| /* |
| * netfilter module to limit the number of parallel tcp |
| * connections per IP address. |
| * (c) 2000 Gerd Knorr <kraxel@bytesex.org> |
| * Nov 2002: Martin Bene <martin.bene@icomedias.com>: |
| * only ignore TIME_WAIT or gone connections |
| * (C) CC Computer Consultants GmbH, 2007 |
| * |
| * based on ... |
| * |
| * Kernel module to match connection tracking information. |
| * GPL (C) 1999 Rusty Russell (rusty@rustcorp.com.au). |
| */ |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| #include <linux/in.h> |
| #include <linux/in6.h> |
| #include <linux/ip.h> |
| #include <linux/ipv6.h> |
| #include <linux/jhash.h> |
| #include <linux/slab.h> |
| #include <linux/list.h> |
| #include <linux/rbtree.h> |
| #include <linux/module.h> |
| #include <linux/random.h> |
| #include <linux/skbuff.h> |
| #include <linux/spinlock.h> |
| #include <linux/netfilter/nf_conntrack_tcp.h> |
| #include <linux/netfilter/x_tables.h> |
| #include <linux/netfilter/xt_connlimit.h> |
| #include <net/netfilter/nf_conntrack.h> |
| #include <net/netfilter/nf_conntrack_core.h> |
| #include <net/netfilter/nf_conntrack_tuple.h> |
| #include <net/netfilter/nf_conntrack_zones.h> |
| |
| #define CONNLIMIT_SLOTS 256U |
| |
| #ifdef CONFIG_LOCKDEP |
| #define CONNLIMIT_LOCK_SLOTS 8U |
| #else |
| #define CONNLIMIT_LOCK_SLOTS 256U |
| #endif |
| |
| #define CONNLIMIT_GC_MAX_NODES 8 |
| |
| /* we will save the tuples of all connections we care about */ |
| struct xt_connlimit_conn { |
| struct hlist_node node; |
| struct nf_conntrack_tuple tuple; |
| union nf_inet_addr addr; |
| }; |
| |
| struct xt_connlimit_rb { |
| struct rb_node node; |
| struct hlist_head hhead; /* connections/hosts in same subnet */ |
| union nf_inet_addr addr; /* search key */ |
| }; |
| |
| static spinlock_t xt_connlimit_locks[CONNLIMIT_LOCK_SLOTS] __cacheline_aligned_in_smp; |
| |
| struct xt_connlimit_data { |
| struct rb_root climit_root4[CONNLIMIT_SLOTS]; |
| struct rb_root climit_root6[CONNLIMIT_SLOTS]; |
| }; |
| |
| static u_int32_t connlimit_rnd __read_mostly; |
| static struct kmem_cache *connlimit_rb_cachep __read_mostly; |
| static struct kmem_cache *connlimit_conn_cachep __read_mostly; |
| |
| static inline unsigned int connlimit_iphash(__be32 addr) |
| { |
| return jhash_1word((__force __u32)addr, |
| connlimit_rnd) % CONNLIMIT_SLOTS; |
| } |
| |
| static inline unsigned int |
| connlimit_iphash6(const union nf_inet_addr *addr, |
| const union nf_inet_addr *mask) |
| { |
| union nf_inet_addr res; |
| unsigned int i; |
| |
| for (i = 0; i < ARRAY_SIZE(addr->ip6); ++i) |
| res.ip6[i] = addr->ip6[i] & mask->ip6[i]; |
| |
| return jhash2((u32 *)res.ip6, ARRAY_SIZE(res.ip6), |
| connlimit_rnd) % CONNLIMIT_SLOTS; |
| } |
| |
| static inline bool already_closed(const struct nf_conn *conn) |
| { |
| if (nf_ct_protonum(conn) == IPPROTO_TCP) |
| return conn->proto.tcp.state == TCP_CONNTRACK_TIME_WAIT || |
| conn->proto.tcp.state == TCP_CONNTRACK_CLOSE; |
| else |
| return 0; |
| } |
| |
| static int |
| same_source_net(const union nf_inet_addr *addr, |
| const union nf_inet_addr *mask, |
| const union nf_inet_addr *u3, u_int8_t family) |
| { |
| if (family == NFPROTO_IPV4) { |
| return ntohl(addr->ip & mask->ip) - |
| ntohl(u3->ip & mask->ip); |
| } else { |
| union nf_inet_addr lh, rh; |
| unsigned int i; |
| |
| for (i = 0; i < ARRAY_SIZE(addr->ip6); ++i) { |
| lh.ip6[i] = addr->ip6[i] & mask->ip6[i]; |
| rh.ip6[i] = u3->ip6[i] & mask->ip6[i]; |
| } |
| |
| return memcmp(&lh.ip6, &rh.ip6, sizeof(lh.ip6)); |
| } |
| } |
| |
| static bool add_hlist(struct hlist_head *head, |
| const struct nf_conntrack_tuple *tuple, |
| const union nf_inet_addr *addr) |
| { |
| struct xt_connlimit_conn *conn; |
| |
| conn = kmem_cache_alloc(connlimit_conn_cachep, GFP_ATOMIC); |
| if (conn == NULL) |
| return false; |
| conn->tuple = *tuple; |
| conn->addr = *addr; |
| hlist_add_head(&conn->node, head); |
| return true; |
| } |
| |
| static unsigned int check_hlist(struct net *net, |
| struct hlist_head *head, |
| const struct nf_conntrack_tuple *tuple, |
| const struct nf_conntrack_zone *zone, |
| bool *addit) |
| { |
| const struct nf_conntrack_tuple_hash *found; |
| struct xt_connlimit_conn *conn; |
| struct hlist_node *n; |
| struct nf_conn *found_ct; |
| unsigned int length = 0; |
| |
| *addit = true; |
| rcu_read_lock(); |
| |
| /* check the saved connections */ |
| hlist_for_each_entry_safe(conn, n, head, node) { |
| found = nf_conntrack_find_get(net, zone, &conn->tuple); |
| if (found == NULL) { |
| hlist_del(&conn->node); |
| kmem_cache_free(connlimit_conn_cachep, conn); |
| continue; |
| } |
| |
| found_ct = nf_ct_tuplehash_to_ctrack(found); |
| |
| if (nf_ct_tuple_equal(&conn->tuple, tuple)) { |
| /* |
| * Just to be sure we have it only once in the list. |
| * We should not see tuples twice unless someone hooks |
| * this into a table without "-p tcp --syn". |
| */ |
| *addit = false; |
| } else if (already_closed(found_ct)) { |
| /* |
| * we do not care about connections which are |
| * closed already -> ditch it |
| */ |
| nf_ct_put(found_ct); |
| hlist_del(&conn->node); |
| kmem_cache_free(connlimit_conn_cachep, conn); |
| continue; |
| } |
| |
| nf_ct_put(found_ct); |
| length++; |
| } |
| |
| rcu_read_unlock(); |
| |
| return length; |
| } |
| |
| static void tree_nodes_free(struct rb_root *root, |
| struct xt_connlimit_rb *gc_nodes[], |
| unsigned int gc_count) |
| { |
| struct xt_connlimit_rb *rbconn; |
| |
| while (gc_count) { |
| rbconn = gc_nodes[--gc_count]; |
| rb_erase(&rbconn->node, root); |
| kmem_cache_free(connlimit_rb_cachep, rbconn); |
| } |
| } |
| |
| static unsigned int |
| count_tree(struct net *net, struct rb_root *root, |
| const struct nf_conntrack_tuple *tuple, |
| const union nf_inet_addr *addr, const union nf_inet_addr *mask, |
| u8 family, const struct nf_conntrack_zone *zone) |
| { |
| struct xt_connlimit_rb *gc_nodes[CONNLIMIT_GC_MAX_NODES]; |
| struct rb_node **rbnode, *parent; |
| struct xt_connlimit_rb *rbconn; |
| struct xt_connlimit_conn *conn; |
| unsigned int gc_count; |
| bool no_gc = false; |
| |
| restart: |
| gc_count = 0; |
| parent = NULL; |
| rbnode = &(root->rb_node); |
| while (*rbnode) { |
| int diff; |
| bool addit; |
| |
| rbconn = container_of(*rbnode, struct xt_connlimit_rb, node); |
| |
| parent = *rbnode; |
| diff = same_source_net(addr, mask, &rbconn->addr, family); |
| if (diff < 0) { |
| rbnode = &((*rbnode)->rb_left); |
| } else if (diff > 0) { |
| rbnode = &((*rbnode)->rb_right); |
| } else { |
| /* same source network -> be counted! */ |
| unsigned int count; |
| count = check_hlist(net, &rbconn->hhead, tuple, zone, &addit); |
| |
| tree_nodes_free(root, gc_nodes, gc_count); |
| if (!addit) |
| return count; |
| |
| if (!add_hlist(&rbconn->hhead, tuple, addr)) |
| return 0; /* hotdrop */ |
| |
| return count + 1; |
| } |
| |
| if (no_gc || gc_count >= ARRAY_SIZE(gc_nodes)) |
| continue; |
| |
| /* only used for GC on hhead, retval and 'addit' ignored */ |
| check_hlist(net, &rbconn->hhead, tuple, zone, &addit); |
| if (hlist_empty(&rbconn->hhead)) |
| gc_nodes[gc_count++] = rbconn; |
| } |
| |
| if (gc_count) { |
| no_gc = true; |
| tree_nodes_free(root, gc_nodes, gc_count); |
| /* tree_node_free before new allocation permits |
| * allocator to re-use newly free'd object. |
| * |
| * This is a rare event; in most cases we will find |
| * existing node to re-use. (or gc_count is 0). |
| */ |
| goto restart; |
| } |
| |
| /* no match, need to insert new node */ |
| rbconn = kmem_cache_alloc(connlimit_rb_cachep, GFP_ATOMIC); |
| if (rbconn == NULL) |
| return 0; |
| |
| conn = kmem_cache_alloc(connlimit_conn_cachep, GFP_ATOMIC); |
| if (conn == NULL) { |
| kmem_cache_free(connlimit_rb_cachep, rbconn); |
| return 0; |
| } |
| |
| conn->tuple = *tuple; |
| conn->addr = *addr; |
| rbconn->addr = *addr; |
| |
| INIT_HLIST_HEAD(&rbconn->hhead); |
| hlist_add_head(&conn->node, &rbconn->hhead); |
| |
| rb_link_node(&rbconn->node, parent, rbnode); |
| rb_insert_color(&rbconn->node, root); |
| return 1; |
| } |
| |
| static int count_them(struct net *net, |
| struct xt_connlimit_data *data, |
| const struct nf_conntrack_tuple *tuple, |
| const union nf_inet_addr *addr, |
| const union nf_inet_addr *mask, |
| u_int8_t family, |
| const struct nf_conntrack_zone *zone) |
| { |
| struct rb_root *root; |
| int count; |
| u32 hash; |
| |
| if (family == NFPROTO_IPV6) { |
| hash = connlimit_iphash6(addr, mask); |
| root = &data->climit_root6[hash]; |
| } else { |
| hash = connlimit_iphash(addr->ip & mask->ip); |
| root = &data->climit_root4[hash]; |
| } |
| |
| spin_lock_bh(&xt_connlimit_locks[hash % CONNLIMIT_LOCK_SLOTS]); |
| |
| count = count_tree(net, root, tuple, addr, mask, family, zone); |
| |
| spin_unlock_bh(&xt_connlimit_locks[hash % CONNLIMIT_LOCK_SLOTS]); |
| |
| return count; |
| } |
| |
| static bool |
| connlimit_mt(const struct sk_buff *skb, struct xt_action_param *par) |
| { |
| struct net *net = xt_net(par); |
| const struct xt_connlimit_info *info = par->matchinfo; |
| union nf_inet_addr addr; |
| struct nf_conntrack_tuple tuple; |
| const struct nf_conntrack_tuple *tuple_ptr = &tuple; |
| const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt; |
| enum ip_conntrack_info ctinfo; |
| const struct nf_conn *ct; |
| unsigned int connections; |
| |
| ct = nf_ct_get(skb, &ctinfo); |
| if (ct != NULL) { |
| tuple_ptr = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple; |
| zone = nf_ct_zone(ct); |
| } else if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), |
| xt_family(par), net, &tuple)) { |
| goto hotdrop; |
| } |
| |
| if (xt_family(par) == NFPROTO_IPV6) { |
| const struct ipv6hdr *iph = ipv6_hdr(skb); |
| memcpy(&addr.ip6, (info->flags & XT_CONNLIMIT_DADDR) ? |
| &iph->daddr : &iph->saddr, sizeof(addr.ip6)); |
| } else { |
| const struct iphdr *iph = ip_hdr(skb); |
| addr.ip = (info->flags & XT_CONNLIMIT_DADDR) ? |
| iph->daddr : iph->saddr; |
| } |
| |
| connections = count_them(net, info->data, tuple_ptr, &addr, |
| &info->mask, xt_family(par), zone); |
| if (connections == 0) |
| /* kmalloc failed, drop it entirely */ |
| goto hotdrop; |
| |
| return (connections > info->limit) ^ |
| !!(info->flags & XT_CONNLIMIT_INVERT); |
| |
| hotdrop: |
| par->hotdrop = true; |
| return false; |
| } |
| |
| static int connlimit_mt_check(const struct xt_mtchk_param *par) |
| { |
| struct xt_connlimit_info *info = par->matchinfo; |
| unsigned int i; |
| int ret; |
| |
| net_get_random_once(&connlimit_rnd, sizeof(connlimit_rnd)); |
| |
| ret = nf_ct_netns_get(par->net, par->family); |
| if (ret < 0) { |
| pr_info("cannot load conntrack support for " |
| "address family %u\n", par->family); |
| return ret; |
| } |
| |
| /* init private data */ |
| info->data = kmalloc(sizeof(struct xt_connlimit_data), GFP_KERNEL); |
| if (info->data == NULL) { |
| nf_ct_netns_put(par->net, par->family); |
| return -ENOMEM; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(info->data->climit_root4); ++i) |
| info->data->climit_root4[i] = RB_ROOT; |
| for (i = 0; i < ARRAY_SIZE(info->data->climit_root6); ++i) |
| info->data->climit_root6[i] = RB_ROOT; |
| |
| return 0; |
| } |
| |
| static void destroy_tree(struct rb_root *r) |
| { |
| struct xt_connlimit_conn *conn; |
| struct xt_connlimit_rb *rbconn; |
| struct hlist_node *n; |
| struct rb_node *node; |
| |
| while ((node = rb_first(r)) != NULL) { |
| rbconn = container_of(node, struct xt_connlimit_rb, node); |
| |
| rb_erase(node, r); |
| |
| hlist_for_each_entry_safe(conn, n, &rbconn->hhead, node) |
| kmem_cache_free(connlimit_conn_cachep, conn); |
| |
| kmem_cache_free(connlimit_rb_cachep, rbconn); |
| } |
| } |
| |
| static void connlimit_mt_destroy(const struct xt_mtdtor_param *par) |
| { |
| const struct xt_connlimit_info *info = par->matchinfo; |
| unsigned int i; |
| |
| nf_ct_netns_put(par->net, par->family); |
| |
| for (i = 0; i < ARRAY_SIZE(info->data->climit_root4); ++i) |
| destroy_tree(&info->data->climit_root4[i]); |
| for (i = 0; i < ARRAY_SIZE(info->data->climit_root6); ++i) |
| destroy_tree(&info->data->climit_root6[i]); |
| |
| kfree(info->data); |
| } |
| |
| static struct xt_match connlimit_mt_reg __read_mostly = { |
| .name = "connlimit", |
| .revision = 1, |
| .family = NFPROTO_UNSPEC, |
| .checkentry = connlimit_mt_check, |
| .match = connlimit_mt, |
| .matchsize = sizeof(struct xt_connlimit_info), |
| .destroy = connlimit_mt_destroy, |
| .me = THIS_MODULE, |
| }; |
| |
| static int __init connlimit_mt_init(void) |
| { |
| int ret, i; |
| |
| BUILD_BUG_ON(CONNLIMIT_LOCK_SLOTS > CONNLIMIT_SLOTS); |
| BUILD_BUG_ON((CONNLIMIT_SLOTS % CONNLIMIT_LOCK_SLOTS) != 0); |
| |
| for (i = 0; i < CONNLIMIT_LOCK_SLOTS; ++i) |
| spin_lock_init(&xt_connlimit_locks[i]); |
| |
| connlimit_conn_cachep = kmem_cache_create("xt_connlimit_conn", |
| sizeof(struct xt_connlimit_conn), |
| 0, 0, NULL); |
| if (!connlimit_conn_cachep) |
| return -ENOMEM; |
| |
| connlimit_rb_cachep = kmem_cache_create("xt_connlimit_rb", |
| sizeof(struct xt_connlimit_rb), |
| 0, 0, NULL); |
| if (!connlimit_rb_cachep) { |
| kmem_cache_destroy(connlimit_conn_cachep); |
| return -ENOMEM; |
| } |
| ret = xt_register_match(&connlimit_mt_reg); |
| if (ret != 0) { |
| kmem_cache_destroy(connlimit_conn_cachep); |
| kmem_cache_destroy(connlimit_rb_cachep); |
| } |
| return ret; |
| } |
| |
| static void __exit connlimit_mt_exit(void) |
| { |
| xt_unregister_match(&connlimit_mt_reg); |
| kmem_cache_destroy(connlimit_conn_cachep); |
| kmem_cache_destroy(connlimit_rb_cachep); |
| } |
| |
| module_init(connlimit_mt_init); |
| module_exit(connlimit_mt_exit); |
| MODULE_AUTHOR("Jan Engelhardt <jengelh@medozas.de>"); |
| MODULE_DESCRIPTION("Xtables: Number of connections matching"); |
| MODULE_LICENSE("GPL"); |
| MODULE_ALIAS("ipt_connlimit"); |
| MODULE_ALIAS("ip6t_connlimit"); |