers(ah, chan, &centers);
for (numPiers = 0; numPiers < availPiers; numPiers++)
if (calChans[numPiers] == AR5416_BCHAN_UNUSED)
break;
match = ath9k_hw_get_lower_upper_index(
(u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
calChans, numPiers, &idxL, &idxR);
if (match) {
pcdac = rawDatasetOpLoop[idxL].pcdac[0][0];
*pwr = rawDatasetOpLoop[idxL].pwrPdg[0][0];
} else {
pcdac = rawDatasetOpLoop[idxR].pcdac[0][0];
*pwr = (rawDatasetOpLoop[idxL].pwrPdg[0][0] +
rawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
}
while (pcdac > ah->originalGain[i] &&
i < (AR9280_TX_GAIN_TABLE_SIZE - 1))
i++;
*pcdacIdx = i;
}
static void ath9k_olc_get_pdadcs(struct ath_hw *ah,
u32 initTxGain,
int txPower,
u8 *pPDADCValues)
{
u32 i;
u32 offset;
REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_0,
AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_1,
AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL7,
AR_PHY_TX_PWRCTRL_INIT_TX_GAIN, initTxGain);
offset = txPower;
for (i = 0; i < AR5416_NUM_PDADC_VALUES; i++)
if (i < offset)
pPDADCValues[i] = 0x0;
else
pPDADCValues[i] = 0xFF;
}
static int ath9k_hw_def_get_eeprom_ver(struct ath_hw *ah)
{
u16 version = le16_to_cpu(ah->eeprom.def.baseEepHeader.version);
return (version & AR5416_EEP_VER_MAJOR_MASK) >>
AR5416_EEP_VER_MAJOR_SHIFT;
}
static int ath9k_hw_def_get_eeprom_rev(struct ath_hw *ah)
{
u16 version = le16_to_cpu(ah->eeprom.def.baseEepHeader.version);
return version & AR5416_EEP_VER_MINOR_MASK;
}
#define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
static bool __ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
{
u16 *eep_data = (u16 *)&ah->eeprom.def;
int addr, ar5416_eep_start_loc = 0x100;
for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) {
if (!ath9k_hw_nvram_read(ah, addr + ar5416_eep_start_loc,
eep_data))
return false;
eep_data++;
}
return true;
}
static bool __ath9k_hw_usb_def_fill_eeprom(struct ath_hw *ah)
{
u16 *eep_data = (u16 *)&ah->eeprom.def;
ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
0x100, SIZE_EEPROM_DEF);
return true;
}
static bool ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
{
struct ath_common *common = ath9k_hw_common(ah);
if (!ath9k_hw_use_flash(ah)) {
ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n");
}
if (common->bus_ops->ath_bus_type == ATH_USB)
return __ath9k_hw_usb_def_fill_eeprom(ah);
else
return __ath9k_hw_def_fill_eeprom(ah);
}
#ifdef CONFIG_ATH9K_COMMON_DEBUG
static u32 ath9k_def_dump_modal_eeprom(char *buf, u32 len, u32 size,
struct modal_eep_header *modal_hdr)
{
PR_EEP("Chain0 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[0]));
PR_EEP("Chain1 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[1]));
PR_EEP("Chain2 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[2]));
PR_EEP("Ant. Common Control", le32_to_cpu(modal_hdr->antCtrlCommon));
PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
PR_EEP("Chain1 Ant. Gain", modal_hdr->antennaGainCh[1]);
PR_EEP("Chain2 Ant. Gain", modal_hdr->antennaGainCh[2]);
PR_EEP("Switch Settle", modal_hdr->switchSettling);
PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
PR_EEP("Chain1 TxRxAtten", modal_hdr->txRxAttenCh[1]);
PR_EEP("Chain2 TxRxAtten", modal_hdr->txRxAttenCh[2]);
PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
PR_EEP("Chain1 RxTxMargin", modal_hdr->rxTxMarginCh[1]);
PR_EEP("Chain2 RxTxMargin", modal_hdr->rxTxMarginCh[2]);
PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
PR_EEP("PGA Desired size", modal_hdr->pgaDesiredSize);
PR_EEP("Chain0 xlna Gain", modal_hdr->xlnaGainCh[0]);
PR_EEP("Chain1 xlna Gain", modal_hdr->xlnaGainCh[1]);
PR_EEP("Chain2 xlna Gain", modal_hdr->xlnaGainCh[2]);
PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
PR_EEP("CCA Threshold)", modal_hdr->thresh62);
PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
PR_EEP("Chain2 NF Threshold", modal_hdr->noiseFloorThreshCh[2]);
PR_EEP("xpdGain", modal_hdr->xpdGain);
PR_EEP("External PD", modal_hdr->xpd);
PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
PR_EEP("Chain1 I Coefficient", modal_hdr->iqCalICh[1]);
PR_EEP("Chain2 I Coefficient", modal_hdr->iqCalICh[2]);
PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
PR_EEP("Chain1 Q Coefficient", modal_hdr->iqCalQCh[1]);
PR_EEP("Chain2 Q Coefficient", modal_hdr->iqCalQCh[2]);
PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
PR_EEP("Chain0 OutputBias", modal_hdr->ob);
PR_EEP("Chain0 DriverBias", modal_hdr->db);
PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
PR_EEP("2chain pwr decrease", modal_hdr->pwrDecreaseFor2Chain);
PR_EEP("3chain pwr decrease", modal_hdr->pwrDecreaseFor3Chain);
PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
PR_EEP("Chain1 bswAtten", modal_hdr->bswAtten[1]);
PR_EEP("Chain2 bswAtten", modal_hdr->bswAtten[2]);
PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
PR_EEP("Chain1 bswMargin", modal_hdr->bswMargin[1]);
PR_EEP("Chain2 bswMargin", modal_hdr->bswMargin[2]);
PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
PR_EEP("Chain0 xatten2Db", modal_hdr->xatten2Db[0]);
PR_EEP("Chain1 xatten2Db", modal_hdr->xatten2Db[1]);
PR_EEP("Chain2 xatten2Db", modal_hdr->xatten2Db[2]);
PR_EEP("Chain0 xatten2Margin", modal_hdr->xatten2Margin[0]);
PR_EEP("Chain1 xatten2Margin", modal_hdr->xatten2Margin[1]);
PR_EEP("Chain2 xatten2Margin", modal_hdr->xatten2Margin[2]);
PR_EEP("Chain1 OutputBias", modal_hdr->ob_ch1);
PR_EEP("Chain1 DriverBias", modal_hdr->db_ch1);
PR_EEP("LNA Control", modal_hdr->lna_ctl);
PR_EEP("XPA Bias Freq0", le16_to_cpu(modal_hdr->xpaBiasLvlFreq[0]));
PR_EEP("XPA Bias Freq1", le16_to_cpu(modal_hdr->xpaBiasLvlFreq[1]));
PR_EEP("XPA Bias Freq2", le16_to_cpu(modal_hdr->xpaBiasLvlFreq[2]));
return len;
}
static u32 ath9k_hw_def_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
u8 *buf, u32 len, u32 size)
{
struct ar5416_eeprom_def *eep = &ah->eeprom.def;
struct base_eep_header *pBase = &eep->baseEepHeader;
u32 binBuildNumber = le32_to_cpu(pBase->binBuildNumber);
if (!dump_base_hdr) {
len += scnprintf(buf + len, size - len,
"%20s :\n", "2GHz modal Header");
len = ath9k_def_dump_modal_eeprom(buf, len, size,
&eep->modalHeader[0]);
len += scnprintf(buf + len, size - len,
"%20s :\n", "5GHz modal Header");
len = ath9k_def_dump_modal_eeprom(buf, len, size,
&eep->modalHeader[1]);
goto out;
}
PR_EEP("Major Version", ath9k_hw_def_get_eeprom_ver(ah));
PR_EEP("Minor Version", ath9k_hw_def_get_eeprom_rev(ah));
PR_EEP("Checksum", le16_to_cpu(pBase->checksum));
PR_EEP("Length", le16_to_cpu(pBase->length));
PR_EEP("RegDomain1", le16_to_cpu(pBase->regDmn[0]));
PR_EEP("RegDomain2", le16_to_cpu(pBase->regDmn[1]));
PR_EEP("TX Mask", pBase->txMask);
PR_EEP("RX Mask", pBase->rxMask);
PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
AR5416_OPFLAGS_N_2G_HT20));
PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
AR5416_OPFLAGS_N_2G_HT40));
PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
AR5416_OPFLAGS_N_5G_HT20));
PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
AR5416_OPFLAGS_N_5G_HT40));
PR_EEP("Big Endian", !!(pBase->eepMisc & AR5416_EEPMISC_BIG_ENDIAN));
PR_EEP("Cal Bin Major Ver", (binBuildNumber >> 24) & 0xFF);
PR_EEP("Cal Bin Minor Ver", (binBuildNumber >> 16) & 0xFF);
PR_EEP("Cal Bin Build", (binBuildNumber >> 8) & 0xFF);
PR_EEP("OpenLoop Power Ctrl", pBase->openLoopPwrCntl);
len += scnprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
pBase->macAddr);
out:
if (len > size)
len = size;
return len;
}
#else
static u32 ath9k_hw_def_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
u8 *buf, u32 len, u32 size)
{
return 0;
}
#endif
static int ath9k_hw_def_check_eeprom(struct ath_hw *ah)
{
struct ar5416_eeprom_def *eep = &ah->eeprom.def;
struct ath_common *common = ath9k_hw_common(ah);
u32 el;
bool need_swap;
int i, err;
err = ath9k_hw_nvram_swap_data(ah, &need_swap, SIZE_EEPROM_DEF);
if (err)
return err;
if (need_swap)
el = swab16((__force u16)eep->baseEepHeader.length);
else
el = le16_to_cpu(eep->baseEepHeader.length);
el = min(el / sizeof(u16), SIZE_EEPROM_DEF);
if (!ath9k_hw_nvram_validate_checksum(ah, el))
return -EINVAL;
if (need_swap) {
u32 j;
EEPROM_FIELD_SWAB16(eep->baseEepHeader.length);
EEPROM_FIELD_SWAB16(eep->baseEepHeader.checksum);
EEPROM_FIELD_SWAB16(eep->baseEepHeader.version);
EEPROM_FIELD_SWAB16(eep->baseEepHeader.regDmn[0]);
EEPROM_FIELD_SWAB16(eep->baseEepHeader.regDmn[1]);
EEPROM_FIELD_SWAB16(eep->baseEepHeader.rfSilent);
EEPROM_FIELD_SWAB16(eep->baseEepHeader.blueToothOptions);
EEPROM_FIELD_SWAB16(eep->baseEepHeader.deviceCap);
for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
struct modal_eep_header *pModal =
&eep->modalHeader[j];
EEPROM_FIELD_SWAB32(pModal->antCtrlCommon);
for (i = 0; i < AR5416_MAX_CHAINS; i++)
EEPROM_FIELD_SWAB32(pModal->antCtrlChain[i]);
for (i = 0; i < 3; i++)
EEPROM_FIELD_SWAB16(pModal->xpaBiasLvlFreq[i]);
for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++)
EEPROM_FIELD_SWAB16(
pModal->spurChans[i].spurChan);
}
}
if (!ath9k_hw_nvram_check_version(ah, AR5416_EEP_VER,
AR5416_EEP_NO_BACK_VER))
return -EINVAL;
/* Enable fixup for AR_AN_TOP2 if necessary */
if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
((le16_to_cpu(eep->baseEepHeader.version) & 0xff) > 0x0a) &&
(eep->baseEepHeader.pwdclkind == 0))
ah->need_an_top2_fixup = true;
if ((common->bus_ops->ath_bus_type == ATH_USB) &&
(AR_SREV_9280(ah)))
eep->modalHeader[0].xpaBiasLvl = 0;
return 0;
}
#undef SIZE_EEPROM_DEF
static u32 ath9k_hw_def_get_eeprom(struct ath_hw *ah,
enum eeprom_param param)
{
struct ar5416_eeprom_def *eep = &ah->eeprom.def;
struct modal_eep_header *pModal = eep->modalHeader;
struct base_eep_header *pBase = &eep->baseEepHeader;
int band = 0;
switch (param) {
case EEP_NFTHRESH_5:
return pModal[0].noiseFloorThreshCh[0];
case EEP_NFTHRESH_2:
return pModal[1].noiseFloorThreshCh[0];
case EEP_MAC_LSW:
return get_unaligned_be16(pBase->macAddr);
case EEP_MAC_MID:
return get_unaligned_be16(pBase->macAddr + 2);
case EEP_MAC_MSW:
return get_unaligned_be16(pBase->macAddr + 4);
case EEP_REG_0:
return le16_to_cpu(pBase->regDmn[0]);
case EEP_OP_CAP:
return le16_to_cpu(pBase->deviceCap);
case EEP_OP_MODE:
return pBase->opCapFlags;
case EEP_RF_SILENT:
return le16_to_cpu(pBase->rfSilent);
case EEP_OB_5:
return pModal[0].ob;
case EEP_DB_5:
return pModal[0].db;
case EEP_OB_2:
return pModal[1].ob;
case EEP_DB_2:
return pModal[1].db;
case EEP_TX_MASK:
return pBase->txMask;
case EEP_RX_MASK:
return pBase->rxMask;
case EEP_FSTCLK_5G:
return pBase->fastClk5g;
case EEP_RXGAIN_TYPE:
return pBase->rxGainType;
case EEP_TXGAIN_TYPE:
return pBase->txGainType;
case EEP_OL_PWRCTRL:
if (ath9k_hw_def_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_19)
return pBase->openLoopPwrCntl ? true : false;
else
return false;
case EEP_RC_CHAIN_MASK:
if (ath9k_hw_def_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_19)
return pBase->rcChainMask;
else
return 0;
case EEP_DAC_HPWR_5G:
if (ath9k_hw_def_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_20)
return pBase->dacHiPwrMode_5G;
else
return 0;
case EEP_FRAC_N_5G:
if (ath9k_hw_def_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_22)
return pBase->frac_n_5g;
else
return 0;
case EEP_PWR_TABLE_OFFSET:
if (ath9k_hw_def_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_21)
return pBase->pwr_table_offset;
else
return AR5416_PWR_TABLE_OFFSET_DB;
case EEP_ANTENNA_GAIN_2G:
band = 1;
fallthrough;
case EEP_ANTENNA_GAIN_5G:
return max_t(u8, max_t(u8,
pModal[band].antennaGainCh[0],
pModal[band].antennaGainCh[1]),
pModal[band].antennaGainCh[2]);
default:
return 0;
}
}
static void ath9k_hw_def_set_gain(struct ath_hw *ah,
struct modal_eep_header *pModal,
struct ar5416_eeprom_def *eep,
u8 txRxAttenLocal, int regChainOffset, int i)
{
ENABLE_REG_RMW_BUFFER(ah);
if (ath9k_hw_def_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_3) {
txRxAttenLocal = pModal->txRxAttenCh[i];
if (AR_SREV_9280_20_OR_LATER(ah)) {
REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
pModal->bswMargin[i]);
REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
AR_PHY_GAIN_2GHZ_XATTEN1_DB,
pModal->bswAtten[i]);
REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
pModal->xatten2Margin[i]);
REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
AR_PHY_GAIN_2GHZ_XATTEN2_DB,
pModal->xatten2Db[i]);
} else {
REG_RMW(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
SM(pModal-> bswMargin[i], AR_PHY_GAIN_2GHZ_BSW_MARGIN),
AR_PHY_GAIN_2GHZ_BSW_MARGIN);
REG_RMW(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
SM(pModal->bswAtten[i], AR_PHY_GAIN_2GHZ_BSW_ATTEN),
AR_PHY_GAIN_2GHZ_BSW_ATTEN);
}
}
if (AR_SREV_9280_20_OR_LATER(ah)) {
REG_RMW_FIELD(ah,
AR_PHY_RXGAIN + regChainOffset,
AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
REG_RMW_FIELD(ah,
AR_PHY_RXGAIN + regChainOffset,
AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
} else {
REG_RMW(ah, AR_PHY_RXGAIN + regChainOffset,
SM(txRxAttenLocal, AR_PHY_RXGAIN_TXRX_ATTEN),
AR_PHY_RXGAIN_TXRX_ATTEN);
REG_RMW(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN),
AR_PHY_GAIN_2GHZ_RXTX_MARGIN);
}
REG_RMW_BUFFER_FLUSH(ah);
}
static void ath9k_hw_def_set_board_values(struct ath_hw *ah,
struct ath9k_channel *chan)
{
struct modal_eep_header *pModal;
struct ar5416_eeprom_def *eep = &ah->eeprom.def;
int i, regChainOffset;
u8 txRxAttenLocal;
u32 antCtrlCommon;
pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
antCtrlCommon = le32_to_cpu(pModal->antCtrlCommon);
REG_WRITE(ah, AR_PHY_SWITCH_COM, antCtrlCommon & 0xffff);
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
if (AR_SREV_9280(ah)) {
if (i >= 2)
break;
}
if ((ah->rxchainmask == 5 || ah->txchainmask == 5) && (i != 0))
regChainOffset = (i == 1) ? 0x2000 : 0x1000;
else
regChainOffset = i * 0x1000;
REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
le32_to_cpu(pModal->antCtrlChain[i]));
REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
(REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
SM(pModal->iqCalICh[i],
AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
SM(pModal->iqCalQCh[i],
AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
ath9k_hw_def_set_gain(ah, pModal, eep, txRxAttenLocal,
regChainOffset, i);
}
if (AR_SREV_9280_20_OR_LATER(ah)) {
if (IS_CHAN_2GHZ(chan)) {
ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
AR_AN_RF2G1_CH0_OB,
AR_AN_RF2G1_CH0_OB_S,
pModal->ob);
ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
AR_AN_RF2G1_CH0_DB,
AR_AN_RF2G1_CH0_DB_S,
pModal->db);
ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
AR_AN_RF2G1_CH1_OB,
AR_AN_RF2G1_CH1_OB_S,
pModal->ob_ch1);
ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
AR_AN_RF2G1_CH1_DB,
AR_AN_RF2G1_CH1_DB_S,
pModal->db_ch1);
} else {
ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
AR_AN_RF5G1_CH0_OB5,
AR_AN_RF5G1_CH0_OB5_S,
pModal->ob);
ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
AR_AN_RF5G1_CH0_DB5,
AR_AN_RF5G1_CH0_DB5_S,
pModal->db);
ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
AR_AN_RF5G1_CH1_OB5,
AR_AN_RF5G1_CH1_OB5_S,
pModal->ob_ch1);
ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
AR_AN_RF5G1_CH1_DB5,
AR_AN_RF5G1_CH1_DB5_S,
pModal->db_ch1);
}
ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
AR_AN_TOP2_XPABIAS_LVL,
AR_AN_TOP2_XPABIAS_LVL_S,
pModal->xpaBiasLvl);
ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
AR_AN_TOP2_LOCALBIAS,
AR_AN_TOP2_LOCALBIAS_S,
!!(pModal->lna_ctl &
LNA_CTL_LOCAL_BIAS));
REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
!!(pModal->lna_ctl & LNA_CTL_FORCE_XPA));
}
REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
pModal->switchSettling);
REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
pModal->adcDesiredSize);
if (!AR_SREV_9280_20_OR_LATER(ah))
REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
AR_PHY_DESIRED_SZ_PGA,
pModal->pgaDesiredSize);
REG_WRITE(ah, AR_PHY_RF_CTL4,
SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
| SM(pModal->txEndToXpaOff,
AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
| SM(pModal->txFrameToXpaOn,
AR_PHY_RF_CTL4_FRAME_XPAA_ON)
| SM(pModal->txFrameToXpaOn,
AR_PHY_RF_CTL4_FRAME_XPAB_ON));
REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
pModal->txEndToRxOn);
if (AR_SREV_9280_20_OR_LATER(ah)) {
REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
pModal->thresh62);
REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
AR_PHY_EXT_CCA0_THRESH62,
pModal->thresh62);
} else {
REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
pModal->thresh62);
REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
AR_PHY_EXT_CCA_THRESH62,
pModal->thresh62);
}
if (ath9k_hw_def_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_2) {
REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
AR_PHY_TX_END_DATA_START,
pModal->txFrameToDataStart);
REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
pModal->txFrameToPaOn);
}
if (ath9k_hw_def_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_3) {
if (IS_CHAN_HT40(chan))
REG_RMW_FIELD(ah, AR_PHY_SETTLING,
AR_PHY_SETTLING_SWITCH,
pModal->swSettleHt40);
}
if (AR_SREV_9280_20_OR_LATER(ah) &&
ath9k_hw_def_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_19)
REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL,
AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK,
pModal->miscBits);
if (AR_SREV_9280_20(ah) &&
ath9k_hw_def_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_20) {
if (IS_CHAN_2GHZ(chan))
REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
eep->baseEepHeader.dacLpMode);
else if (eep->baseEepHeader.dacHiPwrMode_5G)
REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
else
REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
eep->baseEepHeader.dacLpMode);
udelay(100);
REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
pModal->miscBits >> 2);
REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9,
AR_PHY_TX_DESIRED_SCALE_CCK,
eep->baseEepHeader.desiredScaleCCK);
}
}
static void ath9k_hw_def_set_addac(struct ath_hw *ah,
struct ath9k_channel *chan)
{
#define XPA_LVL_FREQ(cnt) (le16_to_cpu(pModal->xpaBiasLvlFreq[cnt]))
struct modal_eep_header *pModal;
struct ar5416_eeprom_def *eep = &ah->eeprom.def;
u8 biaslevel;
if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
return;
if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
return;
pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
if (pModal->xpaBiasLvl != 0xff) {
biaslevel = pModal->xpaBiasLvl;
} else {
u16 resetFreqBin, freqBin, freqCount = 0;
struct chan_centers centers;
ath9k_hw_get_channel_centers(ah, chan, &centers);
resetFreqBin = FREQ2FBIN(centers.synth_center,
IS_CHAN_2GHZ(chan));
freqBin = XPA_LVL_FREQ(0) & 0xff;
biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14);
freqCount++;
while (freqCount < 3) {
if (XPA_LVL_FREQ(freqCount) == 0x0)
break;
freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
if (resetFreqBin >= freqBin)
biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14);
else
break;
freqCount++;
}
}
if (IS_CHAN_2GHZ(chan)) {
INI_RA(&ah->iniAddac, 7, 1) = (INI_RA(&ah->iniAddac,
7, 1) & (~0x18)) | biaslevel << 3;
} else {
INI_RA(&ah->iniAddac, 6, 1) = (INI_RA(&ah->iniAddac,
6, 1) & (~0xc0)) | biaslevel << 6;
}
#undef XPA_LVL_FREQ
}
static int16_t ath9k_change_gain_boundary_setting(struct ath_hw *ah,
u16 *gb,
u16 numXpdGain,
u16 pdGainOverlap_t2,
int8_t pwr_table_offset,
int16_t *diff)
{
u16 k;
/* Prior to writing the boundaries or the pdadc vs. power table
* into the chip registers the default starting point on the pdadc
* vs. power table needs to be checked and the curve boundaries
* adjusted accordingly
*/
if (AR_SREV_9280_20_OR_LATER(ah)) {
u16 gb_limit;
if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
/* get the difference in dB */
*diff = (u16)(pwr_table_offset - AR5416_PWR_TABLE_OFFSET_DB);
/* get the number of half dB steps */
*diff *= 2;
/* change the original gain boundary settings
* by the number of half dB steps
*/
for (k = 0; k < numXpdGain; k++)
gb[k] = (u16)(gb[k] - *diff);
}
/* Because of a hardware limitation, ensure the gain boundary
* is not larger than (63 - overlap)
*/
gb_limit = (u16)(MAX_RATE_POWER - pdGainOverlap_t2);
for (k = 0; k < numXpdGain; k++)
gb[k] = (u16)min(gb_limit, gb[k]);
}
return *diff;
}
static void ath9k_adjust_pdadc_values(struct ath_hw *ah,
int8_t pwr_table_offset,
int16_t diff,
u8 *pdadcValues)
{
#define NUM_PDADC(diff) (AR5416_NUM_PDADC_VALUES - diff)
u16 k;
/* If this is a board that has a pwrTableOffset that differs from
* the default AR5416_PWR_TABLE_OFFSET_DB then the start of the
* pdadc vs pwr table needs to be adjusted prior to writing to the
* chip.
*/
if (AR_SREV_9280_20_OR_LATER(ah)) {
if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
/* shift the table to start at the new offset */
for (k = 0; k < (u16)NUM_PDADC(diff); k++ ) {
pdadcValues[k] = pdadcValues[k + diff];
}
/* fill the back of the table */
for (k = (u16)NUM_PDADC(diff); k < NUM_PDADC(0); k++) {
pdadcValues[k] = pdadcValues[NUM_PDADC(diff)];
}
}
}
#undef NUM_PDADC
}
static void ath9k_hw_set_def_power_cal_table(struct ath_hw *ah,
struct ath9k_channel *chan)
{
#define SM_PD_GAIN(x) SM(0x38, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##x)
#define SM_PDGAIN_B(x, y) \
SM((gainBoundaries[x]), AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##y)
struct ath_common *common = ath9k_hw_common(ah);
struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
struct cal_data_per_freq *pRawDataset;
u8 *pCalBChans = NULL;
u16 pdGainOverlap_t2;
static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
u16 numPiers, i, j;
int16_t diff = 0;
u16 numXpdGain, xpdMask;
u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
u32 reg32, regOffset, regChainOffset;
int16_t modalIdx;
int8_t pwr_table_offset;
modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
pwr_table_offset = ah->eep_ops->get_eeprom(ah, EEP_PWR_TABLE_OFFSET);
if (ath9k_hw_def_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_2) {
pdGainOverlap_t2 =
pEepData->modalHeader[modalIdx].pdGainOverlap;
} else {
pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
}
if (IS_CHAN_2GHZ(chan)) {
pCalBChans = pEepData->calFreqPier2G;
numPiers = AR5416_NUM_2G_CAL_PIERS;
} else {
pCalBChans = pEepData->calFreqPier5G;
numPiers = AR5416_NUM_5G_CAL_PIERS;
}
if (OLC_FOR_AR9280_20_LATER && IS_CHAN_2GHZ(chan)) {
pRawDataset = pEepData->calPierData2G[0];
ah->initPDADC = ((struct calDataPerFreqOpLoop *)
pRawDataset)->vpdPdg[0][0];
}
numXpdGain = 0;
for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
if (numXpdGain >= AR5416_NUM_PD_GAINS)
break;
xpdGainValues[numXpdGain] =
(u16)(AR5416_PD_GAINS_IN_MASK - i);
numXpdGain++;
}
}
REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
(numXpdGain - 1) & 0x3);
REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
xpdGainValues[0]);
REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
xpdGainValues[1]);
REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
xpdGainValues[2]);
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
if ((ah->rxchainmask == 5 || ah->txchainmask == 5) &&
(i != 0)) {
regChainOffset = (i == 1) ? 0x2000 : 0x1000;
} else
regChainOffset = i * 0x1000;
if (pEepData->baseEepHeader.txMask & (1 << i)) {
if (IS_CHAN_2GHZ(chan))
pRawDataset = pEepData->calPierData2G[i];
else
pRawDataset = pEepData->calPierData5G[i];
if (OLC_FOR_AR9280_20_LATER) {
u8 pcdacIdx;
u8 txPower;
ath9k_get_txgain_index(ah, chan,
(struct calDataPerFreqOpLoop *)pRawDataset,
pCalBChans, numPiers, &txPower, &pcdacIdx);
ath9k_olc_get_pdadcs(ah, pcdacIdx,
txPower/2, pdadcValues);
} else {
ath9k_hw_get_gain_boundaries_pdadcs(ah,
chan, pRawDataset,
pCalBChans, numPiers,
pdGainOverlap_t2,
gainBoundaries,
pdadcValues,
numXpdGain);
}
diff = ath9k_change_gain_boundary_setting(ah,
gainBoundaries,
numXpdGain,
pdGainOverlap_t2,
pwr_table_offset,
&diff);
ENABLE_REGWRITE_BUFFER(ah);
if (OLC_FOR_AR9280_20_LATER) {
REG_WRITE(ah,
AR_PHY_TPCRG5 + regChainOffset,
SM(0x6,
AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
SM_PD_GAIN(1) | SM_PD_GAIN(2) |
SM_PD_GAIN(3) | SM_PD_GAIN(4));
} else {
REG_WRITE(ah,
AR_PHY_TPCRG5 + regChainOffset,
SM(pdGainOverlap_t2,
AR_PHY_TPCRG5_PD_GAIN_OVERLAP)|
SM_PDGAIN_B(0, 1) |
SM_PDGAIN_B(1, 2) |
SM_PDGAIN_B(2, 3) |
SM_PDGAIN_B(3, 4));
}
ath9k_adjust_pdadc_values(ah, pwr_table_offset,
diff, pdadcValues);
regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
for (j = 0; j < 32; j++) {
reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
REG_WRITE(ah, regOffset, reg32);
ath_dbg(common, EEPROM,
"PDADC (%d,%4x): %4.4x %8.8x\n",
i, regChainOffset, regOffset,
reg32);
ath_dbg(common, EEPROM,
"PDADC: Chain %d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d |\n",
i, 4 * j, pdadcValues[4 * j],
4 * j + 1, pdadcValues[4 * j + 1],
4 * j + 2, pdadcValues[4 * j + 2],
4 * j + 3, pdadcValues[4 * j + 3]);
regOffset += 4;
}
REGWRITE_BUFFER_FLUSH(ah);
}
}
#undef SM_PD_GAIN
#undef SM_PDGAIN_B
}
static void ath9k_hw_set_def_power_per_rate_table(struct ath_hw *ah,
struct ath9k_channel *chan,
int16_t *ratesArray,
u16 cfgCtl,
u16 antenna_reduction,
u16 powerLimit)
{
struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
u16 twiceMaxEdgePower;
int i;
struct cal_ctl_data *rep;
struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
0, { 0, 0, 0, 0}
};
struct cal_target_power_leg targetPowerOfdmExt = {
0, { 0, 0, 0, 0} }, targetPowerCckExt = {
0, { 0, 0, 0, 0 }
};
struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
0, {0, 0, 0, 0}
};
u16 scaledPower = 0, minCtlPower;
static const u16 ctlModesFor11a[] = {
CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
};
static const u16 ctlModesFor11g[] = {
CTL_11B, CTL_11G, CTL_2GHT20,
CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
};
u16 numCtlModes;
const u16 *pCtlMode;
u16 ctlMode, freq;
struct chan_centers centers;
int tx_chainmask;
u16 twiceMinEdgePower;
tx_chainmask = ah->txchainmask;
ath9k_hw_get_channel_centers(ah, chan, &centers);
scaledPower = ath9k_hw_get_scaled_power(ah, powerLimit,
antenna_reduction);
if (IS_CHAN_2GHZ(chan)) {
numCtlModes = ARRAY_SIZE(ctlModesFor11g) -
SUB_NUM_CTL_MODES_AT_2G_40;
pCtlMode = ctlModesFor11g;
ath9k_hw_get_legacy_target_powers(ah, chan,
pEepData->calTargetPowerCck,
AR5416_NUM_2G_CCK_TARGET_POWERS,
&targetPowerCck, 4, false);
ath9k_hw_get_legacy_target_powers(ah, chan,
pEepData->calTargetPower2G,
AR5416_NUM_2G_20_TARGET_POWERS,
&targetPowerOfdm, 4, false);
ath9k_hw_get_target_powers(ah, chan,
pEepData->calTargetPower2GHT20,
AR5416_NUM_2G_20_TARGET_POWERS,
&targetPowerHt20, 8, false);
if (IS_CHAN_HT40(chan)) {
numCtlModes = ARRAY_SIZE(ctlModesFor11g);
ath9k_hw_get_target_powers(ah, chan,
pEepData->calTargetPower2GHT40,
AR5416_NUM_2G_40_TARGET_POWERS,
&targetPowerHt40, 8, true);
ath9k_hw_get_legacy_target_powers(ah, chan,
pEepData->calTargetPowerCck,
AR5416_NUM_2G_CCK_TARGET_POWERS,
&targetPowerCckExt, 4, true);
ath9k_hw_get_legacy_target_powers(ah, chan,
pEepData->calTargetPower2G,
AR5416_NUM_2G_20_TARGET_POWERS,
&targetPowerOfdmExt, 4, true);
}
} else {
numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
SUB_NUM_CTL_MODES_AT_5G_40;
pCtlMode = ctlModesFor11a;
ath9k_hw_get_legacy_target_powers(ah, chan,
pEepData->calTargetPower5G,
AR5416_NUM_5G_20_TARGET_POWERS,
&targetPowerOfdm, 4, false);
ath9k_hw_get_target_powers(ah, chan,
pEepData->calTargetPower5GHT20,
AR5416_NUM_5G_20_TARGET_POWERS,
&targetPowerHt20, 8, false);
if (IS_CHAN_HT40(chan)) {
numCtlModes = ARRAY_SIZE(ctlModesFor11a);
ath9k_hw_get_target_powers(ah, chan,
pEepData->calTargetPower5GHT40,
AR5416_NUM_5G_40_TARGET_POWERS,
&targetPowerHt40, 8, true);
ath9k_hw_get_legacy_target_powers(ah, chan,
pEepData->calTargetPower5G,
AR5416_NUM_5G_20_TARGET_POWERS,
&targetPowerOfdmExt, 4, true);
}
}
for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
(pCtlMode[ctlMode] == CTL_2GHT40);
if (isHt40CtlMode)
freq = centers.synth_center;
else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
freq = centers.ext_center;
else
freq = centers.ctl_center;
twiceMaxEdgePower = MAX_RATE_POWER;
for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
if ((((cfgCtl & ~CTL_MODE_M) |
(pCtlMode[ctlMode] & CTL_MODE_M)) ==
pEepData->ctlIndex[i]) ||
(((cfgCtl & ~CTL_MODE_M) |
(pCtlMode[ctlMode] & CTL_MODE_M)) ==
((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
rep = &(pEepData->ctlData[i]);
twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1],
IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
twiceMaxEdgePower = min(twiceMaxEdgePower,
twiceMinEdgePower);
} else {
twiceMaxEdgePower = twiceMinEdgePower;
break;
}
}
}
minCtlPower = min(twiceMaxEdgePower, scaledPower);
switch (pCtlMode[ctlMode]) {
case CTL_11B:
for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
targetPowerCck.tPow2x[i] =
min((u16)targetPowerCck.tPow2x[i],
minCtlPower);
}
break;
case CTL_11A:
case CTL_11G:
for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
targetPowerOfdm.tPow2x[i] =
min((u16)targetPowerOfdm.tPow2x[i],
minCtlPower);
}
break;
case CTL_5GHT20:
case CTL_2GHT20:
for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
targetPowerHt20.tPow2x[i] =
min((u16)targetPowerHt20.tPow2x[i],
minCtlPower);
}
break;
case CTL_11B_EXT:
targetPowerCckExt.tPow2x[0] = min((u16)
targetPowerCckExt.tPow2x[0],
minCtlPower);
break;
case CTL_11A_EXT:
case CTL_11G_EXT:
targetPowerOfdmExt.tPow2x[0] = min((u16)
targetPowerOfdmExt.tPow2x[0],
minCtlPower);
break;
case CTL_5GHT40:
case CTL_2GHT40:
for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
targetPowerHt40.tPow2x[i] =
min((u16)targetPowerHt40.tPow2x[i],
minCtlPower);
}
break;
default:
break;
}
}
ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
ratesArray[rate18mb] = ratesArray[rate24mb] =
targetPowerOfdm.tPow2x[0];
ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
if (IS_CHAN_2GHZ(chan)) {
ratesArray[rate1l] = targetPowerCck.tPow2x[0];
ratesArray[rate2s] = ratesArray[rate2l] =
targetPowerCck.tPow2x[1];
ratesArray[rate5_5s] = ratesArray[rate5_5l] =
targetPowerCck.tPow2x[2];
ratesArray[rate11s] = ratesArray[rate11l] =
targetPowerCck.tPow2x[3];
}
if (IS_CHAN_HT40(chan)) {
for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
ratesArray[rateHt40_0 + i] =
targetPowerHt40.tPow2x[i];
}
ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
if (IS_CHAN_2GHZ(chan)) {
ratesArray[rateExtCck] =
targetPowerCckExt.tPow2x[0];
}
}
}
static void ath9k_hw_def_set_txpower(struct ath_hw *ah,
struct ath9k_channel *chan,
u16 cfgCtl,
u8 twiceAntennaReduction,
u8 powerLimit, bool test)
{
#define RT_AR_DELTA(x) (ratesArray[x] - cck_ofdm_delta)
struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
struct modal_eep_header *pModal =
&(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
int16_t ratesArray[Ar5416RateSize];
u8 ht40PowerIncForPdadc = 2;
int i, cck_ofdm_delta = 0;
memset(ratesArray, 0, sizeof(ratesArray));
if (ath9k_hw_def_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_2)
ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
ath9k_hw_set_def_power_per_rate_table(ah, chan,
&ratesArray[0], cfgCtl,
twiceAntennaReduction,
powerLimit);
ath9k_hw_set_def_power_cal_table(ah, chan);
regulatory->max_power_level = 0;
for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
if (ratesArray[i] > MAX_RATE_POWER)
ratesArray[i] = MAX_RATE_POWER;
if (ratesArray[i] > regulatory->max_power_level)
regulatory->max_power_level = ratesArray[i];
}
ath9k_hw_update_regulatory_maxpower(ah);
if (test)
return;
if (AR_SREV_9280_20_OR_LATER(ah)) {
for (i = 0; i < Ar5416RateSize; i++) {
int8_t pwr_table_offset;
pwr_table_offset = ah->eep_ops->get_eeprom(ah,
EEP_PWR_TABLE_OFFSET);
ratesArray[i] -= pwr_table_offset * 2;
}
}
ENABLE_REGWRITE_BUFFER(ah);
REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
ATH9K_POW_SM(ratesArray[rate18mb], 24)
| ATH9K_POW_SM(ratesArray[rate12mb], 16)
| ATH9K_POW_SM(ratesArray[rate9mb], 8)
| ATH9K_POW_SM(ratesArray[rate6mb], 0));
REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
ATH9K_POW_SM(ratesArray[rate54mb], 24)
| ATH9K_POW_SM(ratesArray[rate48mb], 16)
| ATH9K_POW_SM(ratesArray[rate36mb], 8)
| ATH9K_POW_SM(ratesArray[rate24mb], 0));
if (IS_CHAN_2GHZ(chan)) {
if (OLC_FOR_AR9280_20_LATER) {
cck_ofdm_delta = 2;
REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
ATH9K_POW_SM(RT_AR_DELTA(rate2s), 24)
| ATH9K_POW_SM(RT_AR_DELTA(rate2l), 16)
| ATH9K_POW_SM(ratesArray[rateXr], 8)
| ATH9K_POW_SM(RT_AR_DELTA(rate1l), 0));
REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
ATH9K_POW_SM(RT_AR_DELTA(rate11s), 24)
| ATH9K_POW_SM(RT_AR_DELTA(rate11l), 16)
| ATH9K_POW_SM(RT_AR_DELTA(rate5_5s), 8)
| ATH9K_POW_SM(RT_AR_DELTA(rate5_5l), 0));
} else {
REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
ATH9K_POW_SM(ratesArray[rate2s], 24)
| ATH9K_POW_SM(ratesArray[rate2l], 16)
| ATH9K_POW_SM(ratesArray[rateXr], 8)
| ATH9K_POW_SM(ratesArray[rate1l], 0));
REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
ATH9K_POW_SM(ratesArray[rate11s], 24)
| ATH9K_POW_SM(ratesArray[rate11l], 16)
| ATH9K_POW_SM(ratesArray[rate5_5s], 8)
| ATH9K_POW_SM(ratesArray[rate5_5l], 0));
}
}
REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
| ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
| ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
| ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
| ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
| ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
| ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
if (IS_CHAN_HT40(chan)) {
REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
ATH9K_POW_SM(ratesArray[rateHt40_3] +
ht40PowerIncForPdadc, 24)
| ATH9K_POW_SM(ratesArray[rateHt40_2] +
ht40PowerIncForPdadc, 16)
| ATH9K_POW_SM(ratesArray[rateHt40_1] +
ht40PowerIncForPdadc, 8)
| ATH9K_POW_SM(ratesArray[rateHt40_0] +
ht40PowerIncForPdadc, 0));
REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
ATH9K_POW_SM(ratesArray[rateHt40_7] +
ht40PowerIncForPdadc, 24)
| ATH9K_POW_SM(ratesArray[rateHt40_6] +
ht40PowerIncForPdadc, 16)
| ATH9K_POW_SM(ratesArray[rateHt40_5] +
ht40PowerIncForPdadc, 8)
| ATH9K_POW_SM(ratesArray[rateHt40_4] +
ht40PowerIncForPdadc, 0));
if (OLC_FOR_AR9280_20_LATER) {
REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
| ATH9K_POW_SM(RT_AR_DELTA(rateExtCck), 16)
| ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
| ATH9K_POW_SM(RT_AR_DELTA(rateDupCck), 0));
} else {
REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
| ATH9K_POW_SM(ratesArray[rateExtCck], 16)
| ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
| ATH9K_POW_SM(ratesArray[rateDupCck], 0));
}
}
REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
| ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0));
/* TPC initializations */
if (ah->tpc_enabled) {
int ht40_delta;
ht40_delta = (IS_CHAN_HT40(chan)) ? ht40PowerIncForPdadc : 0;
ar5008_hw_init_rate_txpower(ah, ratesArray, chan, ht40_delta);
/* Enable TPC */
REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX,
MAX_RATE_POWER | AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE);
} else {
/* Disable TPC */
REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER);
}
REGWRITE_BUFFER_FLUSH(ah);
}
static u16 ath9k_hw_def_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
{
__le16 spch = ah->eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan;
return le16_to_cpu(spch);
}
static u8 ath9k_hw_def_get_eepmisc(struct ath_hw *ah)
{
return ah->eeprom.def.baseEepHeader.eepMisc;
}
const struct eeprom_ops eep_def_ops = {
.check_eeprom = ath9k_hw_def_check_eeprom,
.get_eeprom = ath9k_hw_def_get_eeprom,
.fill_eeprom = ath9k_hw_def_fill_eeprom,
.dump_eeprom = ath9k_hw_def_dump_eeprom,
.get_eeprom_ver = ath9k_hw_def_get_eeprom_ver,
.get_eeprom_rev = ath9k_hw_def_get_eeprom_rev,
.set_board_values = ath9k_hw_def_set_board_values,
.set_addac = ath9k_hw_def_set_addac,
.set_txpower = ath9k_hw_def_set_txpower,
.get_spur_channel = ath9k_hw_def_get_spur_channel,
.get_eepmisc = ath9k_hw_def_get_eepmisc
};