blob: cc919a2ee870f09c00e579eeae95bccb98338321 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
* All Rights Reserved.
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_bit.h"
#include "xfs_mount.h"
#include "xfs_btree.h"
#include "xfs_btree_staging.h"
#include "xfs_ialloc.h"
#include "xfs_ialloc_btree.h"
#include "xfs_alloc.h"
#include "xfs_error.h"
#include "xfs_trace.h"
#include "xfs_trans.h"
#include "xfs_rmap.h"
STATIC int
xfs_inobt_get_minrecs(
struct xfs_btree_cur *cur,
int level)
{
return M_IGEO(cur->bc_mp)->inobt_mnr[level != 0];
}
STATIC struct xfs_btree_cur *
xfs_inobt_dup_cursor(
struct xfs_btree_cur *cur)
{
return xfs_inobt_init_cursor(cur->bc_mp, cur->bc_tp,
cur->bc_ag.agbp, cur->bc_ag.agno,
cur->bc_btnum);
}
STATIC void
xfs_inobt_set_root(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *nptr,
int inc) /* level change */
{
struct xfs_buf *agbp = cur->bc_ag.agbp;
struct xfs_agi *agi = agbp->b_addr;
agi->agi_root = nptr->s;
be32_add_cpu(&agi->agi_level, inc);
xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_ROOT | XFS_AGI_LEVEL);
}
STATIC void
xfs_finobt_set_root(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *nptr,
int inc) /* level change */
{
struct xfs_buf *agbp = cur->bc_ag.agbp;
struct xfs_agi *agi = agbp->b_addr;
agi->agi_free_root = nptr->s;
be32_add_cpu(&agi->agi_free_level, inc);
xfs_ialloc_log_agi(cur->bc_tp, agbp,
XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL);
}
/* Update the inode btree block counter for this btree. */
static inline void
xfs_inobt_mod_blockcount(
struct xfs_btree_cur *cur,
int howmuch)
{
struct xfs_buf *agbp = cur->bc_ag.agbp;
struct xfs_agi *agi = agbp->b_addr;
if (!xfs_sb_version_hasinobtcounts(&cur->bc_mp->m_sb))
return;
if (cur->bc_btnum == XFS_BTNUM_FINO)
be32_add_cpu(&agi->agi_fblocks, howmuch);
else if (cur->bc_btnum == XFS_BTNUM_INO)
be32_add_cpu(&agi->agi_iblocks, howmuch);
xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_IBLOCKS);
}
STATIC int
__xfs_inobt_alloc_block(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *start,
union xfs_btree_ptr *new,
int *stat,
enum xfs_ag_resv_type resv)
{
xfs_alloc_arg_t args; /* block allocation args */
int error; /* error return value */
xfs_agblock_t sbno = be32_to_cpu(start->s);
memset(&args, 0, sizeof(args));
args.tp = cur->bc_tp;
args.mp = cur->bc_mp;
args.oinfo = XFS_RMAP_OINFO_INOBT;
args.fsbno = XFS_AGB_TO_FSB(args.mp, cur->bc_ag.agno, sbno);
args.minlen = 1;
args.maxlen = 1;
args.prod = 1;
args.type = XFS_ALLOCTYPE_NEAR_BNO;
args.resv = resv;
error = xfs_alloc_vextent(&args);
if (error)
return error;
if (args.fsbno == NULLFSBLOCK) {
*stat = 0;
return 0;
}
ASSERT(args.len == 1);
new->s = cpu_to_be32(XFS_FSB_TO_AGBNO(args.mp, args.fsbno));
*stat = 1;
xfs_inobt_mod_blockcount(cur, 1);
return 0;
}
STATIC int
xfs_inobt_alloc_block(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *start,
union xfs_btree_ptr *new,
int *stat)
{
return __xfs_inobt_alloc_block(cur, start, new, stat, XFS_AG_RESV_NONE);
}
STATIC int
xfs_finobt_alloc_block(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *start,
union xfs_btree_ptr *new,
int *stat)
{
if (cur->bc_mp->m_finobt_nores)
return xfs_inobt_alloc_block(cur, start, new, stat);
return __xfs_inobt_alloc_block(cur, start, new, stat,
XFS_AG_RESV_METADATA);
}
STATIC int
__xfs_inobt_free_block(
struct xfs_btree_cur *cur,
struct xfs_buf *bp,
enum xfs_ag_resv_type resv)
{
xfs_inobt_mod_blockcount(cur, -1);
return xfs_free_extent(cur->bc_tp,
XFS_DADDR_TO_FSB(cur->bc_mp, XFS_BUF_ADDR(bp)), 1,
&XFS_RMAP_OINFO_INOBT, resv);
}
STATIC int
xfs_inobt_free_block(
struct xfs_btree_cur *cur,
struct xfs_buf *bp)
{
return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_NONE);
}
STATIC int
xfs_finobt_free_block(
struct xfs_btree_cur *cur,
struct xfs_buf *bp)
{
if (cur->bc_mp->m_finobt_nores)
return xfs_inobt_free_block(cur, bp);
return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_METADATA);
}
STATIC int
xfs_inobt_get_maxrecs(
struct xfs_btree_cur *cur,
int level)
{
return M_IGEO(cur->bc_mp)->inobt_mxr[level != 0];
}
STATIC void
xfs_inobt_init_key_from_rec(
union xfs_btree_key *key,
union xfs_btree_rec *rec)
{
key->inobt.ir_startino = rec->inobt.ir_startino;
}
STATIC void
xfs_inobt_init_high_key_from_rec(
union xfs_btree_key *key,
union xfs_btree_rec *rec)
{
__u32 x;
x = be32_to_cpu(rec->inobt.ir_startino);
x += XFS_INODES_PER_CHUNK - 1;
key->inobt.ir_startino = cpu_to_be32(x);
}
STATIC void
xfs_inobt_init_rec_from_cur(
struct xfs_btree_cur *cur,
union xfs_btree_rec *rec)
{
rec->inobt.ir_startino = cpu_to_be32(cur->bc_rec.i.ir_startino);
if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
rec->inobt.ir_u.sp.ir_holemask =
cpu_to_be16(cur->bc_rec.i.ir_holemask);
rec->inobt.ir_u.sp.ir_count = cur->bc_rec.i.ir_count;
rec->inobt.ir_u.sp.ir_freecount = cur->bc_rec.i.ir_freecount;
} else {
/* ir_holemask/ir_count not supported on-disk */
rec->inobt.ir_u.f.ir_freecount =
cpu_to_be32(cur->bc_rec.i.ir_freecount);
}
rec->inobt.ir_free = cpu_to_be64(cur->bc_rec.i.ir_free);
}
/*
* initial value of ptr for lookup
*/
STATIC void
xfs_inobt_init_ptr_from_cur(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *ptr)
{
struct xfs_agi *agi = cur->bc_ag.agbp->b_addr;
ASSERT(cur->bc_ag.agno == be32_to_cpu(agi->agi_seqno));
ptr->s = agi->agi_root;
}
STATIC void
xfs_finobt_init_ptr_from_cur(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *ptr)
{
struct xfs_agi *agi = cur->bc_ag.agbp->b_addr;
ASSERT(cur->bc_ag.agno == be32_to_cpu(agi->agi_seqno));
ptr->s = agi->agi_free_root;
}
STATIC int64_t
xfs_inobt_key_diff(
struct xfs_btree_cur *cur,
union xfs_btree_key *key)
{
return (int64_t)be32_to_cpu(key->inobt.ir_startino) -
cur->bc_rec.i.ir_startino;
}
STATIC int64_t
xfs_inobt_diff_two_keys(
struct xfs_btree_cur *cur,
union xfs_btree_key *k1,
union xfs_btree_key *k2)
{
return (int64_t)be32_to_cpu(k1->inobt.ir_startino) -
be32_to_cpu(k2->inobt.ir_startino);
}
static xfs_failaddr_t
xfs_inobt_verify(
struct xfs_buf *bp)
{
struct xfs_mount *mp = bp->b_mount;
struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
xfs_failaddr_t fa;
unsigned int level;
if (!xfs_verify_magic(bp, block->bb_magic))
return __this_address;
/*
* During growfs operations, we can't verify the exact owner as the
* perag is not fully initialised and hence not attached to the buffer.
*
* Similarly, during log recovery we will have a perag structure
* attached, but the agi information will not yet have been initialised
* from the on disk AGI. We don't currently use any of this information,
* but beware of the landmine (i.e. need to check pag->pagi_init) if we
* ever do.
*/
if (xfs_sb_version_hascrc(&mp->m_sb)) {
fa = xfs_btree_sblock_v5hdr_verify(bp);
if (fa)
return fa;
}
/* level verification */
level = be16_to_cpu(block->bb_level);
if (level >= M_IGEO(mp)->inobt_maxlevels)
return __this_address;
return xfs_btree_sblock_verify(bp,
M_IGEO(mp)->inobt_mxr[level != 0]);
}
static void
xfs_inobt_read_verify(
struct xfs_buf *bp)
{
xfs_failaddr_t fa;
if (!xfs_btree_sblock_verify_crc(bp))
xfs_verifier_error(bp, -EFSBADCRC, __this_address);
else {
fa = xfs_inobt_verify(bp);
if (fa)
xfs_verifier_error(bp, -EFSCORRUPTED, fa);
}
if (bp->b_error)
trace_xfs_btree_corrupt(bp, _RET_IP_);
}
static void
xfs_inobt_write_verify(
struct xfs_buf *bp)
{
xfs_failaddr_t fa;
fa = xfs_inobt_verify(bp);
if (fa) {
trace_xfs_btree_corrupt(bp, _RET_IP_);
xfs_verifier_error(bp, -EFSCORRUPTED, fa);
return;
}
xfs_btree_sblock_calc_crc(bp);
}
const struct xfs_buf_ops xfs_inobt_buf_ops = {
.name = "xfs_inobt",
.magic = { cpu_to_be32(XFS_IBT_MAGIC), cpu_to_be32(XFS_IBT_CRC_MAGIC) },
.verify_read = xfs_inobt_read_verify,
.verify_write = xfs_inobt_write_verify,
.verify_struct = xfs_inobt_verify,
};
const struct xfs_buf_ops xfs_finobt_buf_ops = {
.name = "xfs_finobt",
.magic = { cpu_to_be32(XFS_FIBT_MAGIC),
cpu_to_be32(XFS_FIBT_CRC_MAGIC) },
.verify_read = xfs_inobt_read_verify,
.verify_write = xfs_inobt_write_verify,
.verify_struct = xfs_inobt_verify,
};
STATIC int
xfs_inobt_keys_inorder(
struct xfs_btree_cur *cur,
union xfs_btree_key *k1,
union xfs_btree_key *k2)
{
return be32_to_cpu(k1->inobt.ir_startino) <
be32_to_cpu(k2->inobt.ir_startino);
}
STATIC int
xfs_inobt_recs_inorder(
struct xfs_btree_cur *cur,
union xfs_btree_rec *r1,
union xfs_btree_rec *r2)
{
return be32_to_cpu(r1->inobt.ir_startino) + XFS_INODES_PER_CHUNK <=
be32_to_cpu(r2->inobt.ir_startino);
}
static const struct xfs_btree_ops xfs_inobt_ops = {
.rec_len = sizeof(xfs_inobt_rec_t),
.key_len = sizeof(xfs_inobt_key_t),
.dup_cursor = xfs_inobt_dup_cursor,
.set_root = xfs_inobt_set_root,
.alloc_block = xfs_inobt_alloc_block,
.free_block = xfs_inobt_free_block,
.get_minrecs = xfs_inobt_get_minrecs,
.get_maxrecs = xfs_inobt_get_maxrecs,
.init_key_from_rec = xfs_inobt_init_key_from_rec,
.init_high_key_from_rec = xfs_inobt_init_high_key_from_rec,
.init_rec_from_cur = xfs_inobt_init_rec_from_cur,
.init_ptr_from_cur = xfs_inobt_init_ptr_from_cur,
.key_diff = xfs_inobt_key_diff,
.buf_ops = &xfs_inobt_buf_ops,
.diff_two_keys = xfs_inobt_diff_two_keys,
.keys_inorder = xfs_inobt_keys_inorder,
.recs_inorder = xfs_inobt_recs_inorder,
};
static const struct xfs_btree_ops xfs_finobt_ops = {
.rec_len = sizeof(xfs_inobt_rec_t),
.key_len = sizeof(xfs_inobt_key_t),
.dup_cursor = xfs_inobt_dup_cursor,
.set_root = xfs_finobt_set_root,
.alloc_block = xfs_finobt_alloc_block,
.free_block = xfs_finobt_free_block,
.get_minrecs = xfs_inobt_get_minrecs,
.get_maxrecs = xfs_inobt_get_maxrecs,
.init_key_from_rec = xfs_inobt_init_key_from_rec,
.init_high_key_from_rec = xfs_inobt_init_high_key_from_rec,
.init_rec_from_cur = xfs_inobt_init_rec_from_cur,
.init_ptr_from_cur = xfs_finobt_init_ptr_from_cur,
.key_diff = xfs_inobt_key_diff,
.buf_ops = &xfs_finobt_buf_ops,
.diff_two_keys = xfs_inobt_diff_two_keys,
.keys_inorder = xfs_inobt_keys_inorder,
.recs_inorder = xfs_inobt_recs_inorder,
};
/*
* Initialize a new inode btree cursor.
*/
static struct xfs_btree_cur *
xfs_inobt_init_common(
struct xfs_mount *mp, /* file system mount point */
struct xfs_trans *tp, /* transaction pointer */
xfs_agnumber_t agno, /* allocation group number */
xfs_btnum_t btnum) /* ialloc or free ino btree */
{
struct xfs_btree_cur *cur;
cur = kmem_cache_zalloc(xfs_btree_cur_zone, GFP_NOFS | __GFP_NOFAIL);
cur->bc_tp = tp;
cur->bc_mp = mp;
cur->bc_btnum = btnum;
if (btnum == XFS_BTNUM_INO) {
cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_ibt_2);
cur->bc_ops = &xfs_inobt_ops;
} else {
cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_fibt_2);
cur->bc_ops = &xfs_finobt_ops;
}
cur->bc_blocklog = mp->m_sb.sb_blocklog;
if (xfs_sb_version_hascrc(&mp->m_sb))
cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
cur->bc_ag.agno = agno;
return cur;
}
/* Create an inode btree cursor. */
struct xfs_btree_cur *
xfs_inobt_init_cursor(
struct xfs_mount *mp,
struct xfs_trans *tp,
struct xfs_buf *agbp,
xfs_agnumber_t agno,
xfs_btnum_t btnum)
{
struct xfs_btree_cur *cur;
struct xfs_agi *agi = agbp->b_addr;
cur = xfs_inobt_init_common(mp, tp, agno, btnum);
if (btnum == XFS_BTNUM_INO)
cur->bc_nlevels = be32_to_cpu(agi->agi_level);
else
cur->bc_nlevels = be32_to_cpu(agi->agi_free_level);
cur->bc_ag.agbp = agbp;
return cur;
}
/* Create an inode btree cursor with a fake root for staging. */
struct xfs_btree_cur *
xfs_inobt_stage_cursor(
struct xfs_mount *mp,
struct xbtree_afakeroot *afake,
xfs_agnumber_t agno,
xfs_btnum_t btnum)
{
struct xfs_btree_cur *cur;
cur = xfs_inobt_init_common(mp, NULL, agno, btnum);
xfs_btree_stage_afakeroot(cur, afake);
return cur;
}
/*
* Install a new inobt btree root. Caller is responsible for invalidating
* and freeing the old btree blocks.
*/
void
xfs_inobt_commit_staged_btree(
struct xfs_btree_cur *cur,
struct xfs_trans *tp,
struct xfs_buf *agbp)
{
struct xfs_agi *agi = agbp->b_addr;
struct xbtree_afakeroot *afake = cur->bc_ag.afake;
int fields;
ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
if (cur->bc_btnum == XFS_BTNUM_INO) {
fields = XFS_AGI_ROOT | XFS_AGI_LEVEL;
agi->agi_root = cpu_to_be32(afake->af_root);
agi->agi_level = cpu_to_be32(afake->af_levels);
if (xfs_sb_version_hasinobtcounts(&cur->bc_mp->m_sb)) {
agi->agi_iblocks = cpu_to_be32(afake->af_blocks);
fields |= XFS_AGI_IBLOCKS;
}
xfs_ialloc_log_agi(tp, agbp, fields);
xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_inobt_ops);
} else {
fields = XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL;
agi->agi_free_root = cpu_to_be32(afake->af_root);
agi->agi_free_level = cpu_to_be32(afake->af_levels);
if (xfs_sb_version_hasinobtcounts(&cur->bc_mp->m_sb)) {
agi->agi_fblocks = cpu_to_be32(afake->af_blocks);
fields |= XFS_AGI_IBLOCKS;
}
xfs_ialloc_log_agi(tp, agbp, fields);
xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_finobt_ops);
}
}
/*
* Calculate number of records in an inobt btree block.
*/
int
xfs_inobt_maxrecs(
struct xfs_mount *mp,
int blocklen,
int leaf)
{
blocklen -= XFS_INOBT_BLOCK_LEN(mp);
if (leaf)
return blocklen / sizeof(xfs_inobt_rec_t);
return blocklen / (sizeof(xfs_inobt_key_t) + sizeof(xfs_inobt_ptr_t));
}
/*
* Convert the inode record holemask to an inode allocation bitmap. The inode
* allocation bitmap is inode granularity and specifies whether an inode is
* physically allocated on disk (not whether the inode is considered allocated
* or free by the fs).
*
* A bit value of 1 means the inode is allocated, a value of 0 means it is free.
*/
uint64_t
xfs_inobt_irec_to_allocmask(
struct xfs_inobt_rec_incore *rec)
{
uint64_t bitmap = 0;
uint64_t inodespbit;
int nextbit;
uint allocbitmap;
/*
* The holemask has 16-bits for a 64 inode record. Therefore each
* holemask bit represents multiple inodes. Create a mask of bits to set
* in the allocmask for each holemask bit.
*/
inodespbit = (1 << XFS_INODES_PER_HOLEMASK_BIT) - 1;
/*
* Allocated inodes are represented by 0 bits in holemask. Invert the 0
* bits to 1 and convert to a uint so we can use xfs_next_bit(). Mask
* anything beyond the 16 holemask bits since this casts to a larger
* type.
*/
allocbitmap = ~rec->ir_holemask & ((1 << XFS_INOBT_HOLEMASK_BITS) - 1);
/*
* allocbitmap is the inverted holemask so every set bit represents
* allocated inodes. To expand from 16-bit holemask granularity to
* 64-bit (e.g., bit-per-inode), set inodespbit bits in the target
* bitmap for every holemask bit.
*/
nextbit = xfs_next_bit(&allocbitmap, 1, 0);
while (nextbit != -1) {
ASSERT(nextbit < (sizeof(rec->ir_holemask) * NBBY));
bitmap |= (inodespbit <<
(nextbit * XFS_INODES_PER_HOLEMASK_BIT));
nextbit = xfs_next_bit(&allocbitmap, 1, nextbit + 1);
}
return bitmap;
}
#if defined(DEBUG) || defined(XFS_WARN)
/*
* Verify that an in-core inode record has a valid inode count.
*/
int
xfs_inobt_rec_check_count(
struct xfs_mount *mp,
struct xfs_inobt_rec_incore *rec)
{
int inocount = 0;
int nextbit = 0;
uint64_t allocbmap;
int wordsz;
wordsz = sizeof(allocbmap) / sizeof(unsigned int);
allocbmap = xfs_inobt_irec_to_allocmask(rec);
nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit);
while (nextbit != -1) {
inocount++;
nextbit = xfs_next_bit((uint *) &allocbmap, wordsz,
nextbit + 1);
}
if (inocount != rec->ir_count)
return -EFSCORRUPTED;
return 0;
}
#endif /* DEBUG */
static xfs_extlen_t
xfs_inobt_max_size(
struct xfs_mount *mp,
xfs_agnumber_t agno)
{
xfs_agblock_t agblocks = xfs_ag_block_count(mp, agno);
/* Bail out if we're uninitialized, which can happen in mkfs. */
if (M_IGEO(mp)->inobt_mxr[0] == 0)
return 0;
/*
* The log is permanently allocated, so the space it occupies will
* never be available for the kinds of things that would require btree
* expansion. We therefore can pretend the space isn't there.
*/
if (mp->m_sb.sb_logstart &&
XFS_FSB_TO_AGNO(mp, mp->m_sb.sb_logstart) == agno)
agblocks -= mp->m_sb.sb_logblocks;
return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr,
(uint64_t)agblocks * mp->m_sb.sb_inopblock /
XFS_INODES_PER_CHUNK);
}
/* Read AGI and create inobt cursor. */
int
xfs_inobt_cur(
struct xfs_mount *mp,
struct xfs_trans *tp,
xfs_agnumber_t agno,
xfs_btnum_t which,
struct xfs_btree_cur **curpp,
struct xfs_buf **agi_bpp)
{
struct xfs_btree_cur *cur;
int error;
ASSERT(*agi_bpp == NULL);
ASSERT(*curpp == NULL);
error = xfs_ialloc_read_agi(mp, tp, agno, agi_bpp);
if (error)
return error;
cur = xfs_inobt_init_cursor(mp, tp, *agi_bpp, agno, which);
if (!cur) {
xfs_trans_brelse(tp, *agi_bpp);
*agi_bpp = NULL;
return -ENOMEM;
}
*curpp = cur;
return 0;
}
static int
xfs_inobt_count_blocks(
struct xfs_mount *mp,
struct xfs_trans *tp,
xfs_agnumber_t agno,
xfs_btnum_t btnum,
xfs_extlen_t *tree_blocks)
{
struct xfs_buf *agbp = NULL;
struct xfs_btree_cur *cur = NULL;
int error;
error = xfs_inobt_cur(mp, tp, agno, btnum, &cur, &agbp);
if (error)
return error;
error = xfs_btree_count_blocks(cur, tree_blocks);
xfs_btree_del_cursor(cur, error);
xfs_trans_brelse(tp, agbp);
return error;
}
/* Read finobt block count from AGI header. */
static int
xfs_finobt_read_blocks(
struct xfs_mount *mp,
struct xfs_trans *tp,
xfs_agnumber_t agno,
xfs_extlen_t *tree_blocks)
{
struct xfs_buf *agbp;
struct xfs_agi *agi;
int error;
error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
if (error)
return error;
agi = agbp->b_addr;
*tree_blocks = be32_to_cpu(agi->agi_fblocks);
xfs_trans_brelse(tp, agbp);
return 0;
}
/*
* Figure out how many blocks to reserve and how many are used by this btree.
*/
int
xfs_finobt_calc_reserves(
struct xfs_mount *mp,
struct xfs_trans *tp,
xfs_agnumber_t agno,
xfs_extlen_t *ask,
xfs_extlen_t *used)
{
xfs_extlen_t tree_len = 0;
int error;
if (!xfs_sb_version_hasfinobt(&mp->m_sb))
return 0;
if (xfs_sb_version_hasinobtcounts(&mp->m_sb))
error = xfs_finobt_read_blocks(mp, tp, agno, &tree_len);
else
error = xfs_inobt_count_blocks(mp, tp, agno, XFS_BTNUM_FINO,
&tree_len);
if (error)
return error;
*ask += xfs_inobt_max_size(mp, agno);
*used += tree_len;
return 0;
}
/* Calculate the inobt btree size for some records. */
xfs_extlen_t
xfs_iallocbt_calc_size(
struct xfs_mount *mp,
unsigned long long len)
{
return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr, len);
}