|  | /* | 
|  | * Read-Copy Update mechanism for mutual exclusion | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
|  | * | 
|  | * Copyright IBM Corporation, 2008 | 
|  | * | 
|  | * Authors: Dipankar Sarma <dipankar@in.ibm.com> | 
|  | *	    Manfred Spraul <manfred@colorfullife.com> | 
|  | *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version | 
|  | * | 
|  | * Based on the original work by Paul McKenney <paulmck@us.ibm.com> | 
|  | * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. | 
|  | * | 
|  | * For detailed explanation of Read-Copy Update mechanism see - | 
|  | *	Documentation/RCU | 
|  | */ | 
|  | #include <linux/types.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/nmi.h> | 
|  | #include <asm/atomic.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/completion.h> | 
|  | #include <linux/moduleparam.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/time.h> | 
|  |  | 
|  | #include "rcutree.h" | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_LOCK_ALLOC | 
|  | static struct lock_class_key rcu_lock_key; | 
|  | struct lockdep_map rcu_lock_map = | 
|  | STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key); | 
|  | EXPORT_SYMBOL_GPL(rcu_lock_map); | 
|  | #endif | 
|  |  | 
|  | /* Data structures. */ | 
|  |  | 
|  | #define RCU_STATE_INITIALIZER(name) { \ | 
|  | .level = { &name.node[0] }, \ | 
|  | .levelcnt = { \ | 
|  | NUM_RCU_LVL_0,  /* root of hierarchy. */ \ | 
|  | NUM_RCU_LVL_1, \ | 
|  | NUM_RCU_LVL_2, \ | 
|  | NUM_RCU_LVL_3, /* == MAX_RCU_LVLS */ \ | 
|  | }, \ | 
|  | .signaled = RCU_SIGNAL_INIT, \ | 
|  | .gpnum = -300, \ | 
|  | .completed = -300, \ | 
|  | .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \ | 
|  | .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \ | 
|  | .n_force_qs = 0, \ | 
|  | .n_force_qs_ngp = 0, \ | 
|  | } | 
|  |  | 
|  | struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state); | 
|  | DEFINE_PER_CPU(struct rcu_data, rcu_sched_data); | 
|  |  | 
|  | struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state); | 
|  | DEFINE_PER_CPU(struct rcu_data, rcu_bh_data); | 
|  |  | 
|  | extern long rcu_batches_completed_sched(void); | 
|  | static struct rcu_node *rcu_get_root(struct rcu_state *rsp); | 
|  | static void cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, | 
|  | struct rcu_node *rnp, unsigned long flags); | 
|  | static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags); | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp); | 
|  | #endif /* #ifdef CONFIG_HOTPLUG_CPU */ | 
|  | static void __rcu_process_callbacks(struct rcu_state *rsp, | 
|  | struct rcu_data *rdp); | 
|  | static void __call_rcu(struct rcu_head *head, | 
|  | void (*func)(struct rcu_head *rcu), | 
|  | struct rcu_state *rsp); | 
|  | static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp); | 
|  | static void __cpuinit rcu_init_percpu_data(int cpu, struct rcu_state *rsp, | 
|  | int preemptable); | 
|  |  | 
|  | #include "rcutree_plugin.h" | 
|  |  | 
|  | /* | 
|  | * Note a quiescent state.  Because we do not need to know | 
|  | * how many quiescent states passed, just if there was at least | 
|  | * one since the start of the grace period, this just sets a flag. | 
|  | */ | 
|  | void rcu_sched_qs(int cpu) | 
|  | { | 
|  | struct rcu_data *rdp; | 
|  |  | 
|  | rdp = &per_cpu(rcu_sched_data, cpu); | 
|  | rdp->passed_quiesc_completed = rdp->completed; | 
|  | barrier(); | 
|  | rdp->passed_quiesc = 1; | 
|  | rcu_preempt_note_context_switch(cpu); | 
|  | } | 
|  |  | 
|  | void rcu_bh_qs(int cpu) | 
|  | { | 
|  | struct rcu_data *rdp; | 
|  |  | 
|  | rdp = &per_cpu(rcu_bh_data, cpu); | 
|  | rdp->passed_quiesc_completed = rdp->completed; | 
|  | barrier(); | 
|  | rdp->passed_quiesc = 1; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NO_HZ | 
|  | DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = { | 
|  | .dynticks_nesting = 1, | 
|  | .dynticks = 1, | 
|  | }; | 
|  | #endif /* #ifdef CONFIG_NO_HZ */ | 
|  |  | 
|  | static int blimit = 10;		/* Maximum callbacks per softirq. */ | 
|  | static int qhimark = 10000;	/* If this many pending, ignore blimit. */ | 
|  | static int qlowmark = 100;	/* Once only this many pending, use blimit. */ | 
|  |  | 
|  | static void force_quiescent_state(struct rcu_state *rsp, int relaxed); | 
|  | static int rcu_pending(int cpu); | 
|  |  | 
|  | /* | 
|  | * Return the number of RCU-sched batches processed thus far for debug & stats. | 
|  | */ | 
|  | long rcu_batches_completed_sched(void) | 
|  | { | 
|  | return rcu_sched_state.completed; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rcu_batches_completed_sched); | 
|  |  | 
|  | /* | 
|  | * Return the number of RCU BH batches processed thus far for debug & stats. | 
|  | */ | 
|  | long rcu_batches_completed_bh(void) | 
|  | { | 
|  | return rcu_bh_state.completed; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rcu_batches_completed_bh); | 
|  |  | 
|  | /* | 
|  | * Does the CPU have callbacks ready to be invoked? | 
|  | */ | 
|  | static int | 
|  | cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp) | 
|  | { | 
|  | return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Does the current CPU require a yet-as-unscheduled grace period? | 
|  | */ | 
|  | static int | 
|  | cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp) | 
|  | { | 
|  | /* ACCESS_ONCE() because we are accessing outside of lock. */ | 
|  | return *rdp->nxttail[RCU_DONE_TAIL] && | 
|  | ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the root node of the specified rcu_state structure. | 
|  | */ | 
|  | static struct rcu_node *rcu_get_root(struct rcu_state *rsp) | 
|  | { | 
|  | return &rsp->node[0]; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | /* | 
|  | * If the specified CPU is offline, tell the caller that it is in | 
|  | * a quiescent state.  Otherwise, whack it with a reschedule IPI. | 
|  | * Grace periods can end up waiting on an offline CPU when that | 
|  | * CPU is in the process of coming online -- it will be added to the | 
|  | * rcu_node bitmasks before it actually makes it online.  The same thing | 
|  | * can happen while a CPU is in the process of coming online.  Because this | 
|  | * race is quite rare, we check for it after detecting that the grace | 
|  | * period has been delayed rather than checking each and every CPU | 
|  | * each and every time we start a new grace period. | 
|  | */ | 
|  | static int rcu_implicit_offline_qs(struct rcu_data *rdp) | 
|  | { | 
|  | /* | 
|  | * If the CPU is offline, it is in a quiescent state.  We can | 
|  | * trust its state not to change because interrupts are disabled. | 
|  | */ | 
|  | if (cpu_is_offline(rdp->cpu)) { | 
|  | rdp->offline_fqs++; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* If preemptable RCU, no point in sending reschedule IPI. */ | 
|  | if (rdp->preemptable) | 
|  | return 0; | 
|  |  | 
|  | /* The CPU is online, so send it a reschedule IPI. */ | 
|  | if (rdp->cpu != smp_processor_id()) | 
|  | smp_send_reschedule(rdp->cpu); | 
|  | else | 
|  | set_need_resched(); | 
|  | rdp->resched_ipi++; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif /* #ifdef CONFIG_SMP */ | 
|  |  | 
|  | #ifdef CONFIG_NO_HZ | 
|  |  | 
|  | /** | 
|  | * rcu_enter_nohz - inform RCU that current CPU is entering nohz | 
|  | * | 
|  | * Enter nohz mode, in other words, -leave- the mode in which RCU | 
|  | * read-side critical sections can occur.  (Though RCU read-side | 
|  | * critical sections can occur in irq handlers in nohz mode, a possibility | 
|  | * handled by rcu_irq_enter() and rcu_irq_exit()). | 
|  | */ | 
|  | void rcu_enter_nohz(void) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct rcu_dynticks *rdtp; | 
|  |  | 
|  | smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */ | 
|  | local_irq_save(flags); | 
|  | rdtp = &__get_cpu_var(rcu_dynticks); | 
|  | rdtp->dynticks++; | 
|  | rdtp->dynticks_nesting--; | 
|  | WARN_ON_ONCE(rdtp->dynticks & 0x1); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * rcu_exit_nohz - inform RCU that current CPU is leaving nohz | 
|  | * | 
|  | * Exit nohz mode, in other words, -enter- the mode in which RCU | 
|  | * read-side critical sections normally occur. | 
|  | */ | 
|  | void rcu_exit_nohz(void) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct rcu_dynticks *rdtp; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | rdtp = &__get_cpu_var(rcu_dynticks); | 
|  | rdtp->dynticks++; | 
|  | rdtp->dynticks_nesting++; | 
|  | WARN_ON_ONCE(!(rdtp->dynticks & 0x1)); | 
|  | local_irq_restore(flags); | 
|  | smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ | 
|  | } | 
|  |  | 
|  | /** | 
|  | * rcu_nmi_enter - inform RCU of entry to NMI context | 
|  | * | 
|  | * If the CPU was idle with dynamic ticks active, and there is no | 
|  | * irq handler running, this updates rdtp->dynticks_nmi to let the | 
|  | * RCU grace-period handling know that the CPU is active. | 
|  | */ | 
|  | void rcu_nmi_enter(void) | 
|  | { | 
|  | struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks); | 
|  |  | 
|  | if (rdtp->dynticks & 0x1) | 
|  | return; | 
|  | rdtp->dynticks_nmi++; | 
|  | WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1)); | 
|  | smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ | 
|  | } | 
|  |  | 
|  | /** | 
|  | * rcu_nmi_exit - inform RCU of exit from NMI context | 
|  | * | 
|  | * If the CPU was idle with dynamic ticks active, and there is no | 
|  | * irq handler running, this updates rdtp->dynticks_nmi to let the | 
|  | * RCU grace-period handling know that the CPU is no longer active. | 
|  | */ | 
|  | void rcu_nmi_exit(void) | 
|  | { | 
|  | struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks); | 
|  |  | 
|  | if (rdtp->dynticks & 0x1) | 
|  | return; | 
|  | smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */ | 
|  | rdtp->dynticks_nmi++; | 
|  | WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * rcu_irq_enter - inform RCU of entry to hard irq context | 
|  | * | 
|  | * If the CPU was idle with dynamic ticks active, this updates the | 
|  | * rdtp->dynticks to let the RCU handling know that the CPU is active. | 
|  | */ | 
|  | void rcu_irq_enter(void) | 
|  | { | 
|  | struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks); | 
|  |  | 
|  | if (rdtp->dynticks_nesting++) | 
|  | return; | 
|  | rdtp->dynticks++; | 
|  | WARN_ON_ONCE(!(rdtp->dynticks & 0x1)); | 
|  | smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ | 
|  | } | 
|  |  | 
|  | /** | 
|  | * rcu_irq_exit - inform RCU of exit from hard irq context | 
|  | * | 
|  | * If the CPU was idle with dynamic ticks active, update the rdp->dynticks | 
|  | * to put let the RCU handling be aware that the CPU is going back to idle | 
|  | * with no ticks. | 
|  | */ | 
|  | void rcu_irq_exit(void) | 
|  | { | 
|  | struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks); | 
|  |  | 
|  | if (--rdtp->dynticks_nesting) | 
|  | return; | 
|  | smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */ | 
|  | rdtp->dynticks++; | 
|  | WARN_ON_ONCE(rdtp->dynticks & 0x1); | 
|  |  | 
|  | /* If the interrupt queued a callback, get out of dyntick mode. */ | 
|  | if (__get_cpu_var(rcu_sched_data).nxtlist || | 
|  | __get_cpu_var(rcu_bh_data).nxtlist) | 
|  | set_need_resched(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Record the specified "completed" value, which is later used to validate | 
|  | * dynticks counter manipulations.  Specify "rsp->completed - 1" to | 
|  | * unconditionally invalidate any future dynticks manipulations (which is | 
|  | * useful at the beginning of a grace period). | 
|  | */ | 
|  | static void dyntick_record_completed(struct rcu_state *rsp, long comp) | 
|  | { | 
|  | rsp->dynticks_completed = comp; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | /* | 
|  | * Recall the previously recorded value of the completion for dynticks. | 
|  | */ | 
|  | static long dyntick_recall_completed(struct rcu_state *rsp) | 
|  | { | 
|  | return rsp->dynticks_completed; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Snapshot the specified CPU's dynticks counter so that we can later | 
|  | * credit them with an implicit quiescent state.  Return 1 if this CPU | 
|  | * is already in a quiescent state courtesy of dynticks idle mode. | 
|  | */ | 
|  | static int dyntick_save_progress_counter(struct rcu_data *rdp) | 
|  | { | 
|  | int ret; | 
|  | int snap; | 
|  | int snap_nmi; | 
|  |  | 
|  | snap = rdp->dynticks->dynticks; | 
|  | snap_nmi = rdp->dynticks->dynticks_nmi; | 
|  | smp_mb();	/* Order sampling of snap with end of grace period. */ | 
|  | rdp->dynticks_snap = snap; | 
|  | rdp->dynticks_nmi_snap = snap_nmi; | 
|  | ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0); | 
|  | if (ret) | 
|  | rdp->dynticks_fqs++; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return true if the specified CPU has passed through a quiescent | 
|  | * state by virtue of being in or having passed through an dynticks | 
|  | * idle state since the last call to dyntick_save_progress_counter() | 
|  | * for this same CPU. | 
|  | */ | 
|  | static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) | 
|  | { | 
|  | long curr; | 
|  | long curr_nmi; | 
|  | long snap; | 
|  | long snap_nmi; | 
|  |  | 
|  | curr = rdp->dynticks->dynticks; | 
|  | snap = rdp->dynticks_snap; | 
|  | curr_nmi = rdp->dynticks->dynticks_nmi; | 
|  | snap_nmi = rdp->dynticks_nmi_snap; | 
|  | smp_mb(); /* force ordering with cpu entering/leaving dynticks. */ | 
|  |  | 
|  | /* | 
|  | * If the CPU passed through or entered a dynticks idle phase with | 
|  | * no active irq/NMI handlers, then we can safely pretend that the CPU | 
|  | * already acknowledged the request to pass through a quiescent | 
|  | * state.  Either way, that CPU cannot possibly be in an RCU | 
|  | * read-side critical section that started before the beginning | 
|  | * of the current RCU grace period. | 
|  | */ | 
|  | if ((curr != snap || (curr & 0x1) == 0) && | 
|  | (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) { | 
|  | rdp->dynticks_fqs++; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Go check for the CPU being offline. */ | 
|  | return rcu_implicit_offline_qs(rdp); | 
|  | } | 
|  |  | 
|  | #endif /* #ifdef CONFIG_SMP */ | 
|  |  | 
|  | #else /* #ifdef CONFIG_NO_HZ */ | 
|  |  | 
|  | static void dyntick_record_completed(struct rcu_state *rsp, long comp) | 
|  | { | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | /* | 
|  | * If there are no dynticks, then the only way that a CPU can passively | 
|  | * be in a quiescent state is to be offline.  Unlike dynticks idle, which | 
|  | * is a point in time during the prior (already finished) grace period, | 
|  | * an offline CPU is always in a quiescent state, and thus can be | 
|  | * unconditionally applied.  So just return the current value of completed. | 
|  | */ | 
|  | static long dyntick_recall_completed(struct rcu_state *rsp) | 
|  | { | 
|  | return rsp->completed; | 
|  | } | 
|  |  | 
|  | static int dyntick_save_progress_counter(struct rcu_data *rdp) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) | 
|  | { | 
|  | return rcu_implicit_offline_qs(rdp); | 
|  | } | 
|  |  | 
|  | #endif /* #ifdef CONFIG_SMP */ | 
|  |  | 
|  | #endif /* #else #ifdef CONFIG_NO_HZ */ | 
|  |  | 
|  | #ifdef CONFIG_RCU_CPU_STALL_DETECTOR | 
|  |  | 
|  | static void record_gp_stall_check_time(struct rcu_state *rsp) | 
|  | { | 
|  | rsp->gp_start = jiffies; | 
|  | rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK; | 
|  | } | 
|  |  | 
|  | static void print_other_cpu_stall(struct rcu_state *rsp) | 
|  | { | 
|  | int cpu; | 
|  | long delta; | 
|  | unsigned long flags; | 
|  | struct rcu_node *rnp = rcu_get_root(rsp); | 
|  | struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1]; | 
|  | struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES]; | 
|  |  | 
|  | /* Only let one CPU complain about others per time interval. */ | 
|  |  | 
|  | spin_lock_irqsave(&rnp->lock, flags); | 
|  | delta = jiffies - rsp->jiffies_stall; | 
|  | if (delta < RCU_STALL_RAT_DELAY || rsp->gpnum == rsp->completed) { | 
|  | spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | return; | 
|  | } | 
|  | rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK; | 
|  | spin_unlock_irqrestore(&rnp->lock, flags); | 
|  |  | 
|  | /* OK, time to rat on our buddy... */ | 
|  |  | 
|  | printk(KERN_ERR "INFO: RCU detected CPU stalls:"); | 
|  | for (; rnp_cur < rnp_end; rnp_cur++) { | 
|  | rcu_print_task_stall(rnp); | 
|  | if (rnp_cur->qsmask == 0) | 
|  | continue; | 
|  | for (cpu = 0; cpu <= rnp_cur->grphi - rnp_cur->grplo; cpu++) | 
|  | if (rnp_cur->qsmask & (1UL << cpu)) | 
|  | printk(" %d", rnp_cur->grplo + cpu); | 
|  | } | 
|  | printk(" (detected by %d, t=%ld jiffies)\n", | 
|  | smp_processor_id(), (long)(jiffies - rsp->gp_start)); | 
|  | trigger_all_cpu_backtrace(); | 
|  |  | 
|  | force_quiescent_state(rsp, 0);  /* Kick them all. */ | 
|  | } | 
|  |  | 
|  | static void print_cpu_stall(struct rcu_state *rsp) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct rcu_node *rnp = rcu_get_root(rsp); | 
|  |  | 
|  | printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n", | 
|  | smp_processor_id(), jiffies - rsp->gp_start); | 
|  | trigger_all_cpu_backtrace(); | 
|  |  | 
|  | spin_lock_irqsave(&rnp->lock, flags); | 
|  | if ((long)(jiffies - rsp->jiffies_stall) >= 0) | 
|  | rsp->jiffies_stall = | 
|  | jiffies + RCU_SECONDS_TILL_STALL_RECHECK; | 
|  | spin_unlock_irqrestore(&rnp->lock, flags); | 
|  |  | 
|  | set_need_resched();  /* kick ourselves to get things going. */ | 
|  | } | 
|  |  | 
|  | static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) | 
|  | { | 
|  | long delta; | 
|  | struct rcu_node *rnp; | 
|  |  | 
|  | delta = jiffies - rsp->jiffies_stall; | 
|  | rnp = rdp->mynode; | 
|  | if ((rnp->qsmask & rdp->grpmask) && delta >= 0) { | 
|  |  | 
|  | /* We haven't checked in, so go dump stack. */ | 
|  | print_cpu_stall(rsp); | 
|  |  | 
|  | } else if (rsp->gpnum != rsp->completed && | 
|  | delta >= RCU_STALL_RAT_DELAY) { | 
|  |  | 
|  | /* They had two time units to dump stack, so complain. */ | 
|  | print_other_cpu_stall(rsp); | 
|  | } | 
|  | } | 
|  |  | 
|  | #else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | 
|  |  | 
|  | static void record_gp_stall_check_time(struct rcu_state *rsp) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | 
|  |  | 
|  | /* | 
|  | * Update CPU-local rcu_data state to record the newly noticed grace period. | 
|  | * This is used both when we started the grace period and when we notice | 
|  | * that someone else started the grace period. | 
|  | */ | 
|  | static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp) | 
|  | { | 
|  | rdp->qs_pending = 1; | 
|  | rdp->passed_quiesc = 0; | 
|  | rdp->gpnum = rsp->gpnum; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Did someone else start a new RCU grace period start since we last | 
|  | * checked?  Update local state appropriately if so.  Must be called | 
|  | * on the CPU corresponding to rdp. | 
|  | */ | 
|  | static int | 
|  | check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp) | 
|  | { | 
|  | unsigned long flags; | 
|  | int ret = 0; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | if (rdp->gpnum != rsp->gpnum) { | 
|  | note_new_gpnum(rsp, rdp); | 
|  | ret = 1; | 
|  | } | 
|  | local_irq_restore(flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Start a new RCU grace period if warranted, re-initializing the hierarchy | 
|  | * in preparation for detecting the next grace period.  The caller must hold | 
|  | * the root node's ->lock, which is released before return.  Hard irqs must | 
|  | * be disabled. | 
|  | */ | 
|  | static void | 
|  | rcu_start_gp(struct rcu_state *rsp, unsigned long flags) | 
|  | __releases(rcu_get_root(rsp)->lock) | 
|  | { | 
|  | struct rcu_data *rdp = rsp->rda[smp_processor_id()]; | 
|  | struct rcu_node *rnp = rcu_get_root(rsp); | 
|  |  | 
|  | if (!cpu_needs_another_gp(rsp, rdp)) { | 
|  | spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Advance to a new grace period and initialize state. */ | 
|  | rsp->gpnum++; | 
|  | WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT); | 
|  | rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */ | 
|  | rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS; | 
|  | record_gp_stall_check_time(rsp); | 
|  | dyntick_record_completed(rsp, rsp->completed - 1); | 
|  | note_new_gpnum(rsp, rdp); | 
|  |  | 
|  | /* | 
|  | * Because we are first, we know that all our callbacks will | 
|  | * be covered by this upcoming grace period, even the ones | 
|  | * that were registered arbitrarily recently. | 
|  | */ | 
|  | rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; | 
|  | rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; | 
|  |  | 
|  | /* Special-case the common single-level case. */ | 
|  | if (NUM_RCU_NODES == 1) { | 
|  | rcu_preempt_check_blocked_tasks(rnp); | 
|  | rnp->qsmask = rnp->qsmaskinit; | 
|  | rnp->gpnum = rsp->gpnum; | 
|  | rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */ | 
|  | spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | return; | 
|  | } | 
|  |  | 
|  | spin_unlock(&rnp->lock);  /* leave irqs disabled. */ | 
|  |  | 
|  |  | 
|  | /* Exclude any concurrent CPU-hotplug operations. */ | 
|  | spin_lock(&rsp->onofflock);  /* irqs already disabled. */ | 
|  |  | 
|  | /* | 
|  | * Set the quiescent-state-needed bits in all the rcu_node | 
|  | * structures for all currently online CPUs in breadth-first | 
|  | * order, starting from the root rcu_node structure.  This | 
|  | * operation relies on the layout of the hierarchy within the | 
|  | * rsp->node[] array.  Note that other CPUs will access only | 
|  | * the leaves of the hierarchy, which still indicate that no | 
|  | * grace period is in progress, at least until the corresponding | 
|  | * leaf node has been initialized.  In addition, we have excluded | 
|  | * CPU-hotplug operations. | 
|  | * | 
|  | * Note that the grace period cannot complete until we finish | 
|  | * the initialization process, as there will be at least one | 
|  | * qsmask bit set in the root node until that time, namely the | 
|  | * one corresponding to this CPU, due to the fact that we have | 
|  | * irqs disabled. | 
|  | */ | 
|  | for (rnp = &rsp->node[0]; rnp < &rsp->node[NUM_RCU_NODES]; rnp++) { | 
|  | spin_lock(&rnp->lock);	/* irqs already disabled. */ | 
|  | rcu_preempt_check_blocked_tasks(rnp); | 
|  | rnp->qsmask = rnp->qsmaskinit; | 
|  | rnp->gpnum = rsp->gpnum; | 
|  | spin_unlock(&rnp->lock);	/* irqs already disabled. */ | 
|  | } | 
|  |  | 
|  | rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */ | 
|  | spin_unlock_irqrestore(&rsp->onofflock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Advance this CPU's callbacks, but only if the current grace period | 
|  | * has ended.  This may be called only from the CPU to whom the rdp | 
|  | * belongs. | 
|  | */ | 
|  | static void | 
|  | rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp) | 
|  | { | 
|  | long completed_snap; | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | completed_snap = ACCESS_ONCE(rsp->completed);  /* outside of lock. */ | 
|  |  | 
|  | /* Did another grace period end? */ | 
|  | if (rdp->completed != completed_snap) { | 
|  |  | 
|  | /* Advance callbacks.  No harm if list empty. */ | 
|  | rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL]; | 
|  | rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL]; | 
|  | rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; | 
|  |  | 
|  | /* Remember that we saw this grace-period completion. */ | 
|  | rdp->completed = completed_snap; | 
|  | } | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clean up after the prior grace period and let rcu_start_gp() start up | 
|  | * the next grace period if one is needed.  Note that the caller must | 
|  | * hold rnp->lock, as required by rcu_start_gp(), which will release it. | 
|  | */ | 
|  | static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags) | 
|  | __releases(rnp->lock) | 
|  | { | 
|  | WARN_ON_ONCE(rsp->completed == rsp->gpnum); | 
|  | rsp->completed = rsp->gpnum; | 
|  | rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]); | 
|  | rcu_start_gp(rsp, flags);  /* releases root node's rnp->lock. */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Similar to cpu_quiet(), for which it is a helper function.  Allows | 
|  | * a group of CPUs to be quieted at one go, though all the CPUs in the | 
|  | * group must be represented by the same leaf rcu_node structure. | 
|  | * That structure's lock must be held upon entry, and it is released | 
|  | * before return. | 
|  | */ | 
|  | static void | 
|  | cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp, | 
|  | unsigned long flags) | 
|  | __releases(rnp->lock) | 
|  | { | 
|  | struct rcu_node *rnp_c; | 
|  |  | 
|  | /* Walk up the rcu_node hierarchy. */ | 
|  | for (;;) { | 
|  | if (!(rnp->qsmask & mask)) { | 
|  |  | 
|  | /* Our bit has already been cleared, so done. */ | 
|  | spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | return; | 
|  | } | 
|  | rnp->qsmask &= ~mask; | 
|  | if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) { | 
|  |  | 
|  | /* Other bits still set at this level, so done. */ | 
|  | spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | return; | 
|  | } | 
|  | mask = rnp->grpmask; | 
|  | if (rnp->parent == NULL) { | 
|  |  | 
|  | /* No more levels.  Exit loop holding root lock. */ | 
|  |  | 
|  | break; | 
|  | } | 
|  | spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | rnp_c = rnp; | 
|  | rnp = rnp->parent; | 
|  | spin_lock_irqsave(&rnp->lock, flags); | 
|  | WARN_ON_ONCE(rnp_c->qsmask); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get here if we are the last CPU to pass through a quiescent | 
|  | * state for this grace period.  Invoke cpu_quiet_msk_finish() | 
|  | * to clean up and start the next grace period if one is needed. | 
|  | */ | 
|  | cpu_quiet_msk_finish(rsp, flags); /* releases rnp->lock. */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Record a quiescent state for the specified CPU, which must either be | 
|  | * the current CPU.  The lastcomp argument is used to make sure we are | 
|  | * still in the grace period of interest.  We don't want to end the current | 
|  | * grace period based on quiescent states detected in an earlier grace | 
|  | * period! | 
|  | */ | 
|  | static void | 
|  | cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp) | 
|  | { | 
|  | unsigned long flags; | 
|  | unsigned long mask; | 
|  | struct rcu_node *rnp; | 
|  |  | 
|  | rnp = rdp->mynode; | 
|  | spin_lock_irqsave(&rnp->lock, flags); | 
|  | if (lastcomp != ACCESS_ONCE(rsp->completed)) { | 
|  |  | 
|  | /* | 
|  | * Someone beat us to it for this grace period, so leave. | 
|  | * The race with GP start is resolved by the fact that we | 
|  | * hold the leaf rcu_node lock, so that the per-CPU bits | 
|  | * cannot yet be initialized -- so we would simply find our | 
|  | * CPU's bit already cleared in cpu_quiet_msk() if this race | 
|  | * occurred. | 
|  | */ | 
|  | rdp->passed_quiesc = 0;	/* try again later! */ | 
|  | spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | return; | 
|  | } | 
|  | mask = rdp->grpmask; | 
|  | if ((rnp->qsmask & mask) == 0) { | 
|  | spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | } else { | 
|  | rdp->qs_pending = 0; | 
|  |  | 
|  | /* | 
|  | * This GP can't end until cpu checks in, so all of our | 
|  | * callbacks can be processed during the next GP. | 
|  | */ | 
|  | rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; | 
|  |  | 
|  | cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */ | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check to see if there is a new grace period of which this CPU | 
|  | * is not yet aware, and if so, set up local rcu_data state for it. | 
|  | * Otherwise, see if this CPU has just passed through its first | 
|  | * quiescent state for this grace period, and record that fact if so. | 
|  | */ | 
|  | static void | 
|  | rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp) | 
|  | { | 
|  | /* If there is now a new grace period, record and return. */ | 
|  | if (check_for_new_grace_period(rsp, rdp)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Does this CPU still need to do its part for current grace period? | 
|  | * If no, return and let the other CPUs do their part as well. | 
|  | */ | 
|  | if (!rdp->qs_pending) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Was there a quiescent state since the beginning of the grace | 
|  | * period? If no, then exit and wait for the next call. | 
|  | */ | 
|  | if (!rdp->passed_quiesc) | 
|  | return; | 
|  |  | 
|  | /* Tell RCU we are done (but cpu_quiet() will be the judge of that). */ | 
|  | cpu_quiet(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  |  | 
|  | /* | 
|  | * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy | 
|  | * and move all callbacks from the outgoing CPU to the current one. | 
|  | */ | 
|  | static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp) | 
|  | { | 
|  | int i; | 
|  | unsigned long flags; | 
|  | long lastcomp; | 
|  | unsigned long mask; | 
|  | struct rcu_data *rdp = rsp->rda[cpu]; | 
|  | struct rcu_data *rdp_me; | 
|  | struct rcu_node *rnp; | 
|  |  | 
|  | /* Exclude any attempts to start a new grace period. */ | 
|  | spin_lock_irqsave(&rsp->onofflock, flags); | 
|  |  | 
|  | /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */ | 
|  | rnp = rdp->mynode;	/* this is the outgoing CPU's rnp. */ | 
|  | mask = rdp->grpmask;	/* rnp->grplo is constant. */ | 
|  | do { | 
|  | spin_lock(&rnp->lock);		/* irqs already disabled. */ | 
|  | rnp->qsmaskinit &= ~mask; | 
|  | if (rnp->qsmaskinit != 0) { | 
|  | spin_unlock(&rnp->lock); /* irqs remain disabled. */ | 
|  | break; | 
|  | } | 
|  | rcu_preempt_offline_tasks(rsp, rnp, rdp); | 
|  | mask = rnp->grpmask; | 
|  | spin_unlock(&rnp->lock);	/* irqs remain disabled. */ | 
|  | rnp = rnp->parent; | 
|  | } while (rnp != NULL); | 
|  | lastcomp = rsp->completed; | 
|  |  | 
|  | spin_unlock(&rsp->onofflock);		/* irqs remain disabled. */ | 
|  |  | 
|  | /* | 
|  | * Move callbacks from the outgoing CPU to the running CPU. | 
|  | * Note that the outgoing CPU is now quiscent, so it is now | 
|  | * (uncharacteristically) safe to access its rcu_data structure. | 
|  | * Note also that we must carefully retain the order of the | 
|  | * outgoing CPU's callbacks in order for rcu_barrier() to work | 
|  | * correctly.  Finally, note that we start all the callbacks | 
|  | * afresh, even those that have passed through a grace period | 
|  | * and are therefore ready to invoke.  The theory is that hotplug | 
|  | * events are rare, and that if they are frequent enough to | 
|  | * indefinitely delay callbacks, you have far worse things to | 
|  | * be worrying about. | 
|  | */ | 
|  | rdp_me = rsp->rda[smp_processor_id()]; | 
|  | if (rdp->nxtlist != NULL) { | 
|  | *rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist; | 
|  | rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; | 
|  | rdp->nxtlist = NULL; | 
|  | for (i = 0; i < RCU_NEXT_SIZE; i++) | 
|  | rdp->nxttail[i] = &rdp->nxtlist; | 
|  | rdp_me->qlen += rdp->qlen; | 
|  | rdp->qlen = 0; | 
|  | } | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove the specified CPU from the RCU hierarchy and move any pending | 
|  | * callbacks that it might have to the current CPU.  This code assumes | 
|  | * that at least one CPU in the system will remain running at all times. | 
|  | * Any attempt to offline -all- CPUs is likely to strand RCU callbacks. | 
|  | */ | 
|  | static void rcu_offline_cpu(int cpu) | 
|  | { | 
|  | __rcu_offline_cpu(cpu, &rcu_sched_state); | 
|  | __rcu_offline_cpu(cpu, &rcu_bh_state); | 
|  | rcu_preempt_offline_cpu(cpu); | 
|  | } | 
|  |  | 
|  | #else /* #ifdef CONFIG_HOTPLUG_CPU */ | 
|  |  | 
|  | static void rcu_offline_cpu(int cpu) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */ | 
|  |  | 
|  | /* | 
|  | * Invoke any RCU callbacks that have made it to the end of their grace | 
|  | * period.  Thottle as specified by rdp->blimit. | 
|  | */ | 
|  | static void rcu_do_batch(struct rcu_data *rdp) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct rcu_head *next, *list, **tail; | 
|  | int count; | 
|  |  | 
|  | /* If no callbacks are ready, just return.*/ | 
|  | if (!cpu_has_callbacks_ready_to_invoke(rdp)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Extract the list of ready callbacks, disabling to prevent | 
|  | * races with call_rcu() from interrupt handlers. | 
|  | */ | 
|  | local_irq_save(flags); | 
|  | list = rdp->nxtlist; | 
|  | rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL]; | 
|  | *rdp->nxttail[RCU_DONE_TAIL] = NULL; | 
|  | tail = rdp->nxttail[RCU_DONE_TAIL]; | 
|  | for (count = RCU_NEXT_SIZE - 1; count >= 0; count--) | 
|  | if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL]) | 
|  | rdp->nxttail[count] = &rdp->nxtlist; | 
|  | local_irq_restore(flags); | 
|  |  | 
|  | /* Invoke callbacks. */ | 
|  | count = 0; | 
|  | while (list) { | 
|  | next = list->next; | 
|  | prefetch(next); | 
|  | list->func(list); | 
|  | list = next; | 
|  | if (++count >= rdp->blimit) | 
|  | break; | 
|  | } | 
|  |  | 
|  | local_irq_save(flags); | 
|  |  | 
|  | /* Update count, and requeue any remaining callbacks. */ | 
|  | rdp->qlen -= count; | 
|  | if (list != NULL) { | 
|  | *tail = rdp->nxtlist; | 
|  | rdp->nxtlist = list; | 
|  | for (count = 0; count < RCU_NEXT_SIZE; count++) | 
|  | if (&rdp->nxtlist == rdp->nxttail[count]) | 
|  | rdp->nxttail[count] = tail; | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Reinstate batch limit if we have worked down the excess. */ | 
|  | if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark) | 
|  | rdp->blimit = blimit; | 
|  |  | 
|  | local_irq_restore(flags); | 
|  |  | 
|  | /* Re-raise the RCU softirq if there are callbacks remaining. */ | 
|  | if (cpu_has_callbacks_ready_to_invoke(rdp)) | 
|  | raise_softirq(RCU_SOFTIRQ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check to see if this CPU is in a non-context-switch quiescent state | 
|  | * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). | 
|  | * Also schedule the RCU softirq handler. | 
|  | * | 
|  | * This function must be called with hardirqs disabled.  It is normally | 
|  | * invoked from the scheduling-clock interrupt.  If rcu_pending returns | 
|  | * false, there is no point in invoking rcu_check_callbacks(). | 
|  | */ | 
|  | void rcu_check_callbacks(int cpu, int user) | 
|  | { | 
|  | if (!rcu_pending(cpu)) | 
|  | return; /* if nothing for RCU to do. */ | 
|  | if (user || | 
|  | (idle_cpu(cpu) && rcu_scheduler_active && | 
|  | !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) { | 
|  |  | 
|  | /* | 
|  | * Get here if this CPU took its interrupt from user | 
|  | * mode or from the idle loop, and if this is not a | 
|  | * nested interrupt.  In this case, the CPU is in | 
|  | * a quiescent state, so note it. | 
|  | * | 
|  | * No memory barrier is required here because both | 
|  | * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local | 
|  | * variables that other CPUs neither access nor modify, | 
|  | * at least not while the corresponding CPU is online. | 
|  | */ | 
|  |  | 
|  | rcu_sched_qs(cpu); | 
|  | rcu_bh_qs(cpu); | 
|  |  | 
|  | } else if (!in_softirq()) { | 
|  |  | 
|  | /* | 
|  | * Get here if this CPU did not take its interrupt from | 
|  | * softirq, in other words, if it is not interrupting | 
|  | * a rcu_bh read-side critical section.  This is an _bh | 
|  | * critical section, so note it. | 
|  | */ | 
|  |  | 
|  | rcu_bh_qs(cpu); | 
|  | } | 
|  | rcu_preempt_check_callbacks(cpu); | 
|  | raise_softirq(RCU_SOFTIRQ); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | /* | 
|  | * Scan the leaf rcu_node structures, processing dyntick state for any that | 
|  | * have not yet encountered a quiescent state, using the function specified. | 
|  | * Returns 1 if the current grace period ends while scanning (possibly | 
|  | * because we made it end). | 
|  | */ | 
|  | static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp, | 
|  | int (*f)(struct rcu_data *)) | 
|  | { | 
|  | unsigned long bit; | 
|  | int cpu; | 
|  | unsigned long flags; | 
|  | unsigned long mask; | 
|  | struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1]; | 
|  | struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES]; | 
|  |  | 
|  | for (; rnp_cur < rnp_end; rnp_cur++) { | 
|  | mask = 0; | 
|  | spin_lock_irqsave(&rnp_cur->lock, flags); | 
|  | if (rsp->completed != lastcomp) { | 
|  | spin_unlock_irqrestore(&rnp_cur->lock, flags); | 
|  | return 1; | 
|  | } | 
|  | if (rnp_cur->qsmask == 0) { | 
|  | spin_unlock_irqrestore(&rnp_cur->lock, flags); | 
|  | continue; | 
|  | } | 
|  | cpu = rnp_cur->grplo; | 
|  | bit = 1; | 
|  | for (; cpu <= rnp_cur->grphi; cpu++, bit <<= 1) { | 
|  | if ((rnp_cur->qsmask & bit) != 0 && f(rsp->rda[cpu])) | 
|  | mask |= bit; | 
|  | } | 
|  | if (mask != 0 && rsp->completed == lastcomp) { | 
|  |  | 
|  | /* cpu_quiet_msk() releases rnp_cur->lock. */ | 
|  | cpu_quiet_msk(mask, rsp, rnp_cur, flags); | 
|  | continue; | 
|  | } | 
|  | spin_unlock_irqrestore(&rnp_cur->lock, flags); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Force quiescent states on reluctant CPUs, and also detect which | 
|  | * CPUs are in dyntick-idle mode. | 
|  | */ | 
|  | static void force_quiescent_state(struct rcu_state *rsp, int relaxed) | 
|  | { | 
|  | unsigned long flags; | 
|  | long lastcomp; | 
|  | struct rcu_node *rnp = rcu_get_root(rsp); | 
|  | u8 signaled; | 
|  |  | 
|  | if (ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum)) | 
|  | return;  /* No grace period in progress, nothing to force. */ | 
|  | if (!spin_trylock_irqsave(&rsp->fqslock, flags)) { | 
|  | rsp->n_force_qs_lh++; /* Inexact, can lose counts.  Tough! */ | 
|  | return;	/* Someone else is already on the job. */ | 
|  | } | 
|  | if (relaxed && | 
|  | (long)(rsp->jiffies_force_qs - jiffies) >= 0) | 
|  | goto unlock_ret; /* no emergency and done recently. */ | 
|  | rsp->n_force_qs++; | 
|  | spin_lock(&rnp->lock); | 
|  | lastcomp = rsp->completed; | 
|  | signaled = rsp->signaled; | 
|  | rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS; | 
|  | if (lastcomp == rsp->gpnum) { | 
|  | rsp->n_force_qs_ngp++; | 
|  | spin_unlock(&rnp->lock); | 
|  | goto unlock_ret;  /* no GP in progress, time updated. */ | 
|  | } | 
|  | spin_unlock(&rnp->lock); | 
|  | switch (signaled) { | 
|  | case RCU_GP_INIT: | 
|  |  | 
|  | break; /* grace period still initializing, ignore. */ | 
|  |  | 
|  | case RCU_SAVE_DYNTICK: | 
|  |  | 
|  | if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK) | 
|  | break; /* So gcc recognizes the dead code. */ | 
|  |  | 
|  | /* Record dyntick-idle state. */ | 
|  | if (rcu_process_dyntick(rsp, lastcomp, | 
|  | dyntick_save_progress_counter)) | 
|  | goto unlock_ret; | 
|  |  | 
|  | /* Update state, record completion counter. */ | 
|  | spin_lock(&rnp->lock); | 
|  | if (lastcomp == rsp->completed) { | 
|  | rsp->signaled = RCU_FORCE_QS; | 
|  | dyntick_record_completed(rsp, lastcomp); | 
|  | } | 
|  | spin_unlock(&rnp->lock); | 
|  | break; | 
|  |  | 
|  | case RCU_FORCE_QS: | 
|  |  | 
|  | /* Check dyntick-idle state, send IPI to laggarts. */ | 
|  | if (rcu_process_dyntick(rsp, dyntick_recall_completed(rsp), | 
|  | rcu_implicit_dynticks_qs)) | 
|  | goto unlock_ret; | 
|  |  | 
|  | /* Leave state in case more forcing is required. */ | 
|  |  | 
|  | break; | 
|  | } | 
|  | unlock_ret: | 
|  | spin_unlock_irqrestore(&rsp->fqslock, flags); | 
|  | } | 
|  |  | 
|  | #else /* #ifdef CONFIG_SMP */ | 
|  |  | 
|  | static void force_quiescent_state(struct rcu_state *rsp, int relaxed) | 
|  | { | 
|  | set_need_resched(); | 
|  | } | 
|  |  | 
|  | #endif /* #else #ifdef CONFIG_SMP */ | 
|  |  | 
|  | /* | 
|  | * This does the RCU processing work from softirq context for the | 
|  | * specified rcu_state and rcu_data structures.  This may be called | 
|  | * only from the CPU to whom the rdp belongs. | 
|  | */ | 
|  | static void | 
|  | __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | WARN_ON_ONCE(rdp->beenonline == 0); | 
|  |  | 
|  | /* | 
|  | * If an RCU GP has gone long enough, go check for dyntick | 
|  | * idle CPUs and, if needed, send resched IPIs. | 
|  | */ | 
|  | if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0) | 
|  | force_quiescent_state(rsp, 1); | 
|  |  | 
|  | /* | 
|  | * Advance callbacks in response to end of earlier grace | 
|  | * period that some other CPU ended. | 
|  | */ | 
|  | rcu_process_gp_end(rsp, rdp); | 
|  |  | 
|  | /* Update RCU state based on any recent quiescent states. */ | 
|  | rcu_check_quiescent_state(rsp, rdp); | 
|  |  | 
|  | /* Does this CPU require a not-yet-started grace period? */ | 
|  | if (cpu_needs_another_gp(rsp, rdp)) { | 
|  | spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags); | 
|  | rcu_start_gp(rsp, flags);  /* releases above lock */ | 
|  | } | 
|  |  | 
|  | /* If there are callbacks ready, invoke them. */ | 
|  | rcu_do_batch(rdp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do softirq processing for the current CPU. | 
|  | */ | 
|  | static void rcu_process_callbacks(struct softirq_action *unused) | 
|  | { | 
|  | /* | 
|  | * Memory references from any prior RCU read-side critical sections | 
|  | * executed by the interrupted code must be seen before any RCU | 
|  | * grace-period manipulations below. | 
|  | */ | 
|  | smp_mb(); /* See above block comment. */ | 
|  |  | 
|  | __rcu_process_callbacks(&rcu_sched_state, | 
|  | &__get_cpu_var(rcu_sched_data)); | 
|  | __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data)); | 
|  | rcu_preempt_process_callbacks(); | 
|  |  | 
|  | /* | 
|  | * Memory references from any later RCU read-side critical sections | 
|  | * executed by the interrupted code must be seen after any RCU | 
|  | * grace-period manipulations above. | 
|  | */ | 
|  | smp_mb(); /* See above block comment. */ | 
|  | } | 
|  |  | 
|  | static void | 
|  | __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu), | 
|  | struct rcu_state *rsp) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct rcu_data *rdp; | 
|  |  | 
|  | head->func = func; | 
|  | head->next = NULL; | 
|  |  | 
|  | smp_mb(); /* Ensure RCU update seen before callback registry. */ | 
|  |  | 
|  | /* | 
|  | * Opportunistically note grace-period endings and beginnings. | 
|  | * Note that we might see a beginning right after we see an | 
|  | * end, but never vice versa, since this CPU has to pass through | 
|  | * a quiescent state betweentimes. | 
|  | */ | 
|  | local_irq_save(flags); | 
|  | rdp = rsp->rda[smp_processor_id()]; | 
|  | rcu_process_gp_end(rsp, rdp); | 
|  | check_for_new_grace_period(rsp, rdp); | 
|  |  | 
|  | /* Add the callback to our list. */ | 
|  | *rdp->nxttail[RCU_NEXT_TAIL] = head; | 
|  | rdp->nxttail[RCU_NEXT_TAIL] = &head->next; | 
|  |  | 
|  | /* Start a new grace period if one not already started. */ | 
|  | if (ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum)) { | 
|  | unsigned long nestflag; | 
|  | struct rcu_node *rnp_root = rcu_get_root(rsp); | 
|  |  | 
|  | spin_lock_irqsave(&rnp_root->lock, nestflag); | 
|  | rcu_start_gp(rsp, nestflag);  /* releases rnp_root->lock. */ | 
|  | } | 
|  |  | 
|  | /* Force the grace period if too many callbacks or too long waiting. */ | 
|  | if (unlikely(++rdp->qlen > qhimark)) { | 
|  | rdp->blimit = LONG_MAX; | 
|  | force_quiescent_state(rsp, 0); | 
|  | } else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0) | 
|  | force_quiescent_state(rsp, 1); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Queue an RCU-sched callback for invocation after a grace period. | 
|  | */ | 
|  | void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) | 
|  | { | 
|  | __call_rcu(head, func, &rcu_sched_state); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(call_rcu_sched); | 
|  |  | 
|  | /* | 
|  | * Queue an RCU for invocation after a quicker grace period. | 
|  | */ | 
|  | void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) | 
|  | { | 
|  | __call_rcu(head, func, &rcu_bh_state); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(call_rcu_bh); | 
|  |  | 
|  | /* | 
|  | * Check to see if there is any immediate RCU-related work to be done | 
|  | * by the current CPU, for the specified type of RCU, returning 1 if so. | 
|  | * The checks are in order of increasing expense: checks that can be | 
|  | * carried out against CPU-local state are performed first.  However, | 
|  | * we must check for CPU stalls first, else we might not get a chance. | 
|  | */ | 
|  | static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) | 
|  | { | 
|  | rdp->n_rcu_pending++; | 
|  |  | 
|  | /* Check for CPU stalls, if enabled. */ | 
|  | check_cpu_stall(rsp, rdp); | 
|  |  | 
|  | /* Is the RCU core waiting for a quiescent state from this CPU? */ | 
|  | if (rdp->qs_pending) { | 
|  | rdp->n_rp_qs_pending++; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Does this CPU have callbacks ready to invoke? */ | 
|  | if (cpu_has_callbacks_ready_to_invoke(rdp)) { | 
|  | rdp->n_rp_cb_ready++; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Has RCU gone idle with this CPU needing another grace period? */ | 
|  | if (cpu_needs_another_gp(rsp, rdp)) { | 
|  | rdp->n_rp_cpu_needs_gp++; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Has another RCU grace period completed?  */ | 
|  | if (ACCESS_ONCE(rsp->completed) != rdp->completed) { /* outside lock */ | 
|  | rdp->n_rp_gp_completed++; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Has a new RCU grace period started? */ | 
|  | if (ACCESS_ONCE(rsp->gpnum) != rdp->gpnum) { /* outside lock */ | 
|  | rdp->n_rp_gp_started++; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Has an RCU GP gone long enough to send resched IPIs &c? */ | 
|  | if (ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum) && | 
|  | ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)) { | 
|  | rdp->n_rp_need_fqs++; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* nothing to do */ | 
|  | rdp->n_rp_need_nothing++; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check to see if there is any immediate RCU-related work to be done | 
|  | * by the current CPU, returning 1 if so.  This function is part of the | 
|  | * RCU implementation; it is -not- an exported member of the RCU API. | 
|  | */ | 
|  | static int rcu_pending(int cpu) | 
|  | { | 
|  | return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) || | 
|  | __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) || | 
|  | rcu_preempt_pending(cpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check to see if any future RCU-related work will need to be done | 
|  | * by the current CPU, even if none need be done immediately, returning | 
|  | * 1 if so.  This function is part of the RCU implementation; it is -not- | 
|  | * an exported member of the RCU API. | 
|  | */ | 
|  | int rcu_needs_cpu(int cpu) | 
|  | { | 
|  | /* RCU callbacks either ready or pending? */ | 
|  | return per_cpu(rcu_sched_data, cpu).nxtlist || | 
|  | per_cpu(rcu_bh_data, cpu).nxtlist || | 
|  | rcu_preempt_needs_cpu(cpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do boot-time initialization of a CPU's per-CPU RCU data. | 
|  | */ | 
|  | static void __init | 
|  | rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp) | 
|  | { | 
|  | unsigned long flags; | 
|  | int i; | 
|  | struct rcu_data *rdp = rsp->rda[cpu]; | 
|  | struct rcu_node *rnp = rcu_get_root(rsp); | 
|  |  | 
|  | /* Set up local state, ensuring consistent view of global state. */ | 
|  | spin_lock_irqsave(&rnp->lock, flags); | 
|  | rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo); | 
|  | rdp->nxtlist = NULL; | 
|  | for (i = 0; i < RCU_NEXT_SIZE; i++) | 
|  | rdp->nxttail[i] = &rdp->nxtlist; | 
|  | rdp->qlen = 0; | 
|  | #ifdef CONFIG_NO_HZ | 
|  | rdp->dynticks = &per_cpu(rcu_dynticks, cpu); | 
|  | #endif /* #ifdef CONFIG_NO_HZ */ | 
|  | rdp->cpu = cpu; | 
|  | spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize a CPU's per-CPU RCU data.  Note that only one online or | 
|  | * offline event can be happening at a given time.  Note also that we | 
|  | * can accept some slop in the rsp->completed access due to the fact | 
|  | * that this CPU cannot possibly have any RCU callbacks in flight yet. | 
|  | */ | 
|  | static void __cpuinit | 
|  | rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable) | 
|  | { | 
|  | unsigned long flags; | 
|  | long lastcomp; | 
|  | unsigned long mask; | 
|  | struct rcu_data *rdp = rsp->rda[cpu]; | 
|  | struct rcu_node *rnp = rcu_get_root(rsp); | 
|  |  | 
|  | /* Set up local state, ensuring consistent view of global state. */ | 
|  | spin_lock_irqsave(&rnp->lock, flags); | 
|  | lastcomp = rsp->completed; | 
|  | rdp->completed = lastcomp; | 
|  | rdp->gpnum = lastcomp; | 
|  | rdp->passed_quiesc = 0;  /* We could be racing with new GP, */ | 
|  | rdp->qs_pending = 1;	 /*  so set up to respond to current GP. */ | 
|  | rdp->beenonline = 1;	 /* We have now been online. */ | 
|  | rdp->preemptable = preemptable; | 
|  | rdp->passed_quiesc_completed = lastcomp - 1; | 
|  | rdp->blimit = blimit; | 
|  | spin_unlock(&rnp->lock);		/* irqs remain disabled. */ | 
|  |  | 
|  | /* | 
|  | * A new grace period might start here.  If so, we won't be part | 
|  | * of it, but that is OK, as we are currently in a quiescent state. | 
|  | */ | 
|  |  | 
|  | /* Exclude any attempts to start a new GP on large systems. */ | 
|  | spin_lock(&rsp->onofflock);		/* irqs already disabled. */ | 
|  |  | 
|  | /* Add CPU to rcu_node bitmasks. */ | 
|  | rnp = rdp->mynode; | 
|  | mask = rdp->grpmask; | 
|  | do { | 
|  | /* Exclude any attempts to start a new GP on small systems. */ | 
|  | spin_lock(&rnp->lock);	/* irqs already disabled. */ | 
|  | rnp->qsmaskinit |= mask; | 
|  | mask = rnp->grpmask; | 
|  | spin_unlock(&rnp->lock); /* irqs already disabled. */ | 
|  | rnp = rnp->parent; | 
|  | } while (rnp != NULL && !(rnp->qsmaskinit & mask)); | 
|  |  | 
|  | spin_unlock_irqrestore(&rsp->onofflock, flags); | 
|  | } | 
|  |  | 
|  | static void __cpuinit rcu_online_cpu(int cpu) | 
|  | { | 
|  | rcu_init_percpu_data(cpu, &rcu_sched_state, 0); | 
|  | rcu_init_percpu_data(cpu, &rcu_bh_state, 0); | 
|  | rcu_preempt_init_percpu_data(cpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle CPU online/offline notification events. | 
|  | */ | 
|  | int __cpuinit rcu_cpu_notify(struct notifier_block *self, | 
|  | unsigned long action, void *hcpu) | 
|  | { | 
|  | long cpu = (long)hcpu; | 
|  |  | 
|  | switch (action) { | 
|  | case CPU_UP_PREPARE: | 
|  | case CPU_UP_PREPARE_FROZEN: | 
|  | rcu_online_cpu(cpu); | 
|  | break; | 
|  | case CPU_DEAD: | 
|  | case CPU_DEAD_FROZEN: | 
|  | case CPU_UP_CANCELED: | 
|  | case CPU_UP_CANCELED_FROZEN: | 
|  | rcu_offline_cpu(cpu); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compute the per-level fanout, either using the exact fanout specified | 
|  | * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT. | 
|  | */ | 
|  | #ifdef CONFIG_RCU_FANOUT_EXACT | 
|  | static void __init rcu_init_levelspread(struct rcu_state *rsp) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = NUM_RCU_LVLS - 1; i >= 0; i--) | 
|  | rsp->levelspread[i] = CONFIG_RCU_FANOUT; | 
|  | } | 
|  | #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */ | 
|  | static void __init rcu_init_levelspread(struct rcu_state *rsp) | 
|  | { | 
|  | int ccur; | 
|  | int cprv; | 
|  | int i; | 
|  |  | 
|  | cprv = NR_CPUS; | 
|  | for (i = NUM_RCU_LVLS - 1; i >= 0; i--) { | 
|  | ccur = rsp->levelcnt[i]; | 
|  | rsp->levelspread[i] = (cprv + ccur - 1) / ccur; | 
|  | cprv = ccur; | 
|  | } | 
|  | } | 
|  | #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */ | 
|  |  | 
|  | /* | 
|  | * Helper function for rcu_init() that initializes one rcu_state structure. | 
|  | */ | 
|  | static void __init rcu_init_one(struct rcu_state *rsp) | 
|  | { | 
|  | int cpustride = 1; | 
|  | int i; | 
|  | int j; | 
|  | struct rcu_node *rnp; | 
|  |  | 
|  | /* Initialize the level-tracking arrays. */ | 
|  |  | 
|  | for (i = 1; i < NUM_RCU_LVLS; i++) | 
|  | rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1]; | 
|  | rcu_init_levelspread(rsp); | 
|  |  | 
|  | /* Initialize the elements themselves, starting from the leaves. */ | 
|  |  | 
|  | for (i = NUM_RCU_LVLS - 1; i >= 0; i--) { | 
|  | cpustride *= rsp->levelspread[i]; | 
|  | rnp = rsp->level[i]; | 
|  | for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) { | 
|  | spin_lock_init(&rnp->lock); | 
|  | rnp->gpnum = 0; | 
|  | rnp->qsmask = 0; | 
|  | rnp->qsmaskinit = 0; | 
|  | rnp->grplo = j * cpustride; | 
|  | rnp->grphi = (j + 1) * cpustride - 1; | 
|  | if (rnp->grphi >= NR_CPUS) | 
|  | rnp->grphi = NR_CPUS - 1; | 
|  | if (i == 0) { | 
|  | rnp->grpnum = 0; | 
|  | rnp->grpmask = 0; | 
|  | rnp->parent = NULL; | 
|  | } else { | 
|  | rnp->grpnum = j % rsp->levelspread[i - 1]; | 
|  | rnp->grpmask = 1UL << rnp->grpnum; | 
|  | rnp->parent = rsp->level[i - 1] + | 
|  | j / rsp->levelspread[i - 1]; | 
|  | } | 
|  | rnp->level = i; | 
|  | INIT_LIST_HEAD(&rnp->blocked_tasks[0]); | 
|  | INIT_LIST_HEAD(&rnp->blocked_tasks[1]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper macro for __rcu_init() and __rcu_init_preempt().  To be used | 
|  | * nowhere else!  Assigns leaf node pointers into each CPU's rcu_data | 
|  | * structure. | 
|  | */ | 
|  | #define RCU_INIT_FLAVOR(rsp, rcu_data) \ | 
|  | do { \ | 
|  | rcu_init_one(rsp); \ | 
|  | rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \ | 
|  | j = 0; \ | 
|  | for_each_possible_cpu(i) { \ | 
|  | if (i > rnp[j].grphi) \ | 
|  | j++; \ | 
|  | per_cpu(rcu_data, i).mynode = &rnp[j]; \ | 
|  | (rsp)->rda[i] = &per_cpu(rcu_data, i); \ | 
|  | rcu_boot_init_percpu_data(i, rsp); \ | 
|  | } \ | 
|  | } while (0) | 
|  |  | 
|  | #ifdef CONFIG_TREE_PREEMPT_RCU | 
|  |  | 
|  | void __init __rcu_init_preempt(void) | 
|  | { | 
|  | int i;			/* All used by RCU_INIT_FLAVOR(). */ | 
|  | int j; | 
|  | struct rcu_node *rnp; | 
|  |  | 
|  | RCU_INIT_FLAVOR(&rcu_preempt_state, rcu_preempt_data); | 
|  | } | 
|  |  | 
|  | #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */ | 
|  |  | 
|  | void __init __rcu_init_preempt(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */ | 
|  |  | 
|  | void __init __rcu_init(void) | 
|  | { | 
|  | int i;			/* All used by RCU_INIT_FLAVOR(). */ | 
|  | int j; | 
|  | struct rcu_node *rnp; | 
|  |  | 
|  | rcu_bootup_announce(); | 
|  | #ifdef CONFIG_RCU_CPU_STALL_DETECTOR | 
|  | printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n"); | 
|  | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | 
|  | RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data); | 
|  | RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data); | 
|  | __rcu_init_preempt(); | 
|  | open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); | 
|  | } | 
|  |  | 
|  | module_param(blimit, int, 0); | 
|  | module_param(qhimark, int, 0); | 
|  | module_param(qlowmark, int, 0); |