| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2015 Broadcom |
| */ |
| |
| /** |
| * DOC: VC4 HVS module. |
| * |
| * The Hardware Video Scaler (HVS) is the piece of hardware that does |
| * translation, scaling, colorspace conversion, and compositing of |
| * pixels stored in framebuffers into a FIFO of pixels going out to |
| * the Pixel Valve (CRTC). It operates at the system clock rate (the |
| * system audio clock gate, specifically), which is much higher than |
| * the pixel clock rate. |
| * |
| * There is a single global HVS, with multiple output FIFOs that can |
| * be consumed by the PVs. This file just manages the resources for |
| * the HVS, while the vc4_crtc.c code actually drives HVS setup for |
| * each CRTC. |
| */ |
| |
| #include <linux/bitfield.h> |
| #include <linux/clk.h> |
| #include <linux/component.h> |
| #include <linux/platform_device.h> |
| |
| #include <drm/drm_atomic_helper.h> |
| #include <drm/drm_vblank.h> |
| |
| #include "vc4_drv.h" |
| #include "vc4_regs.h" |
| |
| static const struct debugfs_reg32 hvs_regs[] = { |
| VC4_REG32(SCALER_DISPCTRL), |
| VC4_REG32(SCALER_DISPSTAT), |
| VC4_REG32(SCALER_DISPID), |
| VC4_REG32(SCALER_DISPECTRL), |
| VC4_REG32(SCALER_DISPPROF), |
| VC4_REG32(SCALER_DISPDITHER), |
| VC4_REG32(SCALER_DISPEOLN), |
| VC4_REG32(SCALER_DISPLIST0), |
| VC4_REG32(SCALER_DISPLIST1), |
| VC4_REG32(SCALER_DISPLIST2), |
| VC4_REG32(SCALER_DISPLSTAT), |
| VC4_REG32(SCALER_DISPLACT0), |
| VC4_REG32(SCALER_DISPLACT1), |
| VC4_REG32(SCALER_DISPLACT2), |
| VC4_REG32(SCALER_DISPCTRL0), |
| VC4_REG32(SCALER_DISPBKGND0), |
| VC4_REG32(SCALER_DISPSTAT0), |
| VC4_REG32(SCALER_DISPBASE0), |
| VC4_REG32(SCALER_DISPCTRL1), |
| VC4_REG32(SCALER_DISPBKGND1), |
| VC4_REG32(SCALER_DISPSTAT1), |
| VC4_REG32(SCALER_DISPBASE1), |
| VC4_REG32(SCALER_DISPCTRL2), |
| VC4_REG32(SCALER_DISPBKGND2), |
| VC4_REG32(SCALER_DISPSTAT2), |
| VC4_REG32(SCALER_DISPBASE2), |
| VC4_REG32(SCALER_DISPALPHA2), |
| VC4_REG32(SCALER_OLEDOFFS), |
| VC4_REG32(SCALER_OLEDCOEF0), |
| VC4_REG32(SCALER_OLEDCOEF1), |
| VC4_REG32(SCALER_OLEDCOEF2), |
| }; |
| |
| void vc4_hvs_dump_state(struct drm_device *dev) |
| { |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| struct drm_printer p = drm_info_printer(&vc4->hvs->pdev->dev); |
| int i; |
| |
| drm_print_regset32(&p, &vc4->hvs->regset); |
| |
| DRM_INFO("HVS ctx:\n"); |
| for (i = 0; i < 64; i += 4) { |
| DRM_INFO("0x%08x (%s): 0x%08x 0x%08x 0x%08x 0x%08x\n", |
| i * 4, i < HVS_BOOTLOADER_DLIST_END ? "B" : "D", |
| readl((u32 __iomem *)vc4->hvs->dlist + i + 0), |
| readl((u32 __iomem *)vc4->hvs->dlist + i + 1), |
| readl((u32 __iomem *)vc4->hvs->dlist + i + 2), |
| readl((u32 __iomem *)vc4->hvs->dlist + i + 3)); |
| } |
| } |
| |
| static int vc4_hvs_debugfs_underrun(struct seq_file *m, void *data) |
| { |
| struct drm_info_node *node = m->private; |
| struct drm_device *dev = node->minor->dev; |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| struct drm_printer p = drm_seq_file_printer(m); |
| |
| drm_printf(&p, "%d\n", atomic_read(&vc4->underrun)); |
| |
| return 0; |
| } |
| |
| /* The filter kernel is composed of dwords each containing 3 9-bit |
| * signed integers packed next to each other. |
| */ |
| #define VC4_INT_TO_COEFF(coeff) (coeff & 0x1ff) |
| #define VC4_PPF_FILTER_WORD(c0, c1, c2) \ |
| ((((c0) & 0x1ff) << 0) | \ |
| (((c1) & 0x1ff) << 9) | \ |
| (((c2) & 0x1ff) << 18)) |
| |
| /* The whole filter kernel is arranged as the coefficients 0-16 going |
| * up, then a pad, then 17-31 going down and reversed within the |
| * dwords. This means that a linear phase kernel (where it's |
| * symmetrical at the boundary between 15 and 16) has the last 5 |
| * dwords matching the first 5, but reversed. |
| */ |
| #define VC4_LINEAR_PHASE_KERNEL(c0, c1, c2, c3, c4, c5, c6, c7, c8, \ |
| c9, c10, c11, c12, c13, c14, c15) \ |
| {VC4_PPF_FILTER_WORD(c0, c1, c2), \ |
| VC4_PPF_FILTER_WORD(c3, c4, c5), \ |
| VC4_PPF_FILTER_WORD(c6, c7, c8), \ |
| VC4_PPF_FILTER_WORD(c9, c10, c11), \ |
| VC4_PPF_FILTER_WORD(c12, c13, c14), \ |
| VC4_PPF_FILTER_WORD(c15, c15, 0)} |
| |
| #define VC4_LINEAR_PHASE_KERNEL_DWORDS 6 |
| #define VC4_KERNEL_DWORDS (VC4_LINEAR_PHASE_KERNEL_DWORDS * 2 - 1) |
| |
| /* Recommended B=1/3, C=1/3 filter choice from Mitchell/Netravali. |
| * http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf |
| */ |
| static const u32 mitchell_netravali_1_3_1_3_kernel[] = |
| VC4_LINEAR_PHASE_KERNEL(0, -2, -6, -8, -10, -8, -3, 2, 18, |
| 50, 82, 119, 155, 187, 213, 227); |
| |
| static int vc4_hvs_upload_linear_kernel(struct vc4_hvs *hvs, |
| struct drm_mm_node *space, |
| const u32 *kernel) |
| { |
| int ret, i; |
| u32 __iomem *dst_kernel; |
| |
| ret = drm_mm_insert_node(&hvs->dlist_mm, space, VC4_KERNEL_DWORDS); |
| if (ret) { |
| DRM_ERROR("Failed to allocate space for filter kernel: %d\n", |
| ret); |
| return ret; |
| } |
| |
| dst_kernel = hvs->dlist + space->start; |
| |
| for (i = 0; i < VC4_KERNEL_DWORDS; i++) { |
| if (i < VC4_LINEAR_PHASE_KERNEL_DWORDS) |
| writel(kernel[i], &dst_kernel[i]); |
| else { |
| writel(kernel[VC4_KERNEL_DWORDS - i - 1], |
| &dst_kernel[i]); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void vc4_hvs_lut_load(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); |
| struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); |
| u32 i; |
| |
| /* The LUT memory is laid out with each HVS channel in order, |
| * each of which takes 256 writes for R, 256 for G, then 256 |
| * for B. |
| */ |
| HVS_WRITE(SCALER_GAMADDR, |
| SCALER_GAMADDR_AUTOINC | |
| (vc4_state->assigned_channel * 3 * crtc->gamma_size)); |
| |
| for (i = 0; i < crtc->gamma_size; i++) |
| HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]); |
| for (i = 0; i < crtc->gamma_size; i++) |
| HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]); |
| for (i = 0; i < crtc->gamma_size; i++) |
| HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]); |
| } |
| |
| static void vc4_hvs_update_gamma_lut(struct drm_crtc *crtc) |
| { |
| struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); |
| struct drm_color_lut *lut = crtc->state->gamma_lut->data; |
| u32 length = drm_color_lut_size(crtc->state->gamma_lut); |
| u32 i; |
| |
| for (i = 0; i < length; i++) { |
| vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8); |
| vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8); |
| vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8); |
| } |
| |
| vc4_hvs_lut_load(crtc); |
| } |
| |
| int vc4_hvs_get_fifo_from_output(struct drm_device *dev, unsigned int output) |
| { |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| u32 reg; |
| int ret; |
| |
| if (!vc4->hvs->hvs5) |
| return output; |
| |
| switch (output) { |
| case 0: |
| return 0; |
| |
| case 1: |
| return 1; |
| |
| case 2: |
| reg = HVS_READ(SCALER_DISPECTRL); |
| ret = FIELD_GET(SCALER_DISPECTRL_DSP2_MUX_MASK, reg); |
| if (ret == 0) |
| return 2; |
| |
| return 0; |
| |
| case 3: |
| reg = HVS_READ(SCALER_DISPCTRL); |
| ret = FIELD_GET(SCALER_DISPCTRL_DSP3_MUX_MASK, reg); |
| if (ret == 3) |
| return -EPIPE; |
| |
| return ret; |
| |
| case 4: |
| reg = HVS_READ(SCALER_DISPEOLN); |
| ret = FIELD_GET(SCALER_DISPEOLN_DSP4_MUX_MASK, reg); |
| if (ret == 3) |
| return -EPIPE; |
| |
| return ret; |
| |
| case 5: |
| reg = HVS_READ(SCALER_DISPDITHER); |
| ret = FIELD_GET(SCALER_DISPDITHER_DSP5_MUX_MASK, reg); |
| if (ret == 3) |
| return -EPIPE; |
| |
| return ret; |
| |
| default: |
| return -EPIPE; |
| } |
| } |
| |
| static int vc4_hvs_init_channel(struct vc4_dev *vc4, struct drm_crtc *crtc, |
| struct drm_display_mode *mode, bool oneshot) |
| { |
| struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state); |
| unsigned int chan = vc4_crtc_state->assigned_channel; |
| bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; |
| u32 dispbkgndx; |
| u32 dispctrl; |
| |
| HVS_WRITE(SCALER_DISPCTRLX(chan), 0); |
| HVS_WRITE(SCALER_DISPCTRLX(chan), SCALER_DISPCTRLX_RESET); |
| HVS_WRITE(SCALER_DISPCTRLX(chan), 0); |
| |
| /* Turn on the scaler, which will wait for vstart to start |
| * compositing. |
| * When feeding the transposer, we should operate in oneshot |
| * mode. |
| */ |
| dispctrl = SCALER_DISPCTRLX_ENABLE; |
| |
| if (!vc4->hvs->hvs5) |
| dispctrl |= VC4_SET_FIELD(mode->hdisplay, |
| SCALER_DISPCTRLX_WIDTH) | |
| VC4_SET_FIELD(mode->vdisplay, |
| SCALER_DISPCTRLX_HEIGHT) | |
| (oneshot ? SCALER_DISPCTRLX_ONESHOT : 0); |
| else |
| dispctrl |= VC4_SET_FIELD(mode->hdisplay, |
| SCALER5_DISPCTRLX_WIDTH) | |
| VC4_SET_FIELD(mode->vdisplay, |
| SCALER5_DISPCTRLX_HEIGHT) | |
| (oneshot ? SCALER5_DISPCTRLX_ONESHOT : 0); |
| |
| HVS_WRITE(SCALER_DISPCTRLX(chan), dispctrl); |
| |
| dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(chan)); |
| dispbkgndx &= ~SCALER_DISPBKGND_GAMMA; |
| dispbkgndx &= ~SCALER_DISPBKGND_INTERLACE; |
| |
| HVS_WRITE(SCALER_DISPBKGNDX(chan), dispbkgndx | |
| SCALER_DISPBKGND_AUTOHS | |
| ((!vc4->hvs->hvs5) ? SCALER_DISPBKGND_GAMMA : 0) | |
| (interlace ? SCALER_DISPBKGND_INTERLACE : 0)); |
| |
| /* Reload the LUT, since the SRAMs would have been disabled if |
| * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once. |
| */ |
| vc4_hvs_lut_load(crtc); |
| |
| return 0; |
| } |
| |
| void vc4_hvs_stop_channel(struct drm_device *dev, unsigned int chan) |
| { |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| |
| if (HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_ENABLE) |
| return; |
| |
| HVS_WRITE(SCALER_DISPCTRLX(chan), |
| HVS_READ(SCALER_DISPCTRLX(chan)) | SCALER_DISPCTRLX_RESET); |
| HVS_WRITE(SCALER_DISPCTRLX(chan), |
| HVS_READ(SCALER_DISPCTRLX(chan)) & ~SCALER_DISPCTRLX_ENABLE); |
| |
| /* Once we leave, the scaler should be disabled and its fifo empty. */ |
| WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET); |
| |
| WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)), |
| SCALER_DISPSTATX_MODE) != |
| SCALER_DISPSTATX_MODE_DISABLED); |
| |
| WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) & |
| (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) != |
| SCALER_DISPSTATX_EMPTY); |
| } |
| |
| int vc4_hvs_atomic_check(struct drm_crtc *crtc, |
| struct drm_crtc_state *state) |
| { |
| struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); |
| struct drm_device *dev = crtc->dev; |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| struct drm_plane *plane; |
| unsigned long flags; |
| const struct drm_plane_state *plane_state; |
| u32 dlist_count = 0; |
| int ret; |
| |
| /* The pixelvalve can only feed one encoder (and encoders are |
| * 1:1 with connectors.) |
| */ |
| if (hweight32(state->connector_mask) > 1) |
| return -EINVAL; |
| |
| drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state) |
| dlist_count += vc4_plane_dlist_size(plane_state); |
| |
| dlist_count++; /* Account for SCALER_CTL0_END. */ |
| |
| spin_lock_irqsave(&vc4->hvs->mm_lock, flags); |
| ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm, |
| dlist_count); |
| spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| static void vc4_hvs_update_dlist(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); |
| struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); |
| |
| if (crtc->state->event) { |
| unsigned long flags; |
| |
| crtc->state->event->pipe = drm_crtc_index(crtc); |
| |
| WARN_ON(drm_crtc_vblank_get(crtc) != 0); |
| |
| spin_lock_irqsave(&dev->event_lock, flags); |
| |
| if (!vc4_state->feed_txp || vc4_state->txp_armed) { |
| vc4_crtc->event = crtc->state->event; |
| crtc->state->event = NULL; |
| } |
| |
| HVS_WRITE(SCALER_DISPLISTX(vc4_state->assigned_channel), |
| vc4_state->mm.start); |
| |
| spin_unlock_irqrestore(&dev->event_lock, flags); |
| } else { |
| HVS_WRITE(SCALER_DISPLISTX(vc4_state->assigned_channel), |
| vc4_state->mm.start); |
| } |
| } |
| |
| void vc4_hvs_atomic_enable(struct drm_crtc *crtc, |
| struct drm_crtc_state *old_state) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); |
| struct drm_display_mode *mode = &crtc->state->adjusted_mode; |
| bool oneshot = vc4_state->feed_txp; |
| |
| vc4_hvs_update_dlist(crtc); |
| vc4_hvs_init_channel(vc4, crtc, mode, oneshot); |
| } |
| |
| void vc4_hvs_atomic_disable(struct drm_crtc *crtc, |
| struct drm_crtc_state *old_state) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(old_state); |
| unsigned int chan = vc4_state->assigned_channel; |
| |
| vc4_hvs_stop_channel(dev, chan); |
| } |
| |
| void vc4_hvs_atomic_flush(struct drm_crtc *crtc, |
| struct drm_crtc_state *old_state) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); |
| struct drm_plane *plane; |
| struct vc4_plane_state *vc4_plane_state; |
| bool debug_dump_regs = false; |
| bool enable_bg_fill = false; |
| u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start; |
| u32 __iomem *dlist_next = dlist_start; |
| |
| if (debug_dump_regs) { |
| DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc)); |
| vc4_hvs_dump_state(dev); |
| } |
| |
| /* Copy all the active planes' dlist contents to the hardware dlist. */ |
| drm_atomic_crtc_for_each_plane(plane, crtc) { |
| /* Is this the first active plane? */ |
| if (dlist_next == dlist_start) { |
| /* We need to enable background fill when a plane |
| * could be alpha blending from the background, i.e. |
| * where no other plane is underneath. It suffices to |
| * consider the first active plane here since we set |
| * needs_bg_fill such that either the first plane |
| * already needs it or all planes on top blend from |
| * the first or a lower plane. |
| */ |
| vc4_plane_state = to_vc4_plane_state(plane->state); |
| enable_bg_fill = vc4_plane_state->needs_bg_fill; |
| } |
| |
| dlist_next += vc4_plane_write_dlist(plane, dlist_next); |
| } |
| |
| writel(SCALER_CTL0_END, dlist_next); |
| dlist_next++; |
| |
| WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size); |
| |
| if (enable_bg_fill) |
| /* This sets a black background color fill, as is the case |
| * with other DRM drivers. |
| */ |
| HVS_WRITE(SCALER_DISPBKGNDX(vc4_state->assigned_channel), |
| HVS_READ(SCALER_DISPBKGNDX(vc4_state->assigned_channel)) | |
| SCALER_DISPBKGND_FILL); |
| |
| /* Only update DISPLIST if the CRTC was already running and is not |
| * being disabled. |
| * vc4_crtc_enable() takes care of updating the dlist just after |
| * re-enabling VBLANK interrupts and before enabling the engine. |
| * If the CRTC is being disabled, there's no point in updating this |
| * information. |
| */ |
| if (crtc->state->active && old_state->active) |
| vc4_hvs_update_dlist(crtc); |
| |
| if (crtc->state->color_mgmt_changed) { |
| u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_state->assigned_channel)); |
| |
| if (crtc->state->gamma_lut) { |
| vc4_hvs_update_gamma_lut(crtc); |
| dispbkgndx |= SCALER_DISPBKGND_GAMMA; |
| } else { |
| /* Unsetting DISPBKGND_GAMMA skips the gamma lut step |
| * in hardware, which is the same as a linear lut that |
| * DRM expects us to use in absence of a user lut. |
| */ |
| dispbkgndx &= ~SCALER_DISPBKGND_GAMMA; |
| } |
| HVS_WRITE(SCALER_DISPBKGNDX(vc4_state->assigned_channel), dispbkgndx); |
| } |
| |
| if (debug_dump_regs) { |
| DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc)); |
| vc4_hvs_dump_state(dev); |
| } |
| } |
| |
| void vc4_hvs_mask_underrun(struct drm_device *dev, int channel) |
| { |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| u32 dispctrl = HVS_READ(SCALER_DISPCTRL); |
| |
| dispctrl &= ~SCALER_DISPCTRL_DSPEISLUR(channel); |
| |
| HVS_WRITE(SCALER_DISPCTRL, dispctrl); |
| } |
| |
| void vc4_hvs_unmask_underrun(struct drm_device *dev, int channel) |
| { |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| u32 dispctrl = HVS_READ(SCALER_DISPCTRL); |
| |
| dispctrl |= SCALER_DISPCTRL_DSPEISLUR(channel); |
| |
| HVS_WRITE(SCALER_DISPSTAT, |
| SCALER_DISPSTAT_EUFLOW(channel)); |
| HVS_WRITE(SCALER_DISPCTRL, dispctrl); |
| } |
| |
| static void vc4_hvs_report_underrun(struct drm_device *dev) |
| { |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| |
| atomic_inc(&vc4->underrun); |
| DRM_DEV_ERROR(dev->dev, "HVS underrun\n"); |
| } |
| |
| static irqreturn_t vc4_hvs_irq_handler(int irq, void *data) |
| { |
| struct drm_device *dev = data; |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| irqreturn_t irqret = IRQ_NONE; |
| int channel; |
| u32 control; |
| u32 status; |
| |
| status = HVS_READ(SCALER_DISPSTAT); |
| control = HVS_READ(SCALER_DISPCTRL); |
| |
| for (channel = 0; channel < SCALER_CHANNELS_COUNT; channel++) { |
| /* Interrupt masking is not always honored, so check it here. */ |
| if (status & SCALER_DISPSTAT_EUFLOW(channel) && |
| control & SCALER_DISPCTRL_DSPEISLUR(channel)) { |
| vc4_hvs_mask_underrun(dev, channel); |
| vc4_hvs_report_underrun(dev); |
| |
| irqret = IRQ_HANDLED; |
| } |
| } |
| |
| /* Clear every per-channel interrupt flag. */ |
| HVS_WRITE(SCALER_DISPSTAT, SCALER_DISPSTAT_IRQMASK(0) | |
| SCALER_DISPSTAT_IRQMASK(1) | |
| SCALER_DISPSTAT_IRQMASK(2)); |
| |
| return irqret; |
| } |
| |
| static int vc4_hvs_bind(struct device *dev, struct device *master, void *data) |
| { |
| struct platform_device *pdev = to_platform_device(dev); |
| struct drm_device *drm = dev_get_drvdata(master); |
| struct vc4_dev *vc4 = drm->dev_private; |
| struct vc4_hvs *hvs = NULL; |
| int ret; |
| u32 dispctrl; |
| |
| hvs = devm_kzalloc(&pdev->dev, sizeof(*hvs), GFP_KERNEL); |
| if (!hvs) |
| return -ENOMEM; |
| |
| hvs->pdev = pdev; |
| |
| if (of_device_is_compatible(pdev->dev.of_node, "brcm,bcm2711-hvs")) |
| hvs->hvs5 = true; |
| |
| hvs->regs = vc4_ioremap_regs(pdev, 0); |
| if (IS_ERR(hvs->regs)) |
| return PTR_ERR(hvs->regs); |
| |
| hvs->regset.base = hvs->regs; |
| hvs->regset.regs = hvs_regs; |
| hvs->regset.nregs = ARRAY_SIZE(hvs_regs); |
| |
| if (hvs->hvs5) { |
| hvs->core_clk = devm_clk_get(&pdev->dev, NULL); |
| if (IS_ERR(hvs->core_clk)) { |
| dev_err(&pdev->dev, "Couldn't get core clock\n"); |
| return PTR_ERR(hvs->core_clk); |
| } |
| |
| ret = clk_prepare_enable(hvs->core_clk); |
| if (ret) { |
| dev_err(&pdev->dev, "Couldn't enable the core clock\n"); |
| return ret; |
| } |
| } |
| |
| if (!hvs->hvs5) |
| hvs->dlist = hvs->regs + SCALER_DLIST_START; |
| else |
| hvs->dlist = hvs->regs + SCALER5_DLIST_START; |
| |
| spin_lock_init(&hvs->mm_lock); |
| |
| /* Set up the HVS display list memory manager. We never |
| * overwrite the setup from the bootloader (just 128b out of |
| * our 16K), since we don't want to scramble the screen when |
| * transitioning from the firmware's boot setup to runtime. |
| */ |
| drm_mm_init(&hvs->dlist_mm, |
| HVS_BOOTLOADER_DLIST_END, |
| (SCALER_DLIST_SIZE >> 2) - HVS_BOOTLOADER_DLIST_END); |
| |
| /* Set up the HVS LBM memory manager. We could have some more |
| * complicated data structure that allowed reuse of LBM areas |
| * between planes when they don't overlap on the screen, but |
| * for now we just allocate globally. |
| */ |
| if (!hvs->hvs5) |
| /* 96kB */ |
| drm_mm_init(&hvs->lbm_mm, 0, 96 * 1024); |
| else |
| /* 70k words */ |
| drm_mm_init(&hvs->lbm_mm, 0, 70 * 2 * 1024); |
| |
| /* Upload filter kernels. We only have the one for now, so we |
| * keep it around for the lifetime of the driver. |
| */ |
| ret = vc4_hvs_upload_linear_kernel(hvs, |
| &hvs->mitchell_netravali_filter, |
| mitchell_netravali_1_3_1_3_kernel); |
| if (ret) |
| return ret; |
| |
| vc4->hvs = hvs; |
| |
| dispctrl = HVS_READ(SCALER_DISPCTRL); |
| |
| dispctrl |= SCALER_DISPCTRL_ENABLE; |
| dispctrl |= SCALER_DISPCTRL_DISPEIRQ(0) | |
| SCALER_DISPCTRL_DISPEIRQ(1) | |
| SCALER_DISPCTRL_DISPEIRQ(2); |
| |
| /* Set DSP3 (PV1) to use HVS channel 2, which would otherwise |
| * be unused. |
| */ |
| dispctrl &= ~SCALER_DISPCTRL_DSP3_MUX_MASK; |
| dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ | |
| SCALER_DISPCTRL_SLVWREIRQ | |
| SCALER_DISPCTRL_SLVRDEIRQ | |
| SCALER_DISPCTRL_DSPEIEOF(0) | |
| SCALER_DISPCTRL_DSPEIEOF(1) | |
| SCALER_DISPCTRL_DSPEIEOF(2) | |
| SCALER_DISPCTRL_DSPEIEOLN(0) | |
| SCALER_DISPCTRL_DSPEIEOLN(1) | |
| SCALER_DISPCTRL_DSPEIEOLN(2) | |
| SCALER_DISPCTRL_DSPEISLUR(0) | |
| SCALER_DISPCTRL_DSPEISLUR(1) | |
| SCALER_DISPCTRL_DSPEISLUR(2) | |
| SCALER_DISPCTRL_SCLEIRQ); |
| dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX); |
| |
| HVS_WRITE(SCALER_DISPCTRL, dispctrl); |
| |
| ret = devm_request_irq(dev, platform_get_irq(pdev, 0), |
| vc4_hvs_irq_handler, 0, "vc4 hvs", drm); |
| if (ret) |
| return ret; |
| |
| vc4_debugfs_add_regset32(drm, "hvs_regs", &hvs->regset); |
| vc4_debugfs_add_file(drm, "hvs_underrun", vc4_hvs_debugfs_underrun, |
| NULL); |
| |
| return 0; |
| } |
| |
| static void vc4_hvs_unbind(struct device *dev, struct device *master, |
| void *data) |
| { |
| struct drm_device *drm = dev_get_drvdata(master); |
| struct vc4_dev *vc4 = drm->dev_private; |
| struct vc4_hvs *hvs = vc4->hvs; |
| |
| if (drm_mm_node_allocated(&vc4->hvs->mitchell_netravali_filter)) |
| drm_mm_remove_node(&vc4->hvs->mitchell_netravali_filter); |
| |
| drm_mm_takedown(&vc4->hvs->dlist_mm); |
| drm_mm_takedown(&vc4->hvs->lbm_mm); |
| |
| clk_disable_unprepare(hvs->core_clk); |
| |
| vc4->hvs = NULL; |
| } |
| |
| static const struct component_ops vc4_hvs_ops = { |
| .bind = vc4_hvs_bind, |
| .unbind = vc4_hvs_unbind, |
| }; |
| |
| static int vc4_hvs_dev_probe(struct platform_device *pdev) |
| { |
| return component_add(&pdev->dev, &vc4_hvs_ops); |
| } |
| |
| static int vc4_hvs_dev_remove(struct platform_device *pdev) |
| { |
| component_del(&pdev->dev, &vc4_hvs_ops); |
| return 0; |
| } |
| |
| static const struct of_device_id vc4_hvs_dt_match[] = { |
| { .compatible = "brcm,bcm2711-hvs" }, |
| { .compatible = "brcm,bcm2835-hvs" }, |
| {} |
| }; |
| |
| struct platform_driver vc4_hvs_driver = { |
| .probe = vc4_hvs_dev_probe, |
| .remove = vc4_hvs_dev_remove, |
| .driver = { |
| .name = "vc4_hvs", |
| .of_match_table = vc4_hvs_dt_match, |
| }, |
| }; |